In this paper, a novel influenza $ \mathcal{S}\mathcal{I}_N\mathcal{I}_R\mathcal{R} $ model with white noise is investigated. According to the research, white noise has a significant impact on the disease. First, we explain that there is global existence and positivity to the solution. Then we show that the stochastic basic reproduction $ {{\underset{\scriptscriptstyle\centerdot}{\text{R}}}} {_r} $ is a threshold that determines whether the disease is cured or persists. When the noise intensity is high, we get $ {{\underset{\scriptscriptstyle\centerdot}{\text{R}}}}{_r} < 1 $ and the disease goes away; when the white noise intensity is low, we get $ {{\underset{\scriptscriptstyle\centerdot}{\text{R}}}}{_r} > 1 $, and a sufficient condition for the existence of a stationary distribution is obtained, which suggests that the disease is still there. However, the main objective of the study is to produce a stochastic analogue of the deterministic model that we analyze using numerical simulations to get views on the infection dynamics in a stochastic environment that we can relate to the deterministic context.
Citation: Jehad Alzabut, Ghada Alobaidi, Shah Hussain, Elissa Nadia Madi, Hasib Khan. Stochastic dynamics of influenza infection: Qualitative analysis and numerical results[J]. Mathematical Biosciences and Engineering, 2022, 19(10): 10316-10331. doi: 10.3934/mbe.2022482
In this paper, a novel influenza $ \mathcal{S}\mathcal{I}_N\mathcal{I}_R\mathcal{R} $ model with white noise is investigated. According to the research, white noise has a significant impact on the disease. First, we explain that there is global existence and positivity to the solution. Then we show that the stochastic basic reproduction $ {{\underset{\scriptscriptstyle\centerdot}{\text{R}}}} {_r} $ is a threshold that determines whether the disease is cured or persists. When the noise intensity is high, we get $ {{\underset{\scriptscriptstyle\centerdot}{\text{R}}}}{_r} < 1 $ and the disease goes away; when the white noise intensity is low, we get $ {{\underset{\scriptscriptstyle\centerdot}{\text{R}}}}{_r} > 1 $, and a sufficient condition for the existence of a stationary distribution is obtained, which suggests that the disease is still there. However, the main objective of the study is to produce a stochastic analogue of the deterministic model that we analyze using numerical simulations to get views on the infection dynamics in a stochastic environment that we can relate to the deterministic context.
[1] | J. Whitman, C. Jayaprakash, Stochastic modeling of influenza spread dynamics with recurrences, Plos One, 15 (2020), e0231521. https://doi.org/10.1371/journal.pone.0231521 doi: 10.1371/journal.pone.0231521 |
[2] | P. Brachman, Infectious diseasespast, present, and future, Int. J. Epidemiol., 32 (2003), 684–686. https://doi.org/10.1093/ije/dyg282 doi: 10.1093/ije/dyg282 |
[3] | C. Peteranderl, S. Herold, C. Schmoldt, Human influenza virus infections, Semin. Respir. Crit. Care Med., 37 (2016), 487–500. https://doi.org/10.1055/s-0036-1584801 doi: 10.1055/s-0036-1584801 |
[4] | F. RAM, F. Smith, M. Peiris, K. Kedzierska, P. Doherty, Palese P. Shaw ML Treanor J. Webster RG Gracia-Sastre A, Nat. Rev. Dis. Primers, 4 (2018), 3. |
[5] | R. Eccles, Understanding the symptoms of the common cold and influenza, Lancet Infect. Dis., 5 (2005), 718–725. https://doi.org/10.1016/S1473-3099(05)70270-X doi: 10.1016/S1473-3099(05)70270-X |
[6] | L. Mohler, D. Flockerzi, H. Sann, U. Reichl, Mathematical model of influenza A virus production in large-scale microcarrier culture, Biotechnol. Bioeng., 90 (2005), 46–58. https://doi.org/10.1002/bit.20363 doi: 10.1002/bit.20363 |
[7] | A. Mosnier, S. Caini, I. Daviaud, E. Nauleau, T. Bui, E. Debost, et al., Clinical characteristics are similar across type A and B influenza virus infections, Plos One, 10 (2015), e0136186. https://doi.org/10.1371/journal.pone.0136186 doi: 10.1371/journal.pone.0136186 |
[8] | M. Martcheva, M. Iannelli, X. Li, Subthreshold coexistence of strains: the impact of vaccination and mutation, Math. Biosci. Eng., 4 (2007), 287. https://doi.org/10.3934/mbe.2007.4.287 doi: 10.3934/mbe.2007.4.287 |
[9] | W. Shao, X. Li, M. Goraya, S. Wang, J. Chen, Evolution of influenza a virus by mutation and re-assortment, Int. J. Mol. Sci., 18 (2017), 1650. https://doi.org/10.3390/ijms18081650 doi: 10.3390/ijms18081650 |
[10] | Y. Kanegae, S. Sugita, A. Endo, M. Ishida, S. Senya, K. Osako, et al., Evolutionary pattern of the hemagglutinin gene of influenza B viruses isolated in Japan: cocirculating lineages in the same epidemic season. J. Virol., 64 (1990), 2860–2865. https://doi.org/10.1128/jvi.64.6.2860-2865.1990 doi: 10.1128/jvi.64.6.2860-2865.1990 |
[11] | A. Fiore, A. Fry, D. Shay, L. Gubareva, J. Bresee, T. Uyeki, Centers for Disease Control and Prevention (CDC) Antiviral agents for the treatment and chemoprophylaxis of influenza recommendations of the Advisory Committee on Immunization Practices (ACIP), MMWR Recomm. Rep., 60 (2011), 1–24. |
[12] | A. Monto, J. McKimm-Breschkin, C. Macken, A. Hampson, A. Hay, A. Klimov, et al., Detection of influenza viruses resistant to neuraminidase inhibitors in global surveillance during the first 3 years of their use, Antimicrob. Agents Chemother., 50 (2006), 2395–2402. https://doi.org/10.1128/AAC.01339-05 doi: 10.1128/AAC.01339-05 |
[13] | J. Carr, J. Ives, L. Kelly, R. Lambkin, J. Oxford, D. Mendel, et al., Influenza virus carrying neuraminidase with reduced sensitivity to oseltamivir carboxylate has altered properties in vitro and is compromised for infectivity and replicative ability in vivo, Antivir. Res., 54 (2002), 79–88. https://doi.org/10.1016/S0166-3542(01)00215-7 doi: 10.1016/S0166-3542(01)00215-7 |
[14] | M. Rameix-Welti, V. Enouf, F. Cuvelier, P. Jeannin, S. vanderWerf, Enzymatic properties of the neuraminidase of seasonal H1N1 influenza viruses provide insights for the emergence of natural resistance to oseltamivir, PLoS Pathog., 4 (2008), e1000103. https://doi.org/10.1371/journal.pcbi.1000103 doi: 10.1371/journal.pcbi.1000103 |
[15] | M. Moghadami, A. Moattari, H. Tabatabaee, A. Mirahmadizadeh, A. Rezaianzadeh, J. Hasanzadeh, et al., High titers of hemagglutination inhibition antibodies against 2009 H1N1 influenza virus in Southern Iran, Iran. J. Immunol., 7 (2010), 39–48. |
[16] | A. Hirsch, Handbook of geographical and historical pathology, New Sydenham Society, 1883. |
[17] | D. Molineux, Molineux's historical account of the late general coughs and colds; with some observations on other epidemick distempers, Philos. Trans., (1694), 105–111. |
[18] | N. Johnson, J. Mueller, Updating the accounts: global mortality of the 1918-1920" Spanish" influenza pandemic, Bull. Hist. Med., 1 (2002), 105–115. |
[19] | Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team, Emergence of a novel swine-origin influenza A (H1N1) virus in humans, N. Engl. J. Med., 361 (2009), 1–10. https://doi.org/10.1056/NEJMoa0903810 |
[20] | World Health Organization, Report of the WHO pandemic influenza A (H1N1) vaccine deployment initiative, 2012. |
[21] | A. Siston, S. Rasmussen, M. Honein, A. Fry, K. Seib, W. Callaghan, et al., Pandemic 2009 influenza A (H1N1) virus illness among pregnant women in the United States, J. Am. Med. Assoc., 303 (2010), 1517–1525. |
[22] | S. Hussain, E. Nadia, H. Khan, S. Etemad, S. Rezapour, T. Sitthiwirattham, et al., Investigation of the stochastic modeling of COVID-19 with environmental noise from the analytical and numerical point of view, Mathematics, 9 (2021), 3122. https://doi.org/10.3390/math9233122 doi: 10.3390/math9233122 |
[23] | S. Hussain, E. Nadia, H. Khan, H. Gulzar, S. Etemad, S. Rezapour et al., On the stochastic modeling of COVID-19 under the environmental white noise, J. Funct. Spaces, 2022 (2022). https://doi.org/10.1155/2022/4320865 doi: 10.1155/2022/4320865 |
[24] | I. Baba, H. Ahmad, M. Alsulami, K. Abualnaja, M. Altanji, A mathematical model to study resistance and non-resistance strains of influenza, Results Phys., 26 (2021), 104390. https://doi.org/10.1016/j.rinp.2021.104390 doi: 10.1016/j.rinp.2021.104390 |
[25] | Y. Zhao, D. Jiang, D. Regan, The extinction and persistence of the stochastic SIS epidemic model with vaccination, Phys. A: Stat. Mech. Appl., 392 (2013), 4916–4927. https://doi.org/10.1016/j.physa.2013.06.009 doi: 10.1016/j.physa.2013.06.009 |
[26] | R. Webster, A. Kendal, W. Gerhard, Analysis of antigenic drift in recently isolated influenza A (H1N1) viruses using monoclonal antibody preparations, Virol. J., 96 (1979), 258–264. https://doi.org/10.1016/0042-6822(79)90189-2 doi: 10.1016/0042-6822(79)90189-2 |
[27] | C. Ji, D. Jiang, Threshold behaviour of a stochastic SIR model, Appl. Math. Model., 38 (2014), 5067–5079. https://doi.org/10.1016/j.apm.2014.03.037 doi: 10.1016/j.apm.2014.03.037 |
[28] | D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302 |