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Abstract. Glioma is a broad class of brain and spinal cord tumors arising
from glia cells, which are the main brain cells that can develop into neoplasms.
They are highly invasive and lead to irregular tumor margins which are not
precisely identifiable by medical imaging, thus rendering a precise enough re-
section very difficult. The understanding of glioma spread patterns is hence
essential for both radiological therapy as well as surgical treatment. In this
paper we propose a multiscale model for glioma growth including interactions
of the cells with the underlying tissue network, along with proliferative effects.
Our current accounting for two subpopulations of cells to accomodate prolifer-
ation according to the go-or-grow dichtomoty is an extension of the setting in
[16]. As in that paper, we assume that cancer cells use neuronal fiber tracts as
invasive pathways. Hence, the individual structure of brain tissue seems to be
decisive for the tumor spread. Diffusion tensor imaging (DTI) is able to provide
such information, thus opening the way for patient specific modeling of glioma
invasion. Starting from a multiscale model involving subcellular (microscopic)
and individual (mesoscale) cell dynamics, we perform a parabolic scaling to ob-
tain an approximating reaction-diffusion-transport equation on the macroscale
of the tumor cell population. Numerical simulations based on DTI data are
carried out in order to assess the performance of our modeling approach.

1. Introduction. Gliomas are malignant primary tumors in the human brain with
a poor prognosis [50]. The common treatment approach involves surgical resection,
usually followed by radiotherapy. Thereby, the assessment of the tumor margin
is, however, a challenging issue, due to the high invasiveness of gliomas and their
finger-like, often disconnected, fibrillary patterns [10, 12, 20, 35]. Mathematical
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models aim at providing enhanced information about position, shape, and extent of
the tumor by relying on medical imaging techniques. In particular, diffusion tensor
imaging (DTI) is one of the most common radiological methods in the detection of
brain tumors [43]. On T1- and T2-weighted images neoplastic and healthy tissue
differ in intensity, thus making the core part of the tumor visible.

DTI techniques are non-invasive and they permit to assess the specific brain archi-
tecture. Modern imaging methods rely on evaluating the diffusion behaviour of wa-
ter molecules within structured tissue. This reveals the orientation and anisotropy
(meaning the extent of joint alignment) of neuronal fibers making up white mat-
ter tracts. This information is particularly interesting for surgery and radiation
therapy.

Several key features have been identified to be crucial for tumor progression, see
e.g., [24]. In this work we focus on the interaction of tumor cells with the underlying
tissue and on proliferative effects. The model we propose here has a multiscale
character, with the purpose of connecting the various levels on which the relevant
biochemical processes triggering glioma spread take place. For modeling tumor
growth we rely on the go-or-grow hypothesis, which states that cancer cells can
either move or proliferate [21, 29]. We assume that cancer cells use neuronal fiber
tracts as invasive pathways, which makes the individual brain structure interesting
for patient specific modelling of glioma. Diffusion tensor imaging data are able to
provide this information [45, 46].

Starting in Section 2 with a kinetic model on the mesoscale and an ODE on
the subcellular level, a parabolic scaling yields an approximating reaction-diffusion-
transport equation on the macroscale. Thereby, the precise form of the coefficients is
determined in direct relationship with the available DTI data. Section 3 is concerned
with the numerical simulation for the macroscopic equation. Eventually, in Section
4 we comment on the performance of this modeling approach.

1.1. Multiscale modelling of glioma growth. The invasion of tumor cells is
a highly complex process involving a plethora of phenomena on different spatial
and temporal scales [24]. Multiscale models can help to map this high degree of
complexity into mathematical structures. Such mathematical settings involve two
or several scales and accordingly more or less details of the processes they describe.
Micro-macro models for tumor cell migration have been proposed and analysed e.g.,
in [37], which accounts for the effect of heat shock proteins (microlevel) on cancer
invasion (on the macrolevel) and extends the model in [44], or more recently for the
migration of cancer cells performing haptotaxis and chemotaxis (macroscale) un-
der the influence of integrin binding to soluble and unsoluble ligands (microscale)
[36, 42] or for the acid-mediated tumor invasion with pH taxis [41]. Different, but
related approaches are hybrids between discrete and continuous modeling. These
use cellular Potts or (lattice gas) cellular automata to provide lattice based simula-
tions of individual cells involving more or less details on the subcellular level, from
which information about the behavior on the population level can be extracted,
see e.g., [9, 25] and the references therein. More complex continuum models also
involving mesoscale dynamics (individual cell-tissue and/or cell-cell interactions)
were considered by Bellomo et al. [5, 6, 7] or – fitting in the same framework – in
e.g., [16, 30, 31, 34, 39].

In our model for glioma growth and spread we distinguish between three different
scales. The microscale refers to processes happening on the subcellular level. In
our setting these reduce to the binding of cell surface receptors to unsoluble ligands
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and we employ an ordinary differential equation for the corresponding mass action
kinetics. The mesoscale accounts for the behavior of individual cells and their
interactions with their surroundings, in this case the (anisotropic) tissue network.
The dynamics are characterized with the aid of kinetic transport equations for the
densities of moving and resting cells (see Section 2.3). At this point, we rely on
the above mentioned go or grow dichotomy. Finally, the macroscale refers to the
population level on which the tumor as a whole can be observed. Unlike the previous
two scales, it is not included in the original model, but deduced from it. More
precisely, it is our goal in this paper do derive an equation for the macroscopic
density N(t,x) of tumor cells at time t at position x, which also contains the
information of the descriptions of the micro- and mesoscales.

1.2. Diffusion tensor imaging. At present, medical imaging methods like com-
puted tomography (CT) along with magnetic resonance imaging based methods like
diffusion tensor imaging (DTI) play a central role in the diagnosis of brain tumors in
general. Cancerous tissue and healthy tissue differ in intensity in the representation,
and hence malignant tissue alterations can be observed. One significant shortcom-
ing is that not the whole tumor is visible, but only its core part. The actual tumor
margin cannot be assessed. This is a major drawback, since after resection of the
malignant region visible on DTI or CT scans the tumor can start growing again due
to the incomplete removal.

However, in particular the diffusion tensor imaging (DTI) method is of high
value for glioma prognosis as it provides information about the local tissue structure
within the brain [46]. DTI relies on the measurement of the diffusion behaviour of
water molecules within structured tissue, relating it to the anisotopy of neural fiber
tracts [15, 45]. The water molecules are assumed to diffuse faster along fiber struc-
tures than orthogonally to them, which allows to capture the mentioned anisotropy.
Technically, DTI measures the apparent diffusivity of water molecules per volume
element (voxel). This can be characterized with the (symmetric) water diffusion
tensor

DW (x) =


dxx(x) dxy(x) dxz(x)

dyx(x) dyy(x) dyz(x)

dzx(x) dzy(x) dzz(x)

 .

Thereby, the diffusion tensor can be visualized e.g., with the aid of the fractional
anisotropy index [8] or with tensor glyphs. While the former is a scalar value
between zero and one, computed by using the eigenvalues of the apparent diffusion
tensor1, the latter convey tensor variables by mapping the tensor eigenvectors and
eigenvalues to the orientation and shape of e.g., a cuboid or an ellipsoid. Glyphs
commonly used in this context are ellipsoids and peanuts. For more details on this
topic we refer to [16] and the references therein.

Tractography aims to reconstruct the local tissue orientation out of DTI data
[14]. This is a quite complex process and still part of ongoing research. As we are
primarily interested in one main direction of tissue fibers per voxel, we will use a
simple mathematical expression to connect the water diffusion tensor and the local
fiber distribution in Section 2.4.

1A value close to one means high anisotropy, i.e., a strong preference for a specific direction,
whereas a very small value corresponds to the nearly isotropic case.
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2. A multiscale model including proliferation.

2.1. Transport equations with resting phases. We aim at providing a multi-
scale model for glioma spread wich includes proliferation and interactions of the cells
with the extracellular matrix. It has been proposed that the go-or-grow hypothesis
is a good starting point in modeling proliferative effects on the cell scale [9, 25].
Here we start from the approach in [26] and propose a setting which is expanded by
a model for the cell receptor dynamics on the microscale as in [16] and which also
accounts for the interaction between tumor cells and tissue fibers.

We observe the density functions p(t,x,v,y) of moving cells at time t, position
x ∈ Rn, velocity2 v ∈ V ⊂ Rn, and internal state y ∈ Y ⊂ Rd and of resting (and
hence proliferating) cells r(t,x,y). This leads to a system of equations of the form

∂tp+∇x · (vp) +∇y · (G(y)p) = L[λ]p− α(x)p+
βq

ω
r − l(N)p, (1a)

∂tr = α(x)

∫
V

pdv − βr + g(N)r − l(N)r. (1b)

Here

L[λ]p := −λ(y)p+ λ(y)

∫
V

K(x,v)p(v′)dv′ (2)

is the turning operator modeling the cell velocity innovations due to contact guid-
ance, environmental cues etc. These influences are contained in the turning kernel
K. As proposed in [27] and used in [16], we choose K(x,v) = q(x,v̂)

ω , where v̂ is
the normalized velocity, q(x, v̂) is the directional distribution of tissue fibers, and
ω =

∫
V
q(v̂)dv = sn−1 is a scaling constant. The function λ(y) denotes the turning

rate of cells. The vector y stands for the internal state of a cell: its components can
be, for instance, concentrations of proteins involved in some intracellular signaling
network or – as will be the case throughout this work – the concentration of cell
surface receptors bound to tissue elements in their environment.3

As integrins expressed by resting cells cannot in general bind their ligands (see
e.g., [38]), we assume this also for the cell surface receptors acting in our model.
This allows us to omit the corresponding supplementary term for the ‘transport’
w.r.t. y present in (1a).4

The receptor binding dynamics is characterized by an ordinary differential equa-
tion

d

dt
y(t) = G(y(t), A),

where the right hand side is involving the volume fraction of tissue A(t,x) (including
ECM and brain fibers) as input, see [16]. For simplicity we account in this work only

2We assume for simplicity V = sSn−1, with s some positive constant, hence we are only
interested in the direction of the velocity and not in its speed; thereby, Sn−1 denotes the unit
sphere in Rn.

3Integrins (cell surface transmembrane heterodimers) binding to ECM play an essential role in
glioma invasion [13, 47]. On the other hand, it is largely accepted that glioma follow white matter
tracts [11, 21, 22], but little is known about the way they interact with these. As integrins do not
seem to directly bind to the myelinated axons, there might be some further receptors responsible
for such binding or the interaction is rather indirect; adapting the description in [47] one can
imagine the glioma cells ‘climbing’ along a ladder whose long ‘rails’ are myelinated axons and
whose ‘rungs’ are made up of the ECM fibers present in the space between myelinated axons,
oligodendrocytes, astrocytes etc.

4Including this term is, however, no challenge, as this situation can be handled in the same
way.
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for binding of cell surface receptors to unsoluble components of the tissue, modeled
by A. This assumption reduces the above ODE system to just one equation for the
receptor binding dynamics, see (3) below.

The function N in equations (1a) and (1b) denotes the total cell density and is
given by

N(t,x) =

∫
V

∫
Y

p(t,x,v, y)dy dv +

∫
Y

r(t,x, y)dy,

and g(N) and l(N) are functions representing gain and loss due to cell death and
proliferation. α and β are the rates with which cells stop and proliferate, respectively
start moving after a resting (proliferating) phase. Thereby, the cells which exit the
proliferative phase and start to move are doing this by interacting with the tissue.
5 Both α and β may depend on the position x.

2.2. Cell surface receptor dynamics. As in [16], we focus on the cell surface
receptor dynamics. Transmembrane adhesion proteins bind to unsoluble proteins
available in the brain tissue. In this work we want to study the impact of this
microscopic process on the macroscopic movement behaviour on the tissue scale.
Starting from simple mass action kinetics, the receptor binding dynamics on the
cell surface is described by the following ordinary differential equation:

ẏ = k+(R0 − y)A− k−y, (3)

where R0 denotes the total number of receptors on the cell (we assume it is con-
served), whereas y(t) gives the density of receptors bound to tissue fibers. The
constants k+ and k− denote the reaction rates for the reversible binding. The
steady state of equation (3) is given by y∗ = k+AR0

k+A+k− . Following [16, 18] we intro-
duce a new internal variable z := y∗−y measuring deviations from the steady state.
Assuming that the receptor binding process is fast and equilibrates rapidly, these
deviations will be very small and this will allow us later on to close the moments
system in Subsection 2.3.

Next consider the path of a single cell starting in x0 and moving with velocity v
through a time-invariant density field A(x). Then with the notations x = x0 + vt
and

f(A(x)) =
k+A(x)R0

k+A(x) + k−

it follows that for any t
d

dt
f
(
A(x0 + vt)

)
= f ′(A(x0 + vt)) v · ∇A(x0 + vt)

and hence z satisfies the equation

ż = −(k+A(x) + k−)z + f ′(A(x))v · ∇A(x)

= −(k+A(x) + k−)z +
k+k−R0

(k+A(x) + k−)2
v · ∇A(x).

This equation can be solved explicitly for z to yield

z(t) = (y∗ − y0)e−(k+A+k−)t + (1− e−(k+A+k−)t)
k+k−R0

(k+A+ k−)3
v · ∇A,

where y0 = y(0). Hence, z is bounded as long as ∇A is and its sign depends on the
current orientation of the cell w.r.t. the gradient of the fiber volume fraction.

5The importance of cell-tissue interactions (via receptor bindings to the nonsoluble ligands on
the tissue fibers) for cell division has been experimentally put in evidence, see e.g., [33].
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We choose the turning rate to be of the form λ(z) = λ0 − λ1z ≥ 0, where
λ0 and λ1 are some positive constants. Note that this is equivalent to considering
λ(y) = λ0−λ1y

∗+λ1y, which becomes indeed larger when many receptors are bound
to fibers.6 This choice corresponds to the one proposed in [18] for the turning rate
of bacteria and – after a linearization – also to that chosen in [23].

2.3. The mesoscopic transport equation and its scaling. With the above
analysis for the dynamics on the microscale, we obtain now a system of evolution
equations for the density p(t,x,v, z) of moving cells and the density r(t,x, z) of
resting cells. The system reads

∂tp+ v · ∇p + ∂z
((
− (k+A+ k−)z + f ′(A)v · ∇A

)
p
)

=

L[λ0]p−L[λ1]zp− α(x)p+
qβ

ω
r − l(N)p

(4a)

∂tr = α(x)

∫
V

pdv − βr + (g(N)− l(N)) r. (4b)

In the following we consider the moments w.r.t. the involved distribution functions7
and introduce the notations

m =

∫
Z

pdz, w =

∫
Z

rdz, (5a)

mz =

∫
Z

zpdz, wz =

∫
Z

zrdz, (5b)

M =

∫
V

mdv, Mz =

∫
V

mzdv, (5c)

where Z ⊆ [y∗−R0, y
∗] is our new domain for the internal dynamics. In the following

we assume the functions to have a relatively compact support in this interval and
be compactly supported in the (x,v)-space, which allows to perform the subsequent
calculations.

Integration of the equations (4a) and (4b) with respect to z gives

∂tm+ v · ∇m = L[λ0]m− L[λ1]mz − αm+
βq

ω
w − l(N)m, (6a)

∂tw = α(x)M − βw + (g(N)− l(N))w. (6b)

Multiply equations (4a) and (4b) by z and integrate again with respect to z. As in
[16] we neglect moments of higher order in z (assuming that the internal dynamics
equilibrates rapidly, so that the system is close to the steady state) and obtain

∂tm
z + v · ∇mz =− (k+A+ k−)mz + f ′(A)v · ∇A m

+ L[λ0]mz − αmz +
βq

ω
wz − l(N)mz,

(7a)

∂tw
z =αMz − βwz + g(N)wz − l(N)wz. (7b)

6Notice that the receptor binding happens all over the cell surface, rather than just on one side
of it; hence the cell will have many options to choose its movement direction, according to the
– possibly fast – changing informations it obtains from these bindings.

7this approach was used previously in [18] in a related context
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Now, we use a parabolic scaling t̂→ ε2t, x̂→ εx, then drop the hats for notational
simplification. In addition, we scale the birth-death dynamics as in [26] by

g(N)→ ε2ĝ(N̂)

l(N)→ ε2 l̂(N̂).

This relies on the assumption that the time scale on which birth and death events
occur is much slower than the random walk process. From equations (6a), (6b),
(7a) and (7b) we obtain

ε2∂tm+ εv · ∇m = L[λ0]m−L[λ1]mz − αm+
βq

ω
w − ε2l(N)m,

ε2∂tw = α(x)M − βw + ε2 (g(N)− l(N))w,

ε2∂tm
z + εv · ∇mz = − (k+A+ k−)mz + εf ′(A)v · ∇A m

+ L[λ0]mz − αmz +
βq

ω
wz − ε2l(N)mz

ε2∂tw
z = αMz − βwz + ε2 (g(N)− l(N))wz.

Next we use Hilbert expansions for m,mz, w, wz,M,Mz of the form

m = m0 + εm1 + ε2m2 + . . . , M = M0 + εM1 + ε2M2 + . . .

mz = mz
0 + εmz

1 + ε2mz
2 + . . . , Mz = Mz

0 + εMz
1 + ε2Mz

2 + . . .

w = w0 + εw1 + ε2w2 + . . . , wz = wz0 + εwz1 + ε2wz2 + . . .

and compare terms of equal order in ε.

ε0 : 0 = L[λ0]m0−L[λ1]mz
0 − αm0 +

βq

ω
w0, (8a)

0 = αM0 − βw0, (8b)

0 = −(k+A+ k−)mz
0 − αmz

0 +
βq

ω
wz0 + L[λ0]mz

0, (8c)

0 = αMz
0 − βwz0 . (8d)

ε1 : v · ∇m0 = L[λ0]m1−L[λ1]mz
1 − αm1 +

βq

ω
w1, (9a)

0 = αM1 − βw1, (9b)

v · ∇mz
0 = −(k+A+ k−)mz

1 + f ′(A)v · ∇A m0

+ L[λ0]mz
1 − αmz

1 +
βq

ω
wz1 , (9c)

0 = αMz
1 − βwz1 . (9d)

ε2 : ∂tm0 + v · ∇m1 = L[λ0]m2−L[λ1]mz
2 − αm2 +

βq

ω
w2 − l(N0)m0, (10a)

∂tw0 = αM2 − βw2 + (g(N0)− l(N0))w0. (10b)

It is our goal now to derive an evolution equation for the macroscopic cell density

N0(t,x) = w0 +M0 =

(
1 +

α

β

)
M0. (11)
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We start with the equations for the coefficients of ε0. First of all, we obtain from
(8d) that wz0 = α

βM
z
0 . Integration of (8c) with respect to v yields (recall the

notations (2), (5b) and (5c)):

0 = −(k+A+ k−)Mz
0 − αMz

0 + βwz0 ,

which implies Mz
0 = 0, mz

0 = 0 and wz0 = 0. Equation (8b) gives

w0 =
α

β
M0. (12)

Finally, we obtain from (8a) by using (12) and mz
0 = 0 deduced above that

0 = L[λ0]m0 − αm0 +
qα

ω
M0, from which m0 =

q

ω
M0.

Now let us analyze the equations for the coefficients of ε1. Starting with eq. (9d)
we obtain

wz1 =
α

β
Mz

1 .

From equation (9c) we obtain after integration with respect to v that Mz
1 = 0 and

hence also wz1 = 0. Here we used the assumption
∫
vq dv = 0 for undirected tissue.

Then, again from (9c) we obtain the following expression for mz
1:

mz
1 =

1

k+A+ k− + λ0 + α
f ′(A)v · ∇A m0.

Equation (9a) leads to the expression

v · ∇m0 = L[λ0 + α]m1+λ1m
z
1.

Now use the properties of the operator L[λ0 + α] defined on the weighted L2-space
L2
q(V ) [27]. Thereby, the weight function is q−1(v̂) and L[λ0 + α] is a compact

Hilbert-Schmidt operator (see [28]) whose kernel is given by the linear space 〈q〉,
denoting the subspace of L2

q(V ) spanned by q. The pseudoinverse L[λ0 +α]−1
|<q>⊥ of

this operator (see again [28] or [16]) is just the multiplication by the factor − 1
λ0+α .

This leads to
m1 = − 1

λ0 + α
(v · ∇m0−λ1m

z
1) .

Using equations (10a) and (10b) we can derive an evolution equation for the macro-
scopic cell density (11). From (10b) we have

β

ω
w2 =

1

ω
(αM2 + (g(N0)− l(N0))w0 − ∂tw0) .

Plugging this term into equation (10a) we obtain

∂tm0 + v · ∇m1 = L[λ0]m2−L[λ1]mz
2 − αm2 +

αq

ω
M2

+
q

ω
(g(N0)− l(N0))

α

β
M0 −

q

ω
∂t

(
α

β
M0

)
− l(N0)m0.

After integrating again with respect to v this yields

∂tM0 +

∫
V

v · ∇m1 dv = (g(N0)− l(N0))
α

β
M0 −

α

β
∂tM0 − l(N0)M0.

Rearranging gives

∂t

(
1 +

α

β

)
M0 +∇ ·

∫
V

vm1 dv =
α

β
g(N0)M0 −

(
1 +

α

β

)
M0l(N0).
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With the defined macroscopic quantity

N0 =

(
1 +

α

β

)
M0

we obtain

∂tN0 +∇ ·
∫
V

vm1 dv =
α

α+ β
g(N0)N0 −N0l(N0).

Now evaluate
∫
V
vm1dv. Recall

m1 = − 1

λ0 + α

(
v · ∇

( q
ω
M0

)
−λ1m

z
1

)
. (13)

Writing γ(x) = 1
k+A+k−+λ0+α and hence mz

1 = γ(x)f ′(A)v · ∇A m0 we have

m1 = − 1

λ0 + α

(
v · ∇

( q
ω
M0

)
−λ1γ(x)f ′(A)v · ∇A q

ω
M0

)
.

It follows

∇ ·
∫
V

vm1 dv = ∇ ·
(
− 1

λ0 + α

∫
V

vvt∇
( q
ω
M0

)
dv

)
+∇ ·

(
λ1

λ0 + α

∫
V

vvt
q

ω
dvγ(x)f ′(A)∇AM0

)
= ∇ ·

(
− 1

λ0 + α
∇ ·
(

1

ω

∫
V

vvtq dv M0

))
+∇ ·

(
λ1

λ0 + α
γ(x)f ′(A)

1

ω

∫
V

vvtq dv ∇AM0

)
.

Finally, we obtain with M0 = β
α+βN0 and

DT (x) =
1

ω

∫
V

vvtq dv (14)

the evolution equation

∂tN0 −∇ ·
(

1

λ0 + α(x)
∇ ·
(

β

α(x) + β
DT (x)N0

))
+∇ ·

(
λ1

λ0 + α(x)
γ(x)f ′(A)

β

α(x) + β
DT (x) · ∇A N0

)
(15)

=
α(x)

α(x) + β
g(N0)N0 −N0l(N0).

Notice that we still have to determine the form of q in order to obtain an explicit
expression for the tumor diffusion tensor DT (x).

2.4. Determination of the coefficients. Now we are interested in the form of
the diffusion tensor DT (x) in equation (14). To determine its specific form we have
to choose a concrete form for the fiber distribution q. As shown in [16, 39], a possible
choice can be

q(x,θ) =
n

|Sn−1| trDW (x)
θtDW (x)θ. (16)

Thereby, DW (x) is the water diffusion tensor and can be obtained for each voxel x
by DTI measurements, n denotes the space dimension, and Sn−1 is the unit sphere
in Rn.
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Another choice proposed in [39] is the bimodal von Mises-Fisher distribution

q(x,θ) =
k(x)

8π sinh(k(x))

(
ekφ·θ + e−kφ·θ

)
, (17)

with k(x) = κ · FA(x), where FA(x) denotes the fractional anisotropy and φ rep-
resents the leading eigenvector of the water diffusion tensor DW (x). This latter
distribution was found in [39] to be more adequate for the description of the cells
following the tissue anisotropy. However, it is not clear how to choose the concentra-
tion parameter κ for the sensitivity of the cells to the orientation of the underlying
fiber structure. The simulations performed in [16] hinted on both choices not being
enough to capture the fractal patterns of glioma spread in the framework of a single
scale model.

Each of the above formulae (16) and (17) allows for computing the fiber distri-
bution function for each voxel. In the following we choose to work with (16). In
[39] it has first been shown that for this choice the tensor (14) has the form (recall
that s denotes the speed of the cells – which we assumed to be constant – and λ0 is
one of the coefficients in the cells’ turning rate λ depending on the receptor binding
state; In denotes the identity matrix in Rn×n)

DT (x) =
s2

λ0(n+ 2)

(
In + 2

DW (x)

trDW (x)

)
, (18)

which was reconsidered for the tumor diffusion tensor computed in [16]. The rates
α and β introduced in Subsection 2.1 are assumed not to vary drastically within
the brain, and hence to be constant in space.

2.5. The full macroscopic model. For the sake of clarity we collect the results
of our calculations and formulate the whole macroscopic model again. We ob-
tained from our scaling an approximating partial differential equation of advection-
diffusion-reaction type for the macroscopic cell density N0. We assume that the
transition rates α and β between the two subpopulations or moving/proliferating
cells do not vary in space and furthermore – just to make a choice – assume that
the proliferation is logistic8. Specifying the growth and depletion functions g and
l to be of the form g(N0) = cg and l(N0) = clN0, respectively, with appropriate
positive constants cg, cl ∈ R, we obtain the equation

∂tN0 − cD∇∇ (DT (x)N0) − λ1cD∇ (u(x)N0)︸ ︷︷ ︸
haptotactic term

=
α

α+ β
cgN0 − clN2

0︸ ︷︷ ︸
proliferation term

, (19)

with cD = β
(λ0+α)(α+β) and u(x) = γ(x)f ′(A(x))DT (x)∇AN0. Thereby DT is the

tumor diffusion tensor obtained in (18) and γ(x) denotes the function introduced
after (13) and depending among other on the macroscopic volume fraction of tissue
A. Recall the constants λ0 and λ1 are involved in the turning rate of the cells.

3. Numerical simulations. We present 2D simulations of the resulting macro-
scopic advection-diffusion-reaction equation (19). The tumor diffusion tensor, the
tumor drift velocity, and the local growth rates are precalculated using MATLAB9.
The simulations of the macroscopic evolution equation are implemented using the
DUNE framework [2, 3].

8of course, other choices are possible as well
9MATLAB Release 2012b, The MathWorks, Inc., Natick, Massachusetts, United States.
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The macroscopic quantities DT (x) and u(x) are spatially dependent, and we
expect regions in space where the system is diffusion dominated and regions where it
is drift dominated. This can be expressed by the spatially dependent Péclet number
Pe = ‖u(x)L‖

‖DT (x)‖ , where the norm in the numerator is the L2 norm, while we take in the
denominator the Frobenius norm of DT . L is a macroscopic characteristic length
scale (i.e. a mesh width of 2 mm, in our present setting and simulations). For Pe� 1
the equation is diffusion dominated, and classical methods for parabolic equations
will apply, while for Pe� 1 it is drift dominated, and hyperbolic numerical methods
must be used. Note that the equation is still parabolic, but the numerical method
should be chosen based on its characteristic scales.

The numerical scheme needs to be able to handle nonlinear degenerated anisotr-
opic parabolic equations and full tensors. Furthermore, it should be locally mass
conservative. For these reasons we decided to use a first order discontinuous Galerkin
(dG) scheme in space and an implicit Euler scheme in time. The nonlinearities are
handled using an outer Newton scheme for each time step. This method is overall
first order accurate.

3.1. Spatial discretization. For the spatial discretization we use a structured
mesh M(Ω) = {Ei}, which is a subset of the voxel mesh of the DTI data. Since
our mesh is Cartesian with mesh-width h, the sets Ei are simply the grid cells that
belong to the brain tissue. We define the skeleton ofM as the boundary between
those grid cells, Γ = {γe,f = ∂Ee ∩ ∂Ef : Ee, Ef ∈M, Ee 6= Ef , and |γe,f | > 0}.

We use a symmetric interior penalty discontinuous Galerkin method (SIPG) [49]
as implemented in DUNE [3]. We denote with Vh the dG trial- and test space,
which is in our case the space of piecewise bilinear polynomials

Vh =
{
νh ∈ L2(Ω) : νh|E ∈ Q1(E), E ∈M(Ω)

}
,

where Q1(E) denotes the set of bilinear functions on E.
We test the above equation (19) with these ansatz functions, use a weak formu-

lation, and express coupling conditions along the skeleton through jumps J · K and
averages { · } in a similar notation as in [1]. We use weighted averages, as proposed
in [19]. Omitting the computational details, which can be found for example in [1],
the resulting semi-discrete problem reads:

Find N0h(t) ∈ Vh such that

∂tN0h(t) + ah
(
N0h(t), νh

)
+ Jh

(
N0h(t), νh

)
= R(N0h) ∀νh ∈ Vh, (20)

with a nonlinear reaction term R, the bilinear form ah, and a penalty term Jh given
by

R(N0h(t)) =
α

α+ β
cgN0h(t)− clN0h(t)2, (21)

ah
(
N0h(t), νh

)
=

∫
Ω

cDDT∇N0h(t) · ∇νh dx

−
∫
Γ

JN0h(t) K · { cDDT∇νh }+ J νh K · { cDDT∇N0h(t) } ds

+

∫
Ω

(λ1cDuN0h(t)) · ∇νh dx−
∫
Γ

J νh K · (λ1cDuN0
↑
h(t))ds,

(22)
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and

Jh
(
N0h(t), νh

)
= ηh−1

∫
Γ

JN0h KJ νh K ds , (23)

where η > 0 denotes the penalty factor. For a good choice of η we refer to [19].
Note that we require the normal velocity to be continuous, i.e. u|∂En

nn =
−u|∂Em

nm, where nn denotes the outer normal vector of grid cell En. To ensure
this, we use a Raviart-Thomas RT0 approximation of the velocity field. On an in-
ternal edge with two adjacent cells En and Em we define Jx K = x|∂Ennn+x|∂Emnm
and {x } = ωnx|∂En

+ ωmx|∂Em
, with weights ωn, ωm and the unit outer normal

vectors nn,nm. To be robust with respect to heterogeneous diffusion coefficients,
we use the weights ωn =

nt
nDT nnn

nt
n(DT n+DT m)nn

and ωm =
nt

mDT mnm

nt
m(DT n+DT m)nm

respectively,
where DT n denotes the tumor diffusion tensor computed in En. Note that due to
nn = −nm the relation ωn + ωm = 1 holds.

The advective term is stabilized using an upwind formulation, with the upwind
reconstruction N0

↑
h of the cell density.

3.2. Temporal discretization. For the time discretization of N0h we use an im-
plicit Euler scheme and choose the time step τ such that the discrete CFL (Courant-
Friedrichs-Lewy) condition of τ λ1cD‖u‖∞

h ≤ 1 is satisfied. Note that although the
implicit Euler scheme is unconditionally a-stable we should still avoid too large time
steps to keep the discretization error low.

For each time step we obtain a nonlinear system, due to the growth term. The
modeling of the latter requires that the tumor cell density is positive. The employed
dG scheme is stable but not monotone; i.e. small undershoots are possible and will
occur in practice. Therefore, we cannot directly compute R(N0), but employ a
clipping at zero. The non-differentiability of the clipped operator at zero would
lead to severe problems in the Newton method. Thus, we regularize the clipping
with a parameter ε, which yields the clipping operator

Cε(N0) =


0 if N0 < 0

N0
2/ε if N0 < 0.5ε

N0 − 0.25ε else .

For a time step k + 1, k ∈ [1, N), and a discrete time step width of τ , the fully
discrete problem now reads: Find Nk+1

0h ∈ Vh such that

1

τ
MhN

k+1
0h +ah(Nk+1

0h , νh)+Jh(Nk+1
0h , νh)−R(Cε(N

k+1
0h )) =

1

τ
MhN

k
0h ∀νh ∈ Vh.

(24)
After regularization of R we can employ a standard Newton scheme. To solve
the linearized system a conjugate gradient method with an ILU precoditioner with
zero-fill-in is applied.

Table 1 shows the parameter values used in the simulations, the DTI data is
taken from measurements presented in [48].

3.3. Simulation results. The choice of appropriate terms for the gain and loss
functions g and l is still an issue. We assume here – as in the most existing works
on the macroscale and as announced in Subsection 2.5 – that cellular proliferation
can be described with a logistic growth, and take g(N0) = cg be constant for the
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Parameter Value Source
R0 104 [4]
s 10−6 m

s [40]
λ0 0.1 1

s [40]
λ1 0.01 1

s estimated, [16]
k+ 0.1 1

s estimated, [16]
k− 0.1 1

s [32]
α 0.01 1

s estimated
β 0.2 1

s estimated
cg 10−5 1

s estimated
cl 10−7 1

s estimated
Table 1. Parameters used in the simulations.

proliferation rate cg ∈ R+ and l(N0) = clN0 for cl ∈ R+. Altogether this leads to
the reaction term

α

α+ β
cgN0 − clN2

0 =

(
α

α+ β
cg − clN0

)
N0.

Simulations of equation (19) have been perfomed on a horizontal brain slice of size
117×142 with a binary inital tumor with value 0.8 placed in the left hemisphere. We
use DTI measurements provided by the group of Carsten Wolters (WWU Münster).
The preprocessed data include segmentation data, apparent water diffusion tensors,
and a brainmask for each voxel of the brain of a healthy adult.
We compare results for three different setups: (A) we simulate the full model (19);
(B) we consider the model without subcellular dynamics, i.e. omitting the hapto-
tactic drift term, and (C) we omit proliferation, as in [16].

Figure 1 shows the temporal evolution in all three test cases (A), (B), and (C).
To allow for a more detailed comparison, Figure 2 plots the solution along an x- and
a y-slice for all three setups. Comparing (A) with the pure diffusion case (B), the
tumor spread along fiber tracks is similarly fast (Figure 2, x-slice), but orthogonally
to the fiber tracks the pure diffusion model overestimates the tumor spread (Figure
2, y-slice). Note the discontinuity in the y-slice where we cross the CSF (cerebro-
spinal fluid), through which the cells do not migrate. This is mainly visible in case
(B), where the CSF acts as a barrier and leads to mildly anisotropic spread. As in
[16], significant anisotropic behavior caused by diffusion alone cannot be observed;
this also applies to the case including proliferation. Comparing the full model
(A) with the case without proliferation (C), we observe that the absolute values
in case (C) are significantly smaller, as we only consider spread without growth.
We further notice that proliferation causes sharper gradients (see Figure 2) and
the corresponding tumor invasion patterns evolve faster than without proliferation.
Still many features of the solution are shared by the cases (A) and (C), such as the
location of local maxima or minima.

Considering the haptotactic drift leads to branched structures, as Figure 1 (A)
shows. The tumor spreads predominantly in brain white matter; according to the
(local) anisotropy, these finger-like patterns have actually been observed in clinical
imaging (see e.g., [12, 20]), hence our model (19) is able to predict this behavior,
unlike diffusion based models exhibiting a rather isotropic spread.
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ca
se

(A
)

t = 0 t = 100 · 104s t = 200 · 104s t = 300 · 104s

t = 400 · 104s t = 500 · 104s t = 600 · 104s t = 700 · 104s

ca
se

(B
)

t = 0 t = 100 · 104s t = 200 · 104s t = 300 · 104s

t = 400 · 104s t = 500 · 104s t = 600 · 104s t = 700 · 104s

ca
se

(C
)

t = 0 t = 100 · 104s t = 200 · 104s t = 300 · 104s

t = 400 · 104s t = 500 · 104s t = 600 · 104s t = 700 · 104s

Figure 1. Simulation of the evolution equation. Case (A): full
model involving subcellular dynamics. Case (B): model without
subcellular dynamics (i.e. considering only diffusive transport).
Case (C): model without proliferation (as in [16]).
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slices in x- and y-direction

Figure 2. Comparison of the full model (left, case (A)) with sim-
ulations without subcellular dynamics (case (B)) and without pro-
liferation (case (C)), respectively. Plots of N0 along an x- and a
y-slice. Along the fibers the tumor extent is comparable in case (A)
and (B), but orthogonally to the fiber tracks case (B) predicts a
much wider spread. Cases (A) and (C) show results with a simular
shape: due to missing proliferation, the values in (C) are signifi-
cantly smaller and the fronts are less sharp. Note the discontinuity
in the y-slice where we cross the CSF. As the cells do not travel
through the CSF, it acts as a barrier.

4. Discussion. The DTI-based multiscale model for glioma invasion proposed and
analyzed in this work is an extension of the model introduced in [16]. The novelty
is here that we account for proliferation of tumor cells. Thereby, we made use of
the go-or-grow dichotomy and identified the resting cells with those proliferating.
The choice of gain and loss functions g(N) and l(N) due to cell proliferation and
death, as well as of the stopping (growth) rates can be done in a less restrictive
way, leading – after the scaling – on the macroscale to rather general proliferation
terms, of which the logistic growth (which is commonly chosen when writing some
partial differential equations for tumor invasion directly on the population level) is
merely a particular case.

The numerical simulations of the macroscopic equation show a highly anisotropic
spread of the tumor cells, according to the underlying brain structure. As before in
[16] this was achieved by the multiscality of our model (in particular the inclusion
of subcellular receptor binding processes and their involvement in the cell turning
rates), which led to the dominant haptotactic term in equation (19). When simulat-
ing only the pure diffusion model the corresponding invasive behavior is not as often
observed clinically, where branched, fingering patterns like those in Figure 1 (A)
are the dominating image due to the infiltrative spread of glioma. When compared
with our previous multiscale model without proliferation in [16] the present setting
predicts – as expected – a faster invasion, with larger cell densities.

The nontrivial issue of modeling cell proliferation in a way which is less artificial
than just choosing it to be a logistic growth on the macrolevel was handled here
by accounting for the resting (and hence dividing) cells. This, however, is not
the only way to characterize it. For instance, Bellomo et al. [5, 6, 7] proposed
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to model proliferation on the mesolevel by letting the cells with different internal
states10 interact with each other, which – although intuitive – is (partly) arguable,
as cancer cells can divide without needing to stay in (binary) touch with their
neighbours. The modeling of cell proliferation on the mesolevel and the deduction
of the appropriate mesoscopic equation have been done in [17] after submitting the
present paper.

Also observe that through the scaling performed in Subsection 2.3 we obtain an
equation for the total tumor cell density, as the latter is the quantity of interest
for diagnosis and therapy (e.g., with respect to assessing the degree of the tumor’s
extent). The tumor heterogeneity relatively to moving (less sensitive) and prolif-
erating (more responsive to treatment) cells is no longer accounted for, as we are
primarily concerned with the overall tumor burden. However, the coefficients of our
macroscopic equation still carry some of the information contained in the go-or-grow
behavior; this information could not have been “guessed” when directly writing a
macroscopic equation while merely relying on flux balance.

Acknowledgments. We thank Carsten Wolters and Felix Lucka (Institute of Bio-
magnetism and Biosignalanalysis, University of Münster) for the preprocessed DTI
data. The measurements were first done for [48].
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