Citation: Favour Adenugba, Sanjay Misra, Rytis Maskeliūnas, Robertas Damaševičius, Egidijus Kazanavičius. Smart irrigation system for environmental sustainability in Africa: An Internet of Everything (IoE) approach[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 5490-5503. doi: 10.3934/mbe.2019273
[1] | B. N. Fantu, B. Guush, M. Bart, et al., Agricultural Transformation in Africa? Assessing the Evidence in Ethopia, World Dev., 105 (2018), 286–298. |
[2] | S. Trilles, J. Torres-Sospedra, Ó. Belmonte, et al., Development of an open sensorized platform in a smart agriculture context: A vineyard support system for monitoring mildew disease, Sustain. Comput. Infor., (2019), in press. |
[3] | Intergovernmental Panel on Climate Change, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC (2014), Geneva, Switzerland, 151 pp., [online] Available from: https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf. |
[4] | A. M. García, I. F. García, E. C. Poyato, et al., Coupling irrigation scheduling with solar energy production in a smart irrigation management system, J. Clean. Prod., 175 (2018), 670–682. |
[5] | M. Kala, U. Sadrul and B. Steven, Solar photovoltaic water pumping-opportunities and challenges, Renew. Sust. Energ. Rev., 4 (2008), 1162–1175. |
[6] | European Commission, Overview of CAP Reform 2014–2020, December 2013, [online] Available from: http://ec.europa.eu/agriculture/policy-perspectives/policy-briefs/05_en.pdf. |
[7] | S. Biswajit, Green Computing, Int. J. Comput. Trends Technol., 14 (2014), 46–50. |
[8] | S. Murugesan, Harnessing green IT: Principles and practices, IT Prof., 10 (2008), 24–33. |
[9] | E. Okewu, S. Misra, R. Maskeliunas, et al., Optimizing green computing awareness for environmental sustainability and economic security as a stochastic optimization problem, Sustainability, 9 (2017), 1857. |
[10] | E. Okewu, S. Misra, L. Fernandez-Sanz, et al., An e-environment system for socio-economic sustainability and national security, Probl. Ekorozw., 13 (2018), 121–132. |
[11] | A. C. Orgerie, Green Computing and Sustainability, Journées scientifiques, 15, (2016), 23–27. |
[12] | A. Al-Zamil and A. K. J. Saudagar, Drivers and challenges of applying green computing for sustainable agriculture: A case study, Sustain. Comput. Infor., (2018), in press. |
[13] | A. Mansur, H. Ghassan, S. A. Syed, et al., A review of solar-powered water pumping systems, Renew. Sust. Energ. Rev., 87 (2018), 61–76. |
[14] | N. Mehdi, M. Peyman, N. Mohammad, et al., Techno-economic feasibility of off-grid solar irrigation for a rice paddy in Guilan province in Iran: A case study, Sol. Energy, 150 (2017), 546–557. |
[15] | P. E. Campana, H. L. Li and J. Y. Yan, Techno-economic feasibility of the irrigation system for the grassland and farmland conservation in China: Photovoltaic vs. wind power water pumping, Energ. Convers. Manage., 103 (2015), 311–320. |
[16] | P. E. Campana, H. L. Li and J. Y. Yan, Dynamic modelling of a PV pumping system with special consideration on water demand, Appl. Energy, 112 (2013), 635–645. |
[17] | Z. Gu, Z. Qi, L. Ma, et al., Development of an irrigation scheduling software based on model predicted crop water stress, Comput. Electron. Agric., 143 (2017), 208–221. |
[18] | R. López-Luque, J. Reca and J. Martínez, Optimal design of a standalone direct pumping photovoltaic system for deficit irrigation of olive orchards, Appl. Energy, 149 (2015), 13–23. |
[19] | G. Vellidis, M. Tucker, C. Perry, et al., A real-time wireless smart sensor array for scheduling irrigation, Comput. Electron. Agric., 61 (2008), 44–50. |
[20] | T. Ojha, S. Misra and N.S. Raghuwanshi, Wireless sensor networks for agriculture: the state-of-the-art in practice and future challenges, Comput. Electron. Agric., 118 (2015), 66–84. |
[21] | B. Keswani, A. G. Mohapatra, A. Mohanty, et al., Adapting weather conditions based IoT enabled smart irrigation technique in precision agriculture mechanisms, Neural Comput. Appl., 31(S1) (2018), 277–292. |
[22] | S. T. Oliver, A. González-Pérez and J. H. Guijarro, An IoT proposal for monitoring vineyards called SEnviro for agriculture, Proceedings of 8th International Conference on the Internet of Things, (2018), 20. ACM. |
[23] | S. A. M. Varman, A. R. Baskaran, S. Aravindh, et al., Deep learning and IoT for smart agriculture using WSN, IEEE International Conference on Computational Intelligence and Computing Research, ICCIC 2017, (2018). |
[24] | A. Goap, D. Sharma, A. K. Shukla, et al., An IoT based smart irrigation management system using machine learning and open source technologies, Comput. Electron. Agric., 155 (2018), 41–49. |
[25] | T. Kashiwao, K. Nakayama, S. Ando, et al., A neural network-based local rainfall prediction system using meteorological data on the Internet: A case study using data from the Japan Meteorological Agency, Appl. Soft Comput., 56 (2017), 317–330. |
[26] | O. Adeyemi, I. Grove, S. Peets, et al., Dynamic neural network modelling of soil moisture content for predictive irrigation scheduling, Sensors, 18 (2018), 3408. |
[27] | L. Huang, L. Chen, Q. Wang, et al., Regional short-term micro-climate air temperature prediction with CBPNN, E3S Web of Conferences, 53 (2018). |
[28] | L. T. Yang, B. Di Martino and Q. Zhang, Internet of Everything, Mob. Inf. Syst., (2017). |
[29] | S. R. Barkunan, V. Bhanumathi and J. Sethuram, Smart sensor for automatic drip irrigation system for paddy cultivation, Comput. Electr. Eng., 73 (2019), 180–193. |
[30] | C. Chang and K. Lin, Smart agricultural machine with a computer vision-based weeding and variable-rate irrigation scheme, Robotics, 7 (2018), 38. |
[31] | C. Corbari, R. Salerno, A. Ceppi, et al., Smart irrigation forecast using satellite LANDSAT data and meteo-hydrological modeling, Agric. Water Manag., 212 (2019), 283–294. |
[32] | W. Difallah, K. Benahmed, B. Draoui, et al., Implementing wireless sensor networks for smart irrigation, Taiwan Water Conservancy, 65 (2017), 44–54. |
[33] | S. Geetha and R. Sathya Priya, Smart agriculture irrigation control using wireless sensor networks, GSM and android phone, Asian J. Inf. Technol., 15 (2016), 3780–3786. |
[34] | A. Goap, D. Sharma, A. K. Shukla, et al., An IoT based smart irrigation management system using machine learning and open source technologies, Comput. Electron. Agr., 155 (2018), 41–49. |
[35] | N. Hema and K. Kant, Cost-effective smart irrigation controller using automatic weather stations, Int. J. Hydrol. Sci. Technol., 9 (2019), 1–27. |
[36] | C. Kamienski, J. Soininen, M. Taumberger, et al., Smart water management platform: IoT-based precision irrigation for agriculture, Sensors, 19 (2019), 276. |
[37] | S. Katyara, M. A. Shah, S. Zardari, et al., WSN based smart control and remote field monitoring of Pakistan's irrigation system using SCADA applications, Wireless Pers. Commun., 95 (2017), 491–504. |
[38] | O. Abayomi-Alli, M. Odusami, D. Ojinaka, et al., Smart-Solar Irrigation System (SMIS) for Sustainable Agriculture, International Conference on Applied Informatics, ICAI 2018, (2018), 198–212. |
[39] | A. G. Mohapatra, S. K. Lenka and B. Keswani, Neural network and fuzzy logic based smart DSS model for irrigation notification and control in precision agriculture, P. Natl. A. Sci. India A, 89 (2019), 67–76. |
[40] | M. S. Munir, I. S. Bajwa, M. A. Naeem, et al., Design and implementation of an IoT system for smart energy consumption and smart irrigation in tunnel farming, Energies, 11 (2018), 3427. |
[41] | X. Fan, W. Wei, M. Wozniak, et al., Low energy consumption and data redundancy approach of wireless sensor networks with bigdata, Inf. Technol. Control, 47 (2018), 406–418. |
[42] | A. Venčkauskas, N. Jusas, E. Kazanavičius, et al., An energy efficient protocol for the internet of things, J. Electr. Eng., 66 (2015), 47–52. |
[43] | W. Wei, Z. Sun, H. Song, et al., Energy balance-based steerable arguments coverage method in WSNs, IEEE Access, 6 (2018), 33766–33773. |
[44] | C.M Bishop, Neural networks for pattern recognition, Oxford University Press, 1995. |
[45] | Z. Boger and H. Guterman, Knowledge extraction from artificial neural network models, IEEE Systems, Man, and Cybernetics Conference, 4 (1997), 3030–3035. |
[46] | N. Srivastava, G. Hinton, A. Krizhevsky, et al., Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res., 15 (2014), 1929–1958. |