To achieve collision-avoiding flocking in finite time, a modified Cucker-Smale model with general inter-driving force is proposed. First, it is proved that the system can achieve conditional collision-avoiding flocking in finite time by imposing appropriate restrictions on the initial states. Moreover, a special case of the inter-driving force is demonstrated. Last, the correctness of the results is verified through numerical simulations.
Citation: Huazong Zhang, Sumin Yang, Rundong Zhao, Qiming Liu. Finite-time flocking with collision-avoiding problem of a modified Cucker-Smale model[J]. Mathematical Biosciences and Engineering, 2022, 19(10): 10332-10343. doi: 10.3934/mbe.2022483
To achieve collision-avoiding flocking in finite time, a modified Cucker-Smale model with general inter-driving force is proposed. First, it is proved that the system can achieve conditional collision-avoiding flocking in finite time by imposing appropriate restrictions on the initial states. Moreover, a special case of the inter-driving force is demonstrated. Last, the correctness of the results is verified through numerical simulations.
[1] | T. Biancalani, L. Dyson, A. J. Mckane, Noise-induced bistable states and their mean switching time in foraging colonies, Phys. Rev. Lett., 112 (2014), 1–5. https://doi.org/10.1103/PhysRevLett.112.038101 doi: 10.1103/PhysRevLett.112.038101 |
[2] | C. J. Napper, B. J. Hatchwell, Social dynamics in nonbreeding flocks of a cooperatively breeding bird: causes and consequences of kin associations, Anim. Behav., 122 (2016), 23–45. https://doi.org/10.1016/j.anbehav.2016.09.008 doi: 10.1016/j.anbehav.2016.09.008 |
[3] | A. Dragulescu, V. Yakovenko, Statistical mechanics of money, Eur. Phys. J., 17 (2000), 723–729. https://doi.org/10.1007/s100510070114 doi: 10.1007/s100510070114 |
[4] | A. Chakraborti, Distributions of money in model markets of economy, Int. J. Mod. Phys. C, 13 (2002), 1315–1321. https://doi.org/10.1142/S0129183102003905 doi: 10.1142/S0129183102003905 |
[5] | F. Cucker, S. Smale, D. X. Zhou, Modeling language evolution, Found. Comut. Math., 4 (2004), 315–343. https://doi.org/10.1007/s10208-003-0101-2 doi: 10.1007/s10208-003-0101-2 |
[6] | J. Ke, J. W. Minett, C. P. Au, W. S. Y. Wang, Self-organization and selection in the emergence of vocabulary, Complexity, 7 (2002), 41–54. https://doi.org/10.1002/cplx.10030 doi: 10.1002/cplx.10030 |
[7] | L. Perea, P. Elosegui, G. Gomez, Extension of the Cucker-Smale control law to space flight formations, J. Guid. Control Dyn., 32 (2009), 527–537. https://doi.org/10.2514/1.36269 doi: 10.2514/1.36269 |
[8] | F. Paita, G. Gomez, J. J. Masdemont, On the cucker-smale flocking model applied to a formation moving in a central force field around the Earth, in Proceedings of the International Astronautical Congress, (2013), 1–10. |
[9] | T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, O. Sochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226–1229. https://doi.org/10.1103/PhysRevLett.75.1226 doi: 10.1103/PhysRevLett.75.1226 |
[10] | F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852–862. https://doi.org/10.1109/TAC.2007.895842 doi: 10.1109/TAC.2007.895842 |
[11] | F. Cucker, S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197–227. https://doi.org/10.1007/s11537-007-0647-x doi: 10.1007/s11537-007-0647-x |
[12] | F. Cucker, J. Dong, Avoiding collisions in flocks, IEEE Trans. Automat. Control, 55 (2010), 1238–1243. https://doi.org/10.1109/TAC.2010.2042355 doi: 10.1109/TAC.2010.2042355 |
[13] | F. Cucker, J. Dong, A general collision-avoiding flocking framework, IEEE Trans. Automat. Control, 56 (2011), 1124–1129. https://doi.org/10.1109/TAC.2011.2107113 doi: 10.1109/TAC.2011.2107113 |
[14] | X. Yin, D. Yue, Z. Chen, Asymptotic behavior and collision avoidance in the Cucker-Smale model, IEEE Trans. Automat. Control, 65 (2020), 3112–3119. https://doi.org/10.1109/TAC.2019.2948473 doi: 10.1109/TAC.2019.2948473 |
[15] | J. Park, H. J. Kim, S. Y. Ha, Cucker-Smale flocking with inter-particle bonding forces, IEEE Trans. Automat. Control, 55 (2010), 2617–2623. https://doi.org/10.1109/TAC.2010.2061070 doi: 10.1109/TAC.2010.2061070 |
[16] | X. Li, Y. Liu, J. Wu, Flocking and pattern motion in a modified Cucker-Smale model, Bull. Korean Math. Soc., 53 (2016), 1327–1339. https://doi.org/10.4134/BKMS.b150629 doi: 10.4134/BKMS.b150629 |
[17] | H. Liu, X. Wang, Y. Liu, X. Li, On non-collision flocking and line-shaped spatial configuration for a modified singular Cucker-Smale model, Commun. Nonlinear Sci. Numer. Simul., 75 (2019), 280–301. https://doi.org/10.1016/j.cnsns.2019.04.006 doi: 10.1016/j.cnsns.2019.04.006 |
[18] | Z. Liu, Y. Liu, X. Li, Flocking and line-shaped spatial configuration to delayed Cucker-Smale models, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021). https://doi.org/10.3934/dcdsb.2020253 |
[19] | Y. Sun, W. Li, D. Zhao, Convergence time and speed of multi-agent systems in noisy environments, Chaos, 22 (2012), 043126. https://doi.org/10.1063/1.4768663 doi: 10.1063/1.4768663 |
[20] | W. Long, X. Feng, Finite-Time consensus problems for networks of dynamic agents, IEEE Trans. Automat. Control, 55 (2010), 950–955. https://doi.org/10.1109/TAC.2010.2041610 doi: 10.1109/TAC.2010.2041610 |
[21] | Y. Han, D. Zhao, Y. Sun, Finite-time flocking problem of a Cucker-Smale-type self-propelled particle model, Complexity, 21 (2016), 354–361. https://doi.org/10.1002/cplx.21747 doi: 10.1002/cplx.21747 |
[22] | H. Liu, X. Wang, X. Li, Y. Liu, Finite-time flocking and collision avoidance for second-order multi-agent systems, Int. J. Syst. Sci., 51 (2020), 102–115. https://doi.org/10.1080/00207721.2019.1701133 doi: 10.1080/00207721.2019.1701133 |
[23] | X. Zhang, H. Dai, L. Zhao, D. Zhao, Y. Sun, Collision avoiding finite-time and fixed-time flocking of Cucker-Smale systems with pinning control, Int. J. Control, 189 (2021). https://doi.org/10.1080/00207179.2021.1892194 |
[24] | E. F. Beckenbach, R. Bellman, Inequalities, 1$^{nd}$ edition, Springer-Verlag, Berlin, Germany, 1961. https://doi.org/10.1007/978-3-642-64971-4 |
[25] | Y. Shen, X. Xia, Semi-global finite-time observers for nonlinear systems, Automatica (Oxf), 44 (2008), 3152–3156. https://doi.org/10.1016/j.automatica.2008.05.015 doi: 10.1016/j.automatica.2008.05.015 |