A multiscale model for glioma spread including cell-tissue interactions and proliferation

  • Received: 01 July 2015 Accepted: 29 June 2018 Published: 25 December 2015
  • MSC : Primary: 92C17, 92C50; Secondary: 35Q92.

  • Glioma is a broad class of brain and spinal cord tumors arising from glia cells, which are the main brain cells that can develop into neoplasms.They are highly invasive and lead to irregular tumor margins which are not precisely identifiable by medical imaging, thus rendering a precise enough resection very difficult.The understanding of glioma spread patterns is hence essential for both radiological therapy as well as surgical treatment.In this paper we propose a multiscale model for glioma growth including interactions of the cells with the underlying tissuenetwork, along with proliferative effects. Our current accounting for two subpopulations of cells to accomodate proliferation according to the go-or-grow dichtomotyis an extension of the setting in [16].As in that paper, we assume that cancer cells use neuronal fiber tracts as invasive pathways. Hence, the individualstructure of brain tissue seems to be decisive for the tumor spread. Diffusion tensor imaging (DTI) is able to provide suchinformation, thus opening the way for patient specificmodeling of glioma invasion. Starting from a multiscale model involving subcellular (microscopic) and individual (mesoscale)cell dynamics, we perform a parabolic scaling to obtain an approximating reaction-diffusion-transport equation on themacroscale of the tumor cell population. Numerical simulations based on DTI data are carried out in order to assess theperformance of our modeling approach.

    Citation: Christian Engwer, Markus Knappitsch, Christina Surulescu. A multiscale model for glioma spread including cell-tissue interactions and proliferation[J]. Mathematical Biosciences and Engineering, 2016, 13(2): 443-460. doi: 10.3934/mbe.2015011

    Related Papers:

    [1] Ali Moussaoui, Vitaly Volpert . The impact of immune cell interactions on virus quasi-species formation. Mathematical Biosciences and Engineering, 2024, 21(11): 7530-7553. doi: 10.3934/mbe.2024331
    [2] Giulia Bertaglia, Walter Boscheri, Giacomo Dimarco, Lorenzo Pareschi . Spatial spread of COVID-19 outbreak in Italy using multiscale kinetic transport equations with uncertainty. Mathematical Biosciences and Engineering, 2021, 18(5): 7028-7059. doi: 10.3934/mbe.2021350
    [3] Baba Issa Camara, Houda Mokrani, Evans K. Afenya . Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences and Engineering, 2013, 10(3): 565-578. doi: 10.3934/mbe.2013.10.565
    [4] Robert P. Gilbert, Philippe Guyenne, Ying Liu . Modeling of the kinetics of vitamin D3 in osteoblastic cells. Mathematical Biosciences and Engineering, 2013, 10(2): 319-344. doi: 10.3934/mbe.2013.10.319
    [5] Abdulhamed Alsisi, Raluca Eftimie, Dumitru Trucu . Non-local multiscale approach for the impact of go or grow hypothesis on tumour-viruses interactions. Mathematical Biosciences and Engineering, 2021, 18(5): 5252-5284. doi: 10.3934/mbe.2021267
    [6] Nikolay L. Martirosyan, Erica M. Rutter, Wyatt L. Ramey, Eric J. Kostelich, Yang Kuang, Mark C. Preul . Mathematically modeling the biological properties of gliomas: A review. Mathematical Biosciences and Engineering, 2015, 12(4): 879-905. doi: 10.3934/mbe.2015.12.879
    [7] Peter Hinow, Philip Gerlee, Lisa J. McCawley, Vito Quaranta, Madalina Ciobanu, Shizhen Wang, Jason M. Graham, Bruce P. Ayati, Jonathan Claridge, Kristin R. Swanson, Mary Loveless, Alexander R. A. Anderson . A spatial model of tumor-host interaction: Application of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 521-546. doi: 10.3934/mbe.2009.6.521
    [8] Dana Paquin, Doron Levy, Lei Xing . Hybrid multiscale landmark and deformable image registration. Mathematical Biosciences and Engineering, 2007, 4(4): 711-737. doi: 10.3934/mbe.2007.4.711
    [9] Fabrizio Clarelli, Roberto Natalini . A pressure model of immune response to mycobacterium tuberculosis infection in several space dimensions. Mathematical Biosciences and Engineering, 2010, 7(2): 277-300. doi: 10.3934/mbe.2010.7.277
    [10] Abdulhamed Alsisi, Raluca Eftimie, Dumitru Trucu . Nonlocal multiscale modelling of tumour-oncolytic viruses interactions within a heterogeneous fibrous/non-fibrous extracellular matrix. Mathematical Biosciences and Engineering, 2022, 19(6): 6157-6185. doi: 10.3934/mbe.2022288
  • Glioma is a broad class of brain and spinal cord tumors arising from glia cells, which are the main brain cells that can develop into neoplasms.They are highly invasive and lead to irregular tumor margins which are not precisely identifiable by medical imaging, thus rendering a precise enough resection very difficult.The understanding of glioma spread patterns is hence essential for both radiological therapy as well as surgical treatment.In this paper we propose a multiscale model for glioma growth including interactions of the cells with the underlying tissuenetwork, along with proliferative effects. Our current accounting for two subpopulations of cells to accomodate proliferation according to the go-or-grow dichtomotyis an extension of the setting in [16].As in that paper, we assume that cancer cells use neuronal fiber tracts as invasive pathways. Hence, the individualstructure of brain tissue seems to be decisive for the tumor spread. Diffusion tensor imaging (DTI) is able to provide suchinformation, thus opening the way for patient specificmodeling of glioma invasion. Starting from a multiscale model involving subcellular (microscopic) and individual (mesoscale)cell dynamics, we perform a parabolic scaling to obtain an approximating reaction-diffusion-transport equation on themacroscale of the tumor cell population. Numerical simulations based on DTI data are carried out in order to assess theperformance of our modeling approach.


    [1] SIAM Journal on Numerical Analysis, 39 (2002), 1749-1779.
    [2] Computing, 82 (2008), 103-119.
    [3] Computing, 82 (2008), 121-138.
    [4] Blood, 105 (2005), 3561-3568.
    [5] Mathematical and Computer Modelling, 51 (2010), 441-451.
    [6] Math. Models Methods Appl. Sci., 22 (2012), 1130001, 37 pp.
    [7] Math. Models Methods Appl. Sci., 23 (2013), 1861-1913.
    [8] Journal of Neuro-Oncology, 63 (2003), 109-116.
    [9] Mathematical Modelling of Natural Phenomena, 7 (2012), 105-135.
    [10] in The gliomas (eds. M. Berger and C. Wilson), W.B. Saunders Company, Philadelphia, (1999), 210-225.
    [11] J. of Clinical Neurosci., 14 (2007), 1041-1048.
    [12] Journal of Neuro-Oncology, 34 (1997), 37-59.
    [13] Journal of Neuro-Oncology, 70 (2004), 217-228.
    [14] IEEE Transactions on Medical Imaging, 28 (2009), 269-286.
    [15] Ph.D. thesis, Université Nice-Sophia Antipolis, 2008.
    [16] Journal of Math. Biol., 71 (2015), 551-582.
    [17] IMA J. Math. Medicine and Biol., 32 (2015), doi:10.1093/imammb/dqv030, 2015.
    [18] Multiscale Modeling and Simulation, 3 (2005), 362-394.
    [19] IMA Journal of Numerical Analysis, 29 (2009), 235-256.
    [20] Neuro-Oncology, 12 (2010), 466-472.
    [21] International Journal of Cancer, 67 (1996), 275-282.
    [22] Neurosurgery, 39 (1996), 235-252.
    [23] SIAM Journal for Applied Mathematics, 61 (2000), 43-73.
    [24] Cell, 144 (2011), 646-674.
    [25] Math Med Biol, 29 (2012), 49-65.
    [26] Europ. J. Appl. Math., 14 (2003), 613-636.
    [27] Journal of Mathematical Biology, 53 (2006), 585-616.
    [28] SIAM Journal on Applied Mathematics, 61 (2000), 751-775.
    [29] Cancer Res., 68 (2008), 650-656.
    [30] Mathematical Biosciences and Engineering, 8 (2011), 575-589.
    [31] Mathematical Models and Methods in Applied Sciences, 23 (2012), 1150017, 25 pp.
    [32] Oxford University Press, 1993.
    [33] Genes Dev., 23 (2009), 397-418.
    [34] Mathematical Models and Methods in Applied Sciences, 24 (2014), 2383-2436.
    [35] Journal of Neurosurgery, 18 (1961), 636-644.
    [36] Discr. Cont. Dyn. Syst. B, 20 (2015), 189-213.
    [37] Journal of Math. Anal. Appl., 408 (2013), 597-614.
    [38] in Adhesion Molecules and Chemokynes in Lymphocyte Trafficking (ed. A. Hamann), Harwood Acad. Publ. (1997), 55-88.
    [39] J. Theoretical Biol., 323 (2013), 25-39.
    [40] The Journal of Cell Biology, 179 (2007), 777-791.
    [41] IMA Journal of Applied Mathematics, 80 (2015), 1300-1321.
    [42] SIAM J. Math. Analysis, 46 (2014), 1969-2007.
    [43] Neurocarciology, 46 (2004), 339-350.
    [44] Journal of Mathematical Biology, 58 (2009), 819-844.
    [45] Magnetic resonance in Medicine, 52 (2004), 1358-1372.
    [46] Neuron, 40 (2003), 885-895.
    [47] Frontiers in Bioscience, 4 (1999), 188-199.
    [48] Journal of neural engineering, 11 (2014), 016002, 14pp.
    [49] SIAM Journal on Numerical Analysis, 15 (1978), 152-161.
    [50] Neuro-Oncology, 4 (2002), 278-299.
  • This article has been cited by:

    1. Amanda Swan, Thomas Hillen, John C. Bowman, Albert D. Murtha, A Patient-Specific Anisotropic Diffusion Model for Brain Tumour Spread, 2018, 80, 0092-8240, 1259, 10.1007/s11538-017-0271-8
    2. Christian Stinner, Christina Surulescu, Aydar Uatay, Global existence for a go-or-grow multiscale model for tumor invasion with therapy, 2016, 26, 0218-2025, 2163, 10.1142/S021820251640011X
    3. Anna Zhigun, Christina Surulescu, Alexander Hunt, A strongly degenerate diffusion-haptotaxis model of tumour invasion under the go-or-grow dichotomy hypothesis, 2018, 01704214, 10.1002/mma.4749
    4. Christian Engwer, Christian Stinner, Christina Surulescu, On a structured multiscale model for acid-mediated tumor invasion: The effects of adhesion and proliferation, 2017, 27, 0218-2025, 1355, 10.1142/S0218202517400188
    5. Robyn Shuttleworth, Dumitru Trucu, Cell-Scale Degradation of Peritumoural Extracellular Matrix Fibre Network and Its Role Within Tissue-Scale Cancer Invasion, 2020, 82, 0092-8240, 10.1007/s11538-020-00732-z
    6. Erdi Kara, Aminur Rahman, Eugenio Aulisa, Souparno Ghosh, Tumor ablation due to inhomogeneous anisotropic diffusion in generic three-dimensional topologies, 2020, 102, 2470-0045, 10.1103/PhysRevE.102.062425
    7. Dong-Mei Wu, Xiao-Wu Hong, Xin Wen, Xin-Rui Han, Shan Wang, Yong-Jian Wang, Min Shen, Shao-Hua Fan, Juan Zhuang, Zi-Feng Zhang, Qun Shan, Meng-Qiu Li, Bin Hu, Chun-Hui Sun, Jun Lu, Yuan-Lin Zheng, MCL1 gene silencing promotes senescence and apoptosis of glioma cells via inhibition of the PI3K/Akt signaling pathway, 2019, 71, 15216543, 81, 10.1002/iub.1944
    8. Stelios Angeli, Kyrre E. Emblem, Paulina Due-Tonnessen, Triantafyllos Stylianopoulos, Towards patient-specific modeling of brain tumor growth and formation of secondary nodes guided by DTI-MRI, 2018, 20, 22131582, 664, 10.1016/j.nicl.2018.08.032
    9. CHRISTINA SURULESCU, MICHAEL WINKLER, Does indirectness of signal production reduce the explosion-supporting potential in chemotaxis–haptotaxis systems? Global classical solvability in a class of models for cancer invasion (and more), 2020, 0956-7925, 1, 10.1017/S0956792520000236
    10. Abramo Agosti, Chiara Giverso, Elena Faggiano, Aymeric Stamm, Pasquale Ciarletta, A personalized mathematical tool for neuro-oncology: A clinical case study, 2018, 107, 00207462, 170, 10.1016/j.ijnonlinmec.2018.06.004
    11. Jason Vickress, Michael Lock, Simon Lo, Slav Yartsev, Potential benefit of rotational radiation therapy, 2017, 13, 1479-6694, 873, 10.2217/fon-2016-0535
    12. Thomas Lorenz, Viability in a non-local population model structured by size and spatial position, 2020, 491, 0022247X, 124249, 10.1016/j.jmaa.2020.124249
    13. Nadia Loy, Luigi Preziosi, Kinetic models with non-local sensing determining cell polarization and speed according to independent cues, 2020, 80, 0303-6812, 373, 10.1007/s00285-019-01411-x
    14. Martina Conte, Luca Gerardo-Giorda, Maria Groppi, Glioma invasion and its interplay with nervous tissue and therapy: A multiscale model, 2020, 486, 00225193, 110088, 10.1016/j.jtbi.2019.110088
    15. Tao Jin, Mingfa Liu, Yan Liu, Yuanzhi Li, Zhennan Xu, Haoqi He, Jie Liu, Yuxuan Zhang, Yiquan Ke, Lcn2-derived Circular RNA (hsa_circ_0088732) Inhibits Cell Apoptosis and Promotes EMT in Glioma via the miR-661/RAB3D Axis, 2020, 10, 2234-943X, 10.3389/fonc.2020.00170
    16. Alexander Hunt, Christina Surulescu, A Multiscale Modeling Approach to Glioma Invasion with Therapy, 2017, 45, 2305-221X, 221, 10.1007/s10013-016-0223-x
    17. Lei Yu, Si Gui, Yawei Liu, Xiaoyu Qiu, Guozhong Zhang, Xi’an Zhang, Jun Pan, Jun Fan, Songtao Qi, Binghui Qiu, Exosomes derived from microRNA-199a-overexpressing mesenchymal stem cells inhibit glioma progression by down-regulating AGAP2, 2019, 11, 1945-4589, 5300, 10.18632/aging.102092
    18. Hua-Chao Yang, Jun-Yi Wang, Xing-Yao Bu, Bin Yang, Bang-Qing Wang, Sen Hu, Zhao-Yue Yan, Yu-Shuai Gao, Shuang-Yin Han, Ming-Qi Qu, Resveratrol restores sensitivity of glioma cells to temozolamide through inhibiting the activation of Wnt signaling pathway, 2019, 234, 00219541, 6783, 10.1002/jcp.27409
    19. Gregor Corbin, Axel Klar, Christina Surulescu, Christian Engwer, Michael Wenske, Juanjo Nieto, Juan Soler, Modeling glioma invasion with anisotropy- and hypoxia-triggered motility enhancement: From subcellular dynamics to macroscopic PDEs with multiple taxis, 2021, 31, 0218-2025, 177, 10.1142/S0218202521500056
    20. Pawan Kumar, Christina Surulescu, A Flux-Limited Model for Glioma Patterning with Hypoxia-Induced Angiogenesis, 2020, 12, 2073-8994, 1870, 10.3390/sym12111870
    21. Pawan Kumar, Jing Li, Christina Surulescu, Multiscale modeling of glioma pseudopalisades: contributions from the tumor microenvironment, 2021, 82, 0303-6812, 10.1007/s00285-021-01599-x
    22. S. Knobe, Y. Dzierma, M. Wenske, Ch. Berdel, J. Fleckenstein, P. Melchior, J. Palm, F. Nuesken, A. Hunt, Ch. Engwer, Ch. Surulescu, U. Yilmaz, W. Reith, Ch. Rübe, Feasibility and clinical usefulness of modelling glioblastoma migration in adjuvant radiotherapy, 2021, 09393889, 10.1016/j.zemedi.2021.03.004
    23. Constantinos Harkos, Siri Fløgstad Svensson, Kyrre E. Emblem, Triantafyllos Stylianopoulos, Inducing Biomechanical Heterogeneity in Brain Tumor Modeling by MR Elastography: Effects on Tumor Growth, Vascular Density and Delivery of Therapeutics, 2022, 14, 2072-6694, 884, 10.3390/cancers14040884
    24. Tingzhe Sun, Multi-scale modeling of hippo signaling identifies homeostatic control by YAP-LATS negative feedback, 2021, 208, 03032647, 104475, 10.1016/j.biosystems.2021.104475
    25. Martina Conte, Nadia Loy, Multi-Cue Kinetic Model with Non-Local Sensing for Cell Migration on a Fiber Network with Chemotaxis, 2022, 84, 0092-8240, 10.1007/s11538-021-00978-1
    26. Jing Wu, Wanshu Peng, Taisong Peng, Zhigao Xu, Ziqing Ye, Correlation of Diffusion Tensor Imaging Parameters with the Pathological Grade of Brain Glioma and Expression of Vascular Endothelial Growth Factor and Ki-67, 2022, 19, 1735-1065, 10.5812/iranjradiol-118135
    27. Anne Dietrich, Niklas Kolbe, Nikolaos Sfakianakis, Christina Surulescu, Multiscale Modeling of Glioma Invasion: From Receptor Binding to Flux-Limited Macroscopic PDEs, 2022, 20, 1540-3459, 685, 10.1137/21M1412104
    28. Martina Conte, Christina Surulescu, Mathematical modeling of glioma invasion: acid- and vasculature mediated go-or-grow dichotomy and the influence of tissue anisotropy, 2021, 407, 00963003, 126305, 10.1016/j.amc.2021.126305
    29. Pawan Kumar, Christina Surulescu, Anna Zhigun, Multiphase modelling of glioma pseudopalisading under acidosis, 2022, 4, 2640-3501, 1, 10.3934/mine.2022049
    30. Fleur Jeanquartier, Claire Jean-Quartier, David Cemernek, Andreas Holzinger, In silico modeling for tumor growth visualization, 2016, 10, 1752-0509, 10.1186/s12918-016-0318-8
    31. Anna Zhigun, Christina Surulescu, A Novel Derivation of Rigorous Macroscopic Limits from a Micro-Meso Description of Signal-Triggered Cell Migration in Fibrous Environments, 2022, 82, 0036-1399, 142, 10.1137/20M1365442
    32. Haili Qian, Adriana Sujey Beltran, Mesoscience in cell biology and cancer research, 2022, 1, 2770-9183, 271, 10.1002/cai2.33
    33. Andreas Christ Sølvsten Jørgensen, Ciaran Scott Hill, Marc Sturrock, Wenhao Tang, Saketh R. Karamched, Dunja Gorup, Mark F. Lythgoe, Simona Parrinello, Samuel Marguerat, Vahid Shahrezaei, Data-driven spatio-temporal modelling of glioblastoma, 2023, 10, 2054-5703, 10.1098/rsos.221444
    34. Hamed Al Shamsi, Migration and Proliferation Dichotomy: A Persistent Random Walk of Cancer Cells, 2023, 7, 2504-3110, 318, 10.3390/fractalfract7040318
    35. Ranim El Baba, Sébastien Pasquereau, Sandy Haidar Ahmad, Franck Monnien, Marine Abad, Frédéric Bibeau, Georges Herbein, EZH2-Myc driven glioblastoma elicited by cytomegalovirus infection of human astrocytes, 2023, 0950-9232, 10.1038/s41388-023-02709-3
    36. Evelyn Buckwar, Martina Conte, Amira Meddah, A stochastic hierarchical model for low grade glioma evolution, 2023, 86, 0303-6812, 10.1007/s00285-023-01909-5
    37. Konstantinos Tzirakis, Christos Panagiotis Papanikas, Vangelis Sakkalis, Eleftheria Tzamali, Yannis Papaharilaou, Alfonso Caiazzo, Triantafyllos Stylianopoulos, Vasileios Vavourakis, An adaptive semi‐implicit finite element solver for brain cancer progression modeling, 2023, 2040-7939, 10.1002/cnm.3734
    38. Martina Conte, Yvonne Dzierma, Sven Knobe, Christina Surulescu, Mathematical modeling of glioma invasion and therapy approaches via kinetic theory of active particles, 2023, 33, 0218-2025, 1009, 10.1142/S0218202523500227
    39. Sandesh Athni Hiremath, Christina Surulescu, Data driven modeling of pseudopalisade pattern formation, 2023, 87, 0303-6812, 10.1007/s00285-023-01933-5
    40. Zhongjun Chen, Jingmin Zhou, Yu Liu, Hongzao Ni, Botao Zhou, Targeting MAGI2‐AS3‐modulated Akt‐dependent ATP‐binding cassette transporters as a possible strategy to reverse temozolomide resistance in temozolomide‐resistant glioblastoma cells, 2023, 0272-4391, 10.1002/ddr.22101
    41. Francesca Ballatore, Giulio Lucci, Andrea Borio, Chiara Giverso, 2023, Chapter 5, 978-3-031-35714-5, 131, 10.1007/978-3-031-35715-2_5
    42. Maria Eckardt, Christina Surulescu, On a mathematical model for cancer invasion with repellent pH-taxis and nonlocal intraspecific interaction, 2024, 75, 0044-2275, 10.1007/s00033-024-02189-9
    43. Evelyn Buckwar, Amira Meddah, Numerical approximations and convergence analysis of piecewise diffusion Markov processes, with application to glioma cell migration, 2025, 491, 00963003, 129233, 10.1016/j.amc.2024.129233
    44. Giulia Chiari, Martina Conte, Marcello Delitala, Multi-scale modeling of Snail-mediated response to hypoxia in tumor progression, 2025, 145, 10075704, 108673, 10.1016/j.cnsns.2025.108673
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3696) PDF downloads(755) Cited by(44)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog