Citation: Qiaokang Liang, Jianyong Long, Yang Nan, Gianmarc Coppola, Kunlin Zou, Dan Zhang, Wei Sun. Angle aided circle detection based on randomized Hough transform and its application in welding spots detection[J]. Mathematical Biosciences and Engineering, 2019, 16(3): 1244-1257. doi: 10.3934/mbe.2019060
[1] | H. Zhang, K. Wiklund and M. Andersson, A fast and robust circle detection method using isosceles triangles sampling, Pattern. Recogn., 54 (2016), 218–228. |
[2] | B. Yuan and M. Liu, Power histogram for circle detection on images, Pattern. Recogn., 48 (2015) 3268–3280. |
[3] | R. O. Duda and P. E. Hart, Use of the Hough transformation to detect lines and curves in pictures, Commun. ACM, 15 (1972), 11–15. |
[4] | Y. J. Cha, K. You and W. Choi, Vision-based detection of loosened bolts using the Hough transform and support vector machines, Automat. Constr., 71 (2016), 181–188. |
[5] | L. Xu, E. Oja and P. Kultanen, A new curve detection method: Randomized Hough transform (RHT), Pattern. Recogn. Lett., 11 (1990), 331–338. |
[6] | Z. Yao and W. Yi, Curvature aided Hough transform for circle detection, Expert. Syst. Appl., 51 (2015), 26–33. |
[7] | A. Yao, J. Gall and L. Van Gool, A hough transform-based voting framework for action recognition, Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on IEEE, (2010), 2061–2068. |
[8] | J. Xavier, M. Pacheco and D. Castro, et al., Fast line, arc/circle and leg detection from laser scan data in a player driver, Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on. IEEE, (2005), 3930–3935. |
[9] | R. Scitovski and T. Marošević, Multiple circle detection based on center-based clustering, Pattern. Recogn. Lett., 52 (2015), 9–16. |
[10] | T. C. Chen and K. L. Chung, An efficient randomized algorithm for detecting circles, Comput. Vis. Image. Und., 83 (2001), 172–191. |
[11] | J. Wu, J. Li and C. Xiao, et al., Real-time robust algorithm for circle object detection, Young Computer Scientists, 2008. ICYCS 2008. The 9th International Conference for. IEEE, (2008), 1722–1727. |
[12] | L. Shen, X. Song and M. Iguchi, et al., A method for recognizing particles in overlapped particle images, Pattern. Recogn. Lett., 21 (2000), 21–30. |
[13] | P. Soille, Morphological image analysis: Principles and applications, Springer-Verlag, (1999), 173–174. |
[14] | B. Alexe, T. Deselaers and V. Ferrari, Measuring the objectness of image windows, IEEE T. Pattern. Anal., 34 (2012), 2189–2202. |
[15] | J. R. R. Uijlings, K. E. A. Van De Sande and T. Gevers, et al., Selective search for object recognition, Int. J. Comput. Vision., 104 (2013), 154–171. |
[16] | I. Endres and D. Hoiem, Category independent object proposals, Comput. Vision. ECCV 2010, (2010), 575–588. |
[17] | C. L. Zitnick and P. Dollár, Edge boxes: Locating object proposals from edges, European Conference on Computer Vision, Springer International Publishing, (2014), 391–405. |
[18] | J. Canny, A computational approach to edge detection, IEEE T. Pattern. Anal., 8 (1986), 679–698. |
[19] | Y. J. Cha, Choi W and O. Büyüköztürk, Deep learning-based crack damage detection using convolutional neural networks, Comput-Aided. Civ. Inf., 32 (2017), 361–378. |
[20] | Y. J. Cha, W. Choi and G. Suh, et al., Autonomous Structural visual inspection using region-based deep learning for detecting multiple damage types, Comput-Aided. Civ. Inf., 33 (2018), 731–747. |