Citation: Xiang Xiao, Huijing Hu, Lifang Li, Le Li. Comparison of dominant hand to non-dominant hand in conduction of reaching task from 3D kinematic data: Trade-off between successful rate and movement efficiency[J]. Mathematical Biosciences and Engineering, 2019, 16(3): 1611-1624. doi: 10.3934/mbe.2019077
[1] | D. J. Goble and S. H. Brown, The biological and behavioral basis of upper limb asymmetries in sensorimotor performance. Neurosci. Biohehav. R., 32(2008), 598–610. |
[2] | B. Hanna-Pladdy, J. E. Mendoza and G. T. Apostolos, et al., Lateralised motor control: hemispheric damage and the loss of deftness, J. Neurol. Neurosurg. Psychiatry, 73(2002), 574–577. |
[3] | G. A. Ghacibeh, R. Mirpuri and V. Drago, et al.,Ipsilateral motor activation during unimanual and bimanual motor tasks, Clin. Neurophysiol., 118(2007), 325–332. |
[4] | M. P. Bryden, Measuring handedness with questionnaires, Neuropsychologia, 15(1977), 617–624. |
[5] | R. Sainburg, Evidence for a dynamic-dominance hypothesis of handedness, Exp. Brain Res., 142(2002), 241–258. |
[6] | R. L. Sainburg and D. Kalakanis, Differences in control of limb dynamics during dominant and nondominant arm reaching, J Neurophysiol., 83(2000), 2661–2675. |
[7] | J. M. Wagner, C. E. Lang and S. A. Sahrmann, et al., Sensorimotor impairments and reaching performance in subjects with poststroke hemiparesis during the first few months of recovery, Phys. Ther., 87(2007), 751–765. |
[8] | L. Van Dokkum, I. Hauret and D. Mottet, et al., The contribution of kinematics in the assessment of upper limb motor recovery early after stroke, Neurorehabil. Neural Repair, 28(2013), 4–12. |
[9] | B. Hingtgen, J. R. McGuire and M. Wang, et al, An upper extremity kinematic model for evaluation of hemiparetic stroke, J. Biomech., 39(2006), 681–688. |
[10] | C. Bosecker, L. Dipietro and B. Volpe, et al, Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke, Neurorehabil. Neural Repair, 24(2010), 62–69. |
[11] | J. V. G. Robertson and A. Roby-Brami, The trunk as a part of the kinematic chain for reaching movements in healthy subjects and hemiparetic patients, Brain Res., 1382(2011), 137–146. |
[12] | S. K. Subramanian, J. Yamanaka and G. Chilingaryan, et al., Validity of movement pattern kinematics as measures of arm motor impairment poststroke, Stroke, 41(2010), 2303–2308. |
[13] | R. J. Van Beers, P. Haggard and D. M. Wolpert, The role of execution noise in movement variability, J Neurophysiol., 91(2004), 1050–1063. |
[14] | M. Levin, Interjoint coordination during pointing movements is disrupted in spastic hemiparesis, Brain, 119(1996), 281–293. |
[15] | M. Duarte and S. M. Freitas, Speed-accuracy trade-off in voluntary postural movements, Motor Control, 9(2005), 180–196. |
[16] | J. Förster, E. T. Higgins and A. T. Bianco, Speed/accuracy decisions in task performance: Built-in trade-off or separate strategic concerns? Organ. Behav. Hum. Decis. Process, 90(2003), 148–164. |
[17] | O. Missenard and L. Fernandez, Moving faster while preserving accuracy, Neuroscience, 197(2011), 233–241. |
[18] | S. L. Dejong, S. Y. Schaefer and C. E. Lang, Need for speed: better movement quality during faster task performance after stroke, Neurorehabil. Neural Repair, 26(2012), 362–373. |
[19] | R. C. Oldfield, The assessment and analysis of handedness: The Edinburgh inventory, Neuropsychologia, 9(1971), 97–113. |
[20] | G. T. Thielman, C. M. Dean and A.M. Gentile, Rehabilitation of reaching after stroke: Task-related training versus progressive resistive exercise, Arch. Phys. Med. Rehabil., 85(2004), 1613–1618. |
[21] | S. Y. Schaefer, S. L. DeJong and K. M. Cherry, et al., Grip type and task goal modify reach-to-grasp performance in post-stroke hemiparesis, Motor Control, 16(2012), 245–264. |
[22] | P. M. van Vliet and M. R. Sheridan, Ability to adjust reach extent in the hemiplegic arm, Physiotherapy, 95(2009), 176–184. |
[23] | R. F. Molina, M. F. Rivas and D. H. T. M. Perez, et al., Movement analysis of upper extremity hemiparesis in patients with cerebrovascular disease: a pilot study, Neurologia, 27(2012), 343–347. |
[24] | L. B. Bagesteiro and R. L. Sainburg, Nondominant arm advantages in load compensation during rapid elbow joint movements, J. Neurophysiol., 90(2003), 1503–1513. |
[25] | R. L. Sainburg, Convergent models of handedness and brain lateralization, Front. Psychol., 5(2014), 1092. |
[26] | L. B. Bagesteiro and R. L. Sainburg, Handedness: Dominant arm advantages in control of limb dynamics, J. Neurophysiol., 88(2002), 2408–2421. |
[27] | W. G. Yoo, Comparison of reaching velocity, upper trunk movement, and center of force movement between a dominant and nondominant hand reaching task, J. Phys. Ther. Sci., 26(2014), 1547–1548. |
[28] | S. Barthélémy and P. Boulinguez, Manual asymmetries in the directional coding of reaching: further evidence for hemispatial effects and right hemisphere dominance for movement planning, Exp. Brain Res., 147(2002), 305–312. |
[29] | K. C. Lin, C. Y. Wu and K. H. Lin, et al., Effects of task instructions and target location on reaching kinematics in people with and without cerebrovascular accident: a study of the less-affected limb, Am. J. Occup. Ther., 62(2008), 456–465. |
[30] | P. H. McCrea and J. J. Eng, Consequences of increased neuromotor noise for reaching movements in persons with stroke, Exp. Brain Res., 162(2005), 70–77. |
[31] | ADDIN CNKISM.UserStyleJ. I. Todor and J. Cisneros, Accommodation to increased accuracy demands by the right and left hands, J. Mot. Behav., 17(1985), 355–372. |
[32] | D. P. Carey, E. L. Hargreaves and M. A. Goodale, Reaching to ipsilateral or contralateral targets: within-hemisphere visuomotor processing cannot explain hemispatial differences in motor control, Exp. Brain Res., 112(1996), 496–504. |
[33] | H. Carnahan, Manual asymmetries in response to rapid target movement, Brain Cogn., 37(1998), 237–253. |
[34] | P. Boulinguez, V. Nougier and J. L. Velay, Manual asymmetries in reaching movement control. I: Study of right-handers, Cortex, 37(2001), 101–122. |
[35] | L. A. Knaut, S. K. Subramanian and B. J. McFadyen, et al., Kinematics of pointing movements made in a virtual versus a physical 3-dimensional environment in healthy and stroke subjects, Arch. Phys. Med. Rehabil., 90(2009), 793–802. |
[36] | D. P. Carey and H. E. Otto-de, Hemispatial differences in visually guided aiming are neither hemispatial nor visual, Neuropsychologia,. 39(2001), 885–894. |
[37] | Y. Chen, H. Hu and C. Ma, et al., Stroke-related changes in the complexity of muscle activation during obstacle-crossing using fuzzy approximate entropy analysis, Front. Neurol., 9(2018), 131. |
[38] | C. Ma, N. Chen and Y. Mao, et al., Alterations of muscle activation pattern in stroke survivors during obstacle crossing, Front. Neurol., 8(2017), 70. |
[39] | Q. H. Huang, B. W. Wu and J. L. Lan, et al., Fully automatic three-dimensional ultrasound imaging based on conventional B-scan, IEEE Trans. Biomed. Circuits Syst., 12(2018), 426–436. |
[40] | Q. H. Huang, Z. Z. Zeng and X. L. Li, 2.5-Dimensional extended field-of-view ultrasound, IEEE Trans. Med. Imaging, 37(2018), 851–859. |