Citation: Cuicui Jiang, Kaifa Wang, Lijuan Song. Global dynamics of a delay virus model with recruitment and saturation effects of immune responses[J]. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1233-1246. doi: 10.3934/mbe.2017063
[1] | [ I. Al-Darabsah,Y. Yuan, A time-delayed epidemic model for Ebola disease transmission, Appl. Math. Comput., 290 (2016): 307-325. |
[2] | [ G. Bocharov,B. Ludewig,A. Bertoletti,P. Klenerman,T. Junt,P. Krebs,T. Luzyanina,C. Fraser,R. Anderson, Underwhelming the immune response: Effect of slow virus growth on CD8+T lymphocytes responses, J. Virol., 78 (2004): 2247-2254. |
[3] | [ S. Chen,C. Cheng,Y. Takeuchi, Stability analysis in delayed within-host viral dynamics with both viral and cellular infections, J. Math. Anal. Appl., 442 (2016): 642-672. |
[4] | [ R. Culshaw,S. Ruan, A delay-differential equation model of HIV infection of CD4+T cells, Math. Biosci., 165 (2000): 27-39. |
[5] | [ R. De Boer, Which of our modeling predictions are robust? PLoS Comput. Biol., 8 (2012), e10002593, 5pp. |
[6] | [ O. Diekmann,J. Heesterbeek,J. Metz, On the definition and the computation of the basic reproduction ratio $R_{0}$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990): 365-382. |
[7] | [ T. Gao,W. Wang,X. Liu, Mathematical analysis of an HIV model with impulsive antiretroviral drug doses, Math. Comput. Simulation, 82 (2011): 653-665. |
[8] | [ J. Hale and S. Verduyn Lunel, Introduction to Functional-Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993. |
[9] | [ M. Hellerstein,M. Hanley,D. Cesar,S. Siler,C. Parageorgopolous,E. Wieder,D. Schmidt,R. Hoh,R. Neese,D. Macallan,S. Deeks,J. M. McCune, Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans, Nat. Med., 5 (1999): 83-89. |
[10] | [ M. Hirsh,H. Hanisch,P. Gabriel, Differential equation models of some parasitic infections: Methods for the study of asymptotic behavior, Commun. Pur. Appl. Math., 38 (1985): 733-753. |
[11] | [ Y. Ji,L. Liu, Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate, Discrete Contin. Dyn. Syst. Ser. B., 21 (2016): 133-149. |
[12] | [ C. Jiang,W. Wang, Complete classification of global dynamics of a virus model with immune responses, Discrete Contin. Dyn. Syst. Ser. B., 19 (2014): 1087-1103. |
[13] | [ T. Kepler and A. Perelson, Drug concentration heterogeneity facilitates the evolution of drug resistance, Proc. Natl. Acad. Sci., USA, 95 (1998), 11514–11519. |
[14] | [ A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004): 879-883. |
[15] | [ J. Li,Y. Yang,Y. Zhou, Global stability of an epidemic model with latent stage and vaccination, Nonlinear Anal. Real World Appl., 12 (2011): 2163-2173. |
[16] | [ B. Li,Y. Chen,X. Lu,S. Liu, A delayed HIV-1 model with virus waning term, Math. Biosci. Eng., 13 (2016): 135-157. |
[17] | [ J. Luo,W. Wang,H. Chen,R. Fu, Bifurcations of a mathematical model for HIV dynamics, J. Math. Anal. Appl., 434 (2016): 837-857. |
[18] | [ Y. Nakata, Global dynamics of a cell mediated immunity in viral infection models with distributed delays, J. Math. Anal. Appl., 375 (2011): 14-27. |
[19] | [ P. Nelson,J. Mittler,A. Perelson, Effect of drug efficacy and the eclipse phase of the viral life cycle on the estimates of HIV viral dynamic parameters, J. AIDS, 26 (2001): 405-412. |
[20] | [ M. Nowak and R. May, Virus Dynamics: Mathematical Principles of Immunology Virology, Oxford University Press, Oxford, 2000. |
[21] | [ M. Nowak, S. Bonhoeffer, A. Hill, R. Boehme, H. Thomas and H. Mcdade, Viral dynamics in hepatitis B virus infection, Proc. Natl. Acad. Sci., USA, 93 (1996), 4398–4402. |
[22] | [ K. Pawelek,S. Liu,F. Pahlevani,L. Rong, A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data, Math. Biosci., 235 (2012): 98-109. |
[23] | [ J. Pang,J. Cui,J. Hui, The importance of immune rsponses in a model of hepatitis B virus, Nonlinear Dyn., 67 (2012): 727-734. |
[24] | [ H. Pang,W. Wang,K. Wang, Global properties of virus dynamics model with immune response, J. Southeast Univ. Nat. Sci., 30 (2005): 796-799. |
[25] | [ A. Perelson,P. Nelson, Mathematical models of HIV dynamics in vivo, SIAM Rev., 41 (1999): 3-44. |
[26] | [ A. Perelson,A. Neumann,M. Markowitz,J. Leonard,D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science, 271 (1996): 1582-1586. |
[27] | [ L. Rong,A. Perelson, Modeling HIV persistence, the latent reservoir, and viral blips, J. Theoret. Biol., 260 (2009): 308-331. |
[28] | [ L. Rong,M. Gilchristb,Z. Feng,A. Perelson, Modeling within-host HIV-1 dynamics and the evolution of drug resistance: Trade-offs between viral enzyme function and drug susceptibility, J. Theoret. Biol., 247 (2007): 804-818. |
[29] | [ H. Shu,L. Wang, Role of CD4+T-cell proliferation in HIV infection under antiretroviral therapy, J. Math. Anal. Appl., 394 (2012): 529-544. |
[30] | [ H. Smith, Monotone Dynamical System: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, Providence, RI, 1995. |
[31] | [ H. Smith,X. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001): 6169-6179. |
[32] | [ X. Song,S. Wang,J. Dong, Stability properties and Hopf bifurcation of a delayed viral infection model with lytic immune response, J. Math. Anal. Appl., 373 (2011): 345-355. |
[33] | [ M. Stafford,L. Corey,Y. Cao,E. Daar,D. Ho,A. Perelson, Modeling plasma virus concentration during primary HIV infection, J. Theoret. Biol., 203 (2000): 285-301. |
[34] | [ P. van den Driessche,J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002): 29-48. |
[35] | [ K. Wang,W. Wang,X. Liu, Global stability in a viral infection model with lytic and nonlytic immune responses, Comput. Math. Appl., 51 (2006): 1593-1610. |
[36] | [ K. Wang,W. Wang,X. Liu, Viral infection model with periodic lytic immune response, Chaos Solitons Fractals, 28 (2006): 90-99. |
[37] | [ X. Wang,W. Wang, An HIV infection model based on a vectored immunoprophylaxis experiment, J. Theoret. Biol., 313 (2012): 127-135. |
[38] | [ Y. Wang,Y. Zhou,J. Wu,J. Heffernan, Oscillatory viral dynamics in a delayed HIV pathogenesis model, Math. Biosci., 219 (2009): 104-112. |
[39] | [ K. Wang,Y. Jin,A. Fan, The effect of immune responses in viral infections: A mathematical model view, Discrete Contin. Dyn. Syst. Ser. B., 19 (2014): 3379-3396. |
[40] | [ Z. Wang,R. Xu, Stability and Hopf bifurcation in a viral infection modelwith nonlinear incidence rate and delayed immune response, Commun Nonlinear Sci Numer Simulat., 17 (2012): 964-978. |
[41] | [ D. Wodarz, Hepatitis C virus dynamics and pathology: The role of CTL and antibody responses, J. Gen. Virol., 84 (2003): 1743-1750. |
[42] | [ Y. Yan,W. Wang, Global stability of a five-dimensional model with immune response and delay, Discrete Contin. Dyn. Syst. Ser. B., 17 (2012): 401-416. |
[43] | [ Y. Yang,Y. Xiao, Threshold dynamics for an HIV model in periodic environments, J. Math. Anal. Appl., 361 (2010): 59-68. |
[44] | [ Y. Yang,L. Zou,S. Ruan, Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions, Math. Biosci., 270 (2015): 183-191. |
[45] | [ Y. Yang,Y. Xu, Global stability of a diffusive and delayed virus dynamics model with Beddington -DeAngelis incidence function and CTL immune response, Comput. Math. Appl., 71 (2016): 922-930. |
[46] | [ J. Zack,S. Arrigo,S. Weitsman,A. Go,A. Haislip,I. Chen, HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile latent viral structure, Cell, 61 (1990): 213-222. |
[47] | [ X. Zhou,X. Song,X. Shi, Analysis of stability and Hopf bifurcation for an HIV infection model with time delay, Appl. Math. Comput., 199 (2008): 23-38. |