Citation: Pedro Aceves-Sánchez, Mihai Bostan, Jose-Antonio Carrillo, Pierre Degond. Hydrodynamic limits for kinetic flocking models of Cucker-Smale type[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 7883-7910. doi: 10.3934/mbe.2019396
[1] | P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193–1215. |
[2] | M. Ballerini, N. Cabibbo, R. Candelier, et al., Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci. USA, 105 (2008), 1232–1237. |
[3] | U. Lopez, J. Gautrais, I. D. Couzin, et al., From behavioural analyses to models of collective motion in fish schools, Interface Focus, 2 (2012), 693–707. |
[4] | J. Buhl, D. J. T. Sumpter, I. D. Couzin, et al., From disorder to order in marching locusts, Science, 312 (2006), 1402–1406. |
[5] | E. Bertin, M. Droz and G. Grégoire, Hydrodynamic equations for self-propelled particles: Microscopic derivation and stability analysis, J. Phys. Math. Theor., 42 (2009), 445001. |
[6] | H. Chaté, F. Ginelli, G. Grégoire, et al., Collective motion of self-propelled particles interacting without cohesion, Phys. Rev. E, 77 (2008), 046113. |
[7] | I. D. Couzin, J. Krause, N. R. Franks, et al., Effective leadership and decision making in animal groups on the move, Nature, 433 (2005), 513–516. |
[8] | D. Saintillan and M. J. Shelley, Instabilities, pattern formation, and mixing in active suspensions, Phys. Fluids, 20 (2008), 123304. |
[9] | J. Toner and Y. Tu, Long-range order in a two-dimensional dynamical XY model: How birds fly together, Phys. Rev. Lett., 75 (1995), 4326–4329. |
[10] | T. Vicsek, A. Czirok, E. Ben-Jacob, et al., Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226–1229. |
[11] | A. Bricard, J. B. Caussin, N. Desreumaux, et al., Emergence of macroscopic directed motion in populations of motile colloids, Nature, 503 (2013), 95. |
[12] | A. Creppy, F. Plouraboué, O. Praud, et al., Symmetry-breaking phase transitions in highly concentrated semen, J. R. Soc. Interface, 13 (2016), 20160575. |
[13] | D. L. Koch and G. Subramanian, Collective hydrodynamics of swimming microorganisms: Living fluids, Annu. Rev. Fluid Mech., 43 (2011), 637–659. |
[14] | M. C. Marchetti, J. F. Joanny, S. Ramaswamy, et al, Hydrodynamics of soft active matter, Rev. Mod. Phys., 85 (2013), 1143–1188. |
[15] | T. Vicsek and A. Zafeiris, Collective motion, Phys. Rep., 517 (2012), 71–140. |
[16] | S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Rev., 56 (2014), 577–621. |
[17] | J. A. Carrillo, M. Fornasier, G. Toscani, et al., Particle, kinetic and hydrodynamic models of swarming, Math. Model Collect. Behav. Socio-Econ. Life Sci. (MSSET), (2010), 297–336. |
[18] | T. Kolokolnikov, J. A. Carrillo, A. Bertozzi, et al., Emergent behaviour in multi-particle systems with non-local interactions, Phys. D, 260 (2013), 1–4. |
[19] | F. Bolley, J. A. Cañizo and J. A. Carrillo, Stochastic mean-field limit: Non-lipschitz forces & swarming, Math. Models Methods Appl. Sci., 21 (2011), 2179–2210. |
[20] | F. Bolley, J. A. Cañizo and J. A. Carrillo, Mean-field limit for the stochastic Vicsek model, Appl. Math. Lett., 25 (2012), 339–343. |
[21] | W. Braun and K. Hepp, The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles, Comm. Math. Phys., 56 (1977), 101–113. |
[22] | J. A. Cañizo, J. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515–539. |
[23] | H. Neunzert, The Vlasov equation as a limit of Hamiltonian classical mechanical systems of interacting particles, Trans. Fluid Dyn., 18 (1977), 663–678. |
[24] | R. Dobrushin, Vlasov equations, Funct. Anal. Appl., 13 (1979), 115–123. |
[25] | S. Y. Ha, K. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453–469. |
[26] | J. A. Carrillo, Y. P. Choi and M. Hauray, The derivation of swarming models: Mean-field limit and Wasserstein distances, Collect. Dyn. Bact. Crowds, 553 (2014), 1–46. |
[27] | J. A. Carrillo, Y. P. Choi, M. Hauray, et al., Mean-field limit for collective behavior models with sharp sensitivity regions, J. Eur. Math. Soc., 21 (2019), 121–161. |
[28] | P. Degond, G Dimarco, T. B. N. Mac, et al., Macroscopic models of collective motion with repulsion, Comm. Math. Sci., 13 (2015), 1615–1638. |
[29] | P. Degond, A. Manhart and H. Yu, A continuum model for nematic alignment of self-propelled particles, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1295–1327. |
[30] | P. Degond, S. Merino-Aceituno, F. Vergnet, et al., Coupled self-organized hydrodynamics and stokes models for suspensions of active particles, J. Math. Fluid Mech., 21 (2019), 6. |
[31] | P. Degond, A. Frouvelle, S. Merino-Aceituno, et al., Quaternions in collective dynamics, Multiscale Model Simul., 16 (2018), 28–77. |
[32] | M. R. D'Orsogna, Y. L. Chuang, A. L. Bertozzi, et al., Self-propelled particles with soft-core interactions: Patterns, stability and collapse, Phys. Rev. Lett., 96 (2006), 104302–1/4. |
[33] | Y. L. Chuang, Y. R. Huang, M. R. D'Orsogna, et al., Multi-vehicle flocking: Scalability of cooperative control algorithms using pairwise potentials, IEEE Int. Conf. Rob. Autom., (2007), 2292–2299. |
[34] | Y. L. Chuang, M. R. D'Orsogna, D. Marthaler, et al., State transitions and the continuum limit for a 2D interacting, self-propelled particle system, Phys. D, 232 (2007), 33–47. |
[35] | J. A. Carrillo, M. R. D'Orsogna and V. Panferov, Double milling in a self-propelled swarms from kinetic theory, Kinet. Relat. Models, 2 (2009), 363–378. |
[36] | J. A. Carrillo, A. Klar, S. Martin, et al., Self-propelled interacting particle systems with roosting force, Math. Models Methods Appl. Sci., 20 (2010), 1533–1552. |
[37] | A. B. T. Barbaro and P. Degond, Phase transition and diffusion among socially interacting self-propelled agents, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1249–1278. |
[38] | A. B. T. Barbaro, J. A. Cañizo, J. A. Carrillo, et al., Phase transitions in a kinetic flocking model of Cucker-Smale type, Multiscale Model Simul., 14 (2016), 1063–1088. |
[39] | F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Autom. Control, 52 (2007), 852–862. |
[40] | S. Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415–435. |
[41] | S. Y. Ha and J. G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297–325. |
[42] | J. A. Carrillo, M. Fornasier, J. Rosado, et al., Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218–236. |
[43] | S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923–947. |
[44] | A. Frouvelle and J. G. Liu, Dynamics in a kinetic model of oriented particles with phase transition, SIAM J. Math. Anal., 44 (2012), 791–826. |
[45] | P. Degond, A. Frouvelle and J. G. Liu, Macroscopic limits and phase transition in a system of self-propelled particles, J. Nonlinear Sci., 23 (2013), 427–456. |
[46] | P. Degond, A. Frouvelle and J. G. Liu, Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics, Arch. Ration. Mech. Anal., 216 (2015), 63–115. |
[47] | M. Bostan and J. A. Carrillo, Asymptotic fixed-speed reduced dynamics for kinetic equations in swarming, Math. Models Methods Appl. Sci., 23 (2013), 2353–2393. |
[48] | M. Bostan and J. A. Carrillo, Reduced fluid models for self-propelled populations, interacting through alignment, Math. Models Methods Appl. Sci., 27 (2017), 1255–1299. |
[49] | M. Bostan, The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime, Asymptot. Anal., 61 (2009), 91–123. |
[50] | M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differ. Eq., 249 (2010), 1620–1663. |
[51] | M. Bostan, Gyro-kinetic Vlasov equation in three dimensional setting. Second order approximation, SIAM J. Multiscale Model. Simul., 8 (2010), 1923–1957. |
[52] | V. Bonnaillie-Noël, J. A. Carrillo, T. Goudon, et al., Efficient numerical calculation of drift and diffusion coefficients in the diffusion approximation of kinetic equations, IMA J. Numer. Anal., 36 (2016), 1–34. |
[53] | M. Reed and B. Simon, Methods of modern mathematical physics: IV analysis of operators, Academic Press, 1980. |
[54] | C. Bardos, F. Golse and D. Levermore, Fluid dynamic limits of kinetic equations. I. formal derivations, J. Stat. Phys., 63 (1991), 323–344. |
[55] | C. Bardos, F. Golse and D. Levermore, Fluid dynamic limits of kinetic equations II convergence proofs for the Boltzmann equation. Comm. Pure Appl. Math., 46 (1993), 667–753. |
[56] | M. Bostan, On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 339–371. |
[57] | M. Bostan, High magnetic field equilibria for the Fokker-Planck-Landau equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 899–931. |
[58] | D. Levermore, Entropic convergence and the linearized limit for the Boltzmann equation, Commun. Part. Diff. Eq., 18 (1993), 1231–1248. |
[59] | D. Levermore, Moment closure hierarchies for kinetic theories, J. Stat. Phys., 83 (1996), 1021–1065. |
[60] | A. Frouvelle, A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters, Math. Models Methods Appl. Sci., 22 (2012), 1250011. |
[61] | P. D. Miller, Applied asymptotic analysis, American Mathematical Society, 2006. |