Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy

  • Received: 01 October 2015 Accepted: 29 June 2018 Published: 01 October 2016
  • MSC : Primary: 58F15, 58F17; Secondary: 53C35.

  • Understanding the global interaction dynamics between tumor and the immunesystem plays a key role in the advancement of cancer therapy.Bunimovich-Mendrazitsky et al. (2015) developed a mathematical model for thestudy of the immune system response to combined therapy for bladder cancerwith Bacillus Calmette-Guérin (BCG) and interleukin-2 (IL-2) . Weutilized a mathematical approach for bladder cancer treatment model forderivation of ultimate upper and lower bounds and proving dissipativityproperty in the sense of Levinson. Furthermore, tumor clearance conditionsfor BCG treatment of bladder cancer are presented. Our method is based onlocalization of compact invariant sets and may be exploited for a predictionof the cells populations dynamics involved into the model.

    Citation: K. E. Starkov, Svetlana Bunimovich-Mendrazitsky. Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy[J]. Mathematical Biosciences and Engineering, 2016, 13(5): 1059-1075. doi: 10.3934/mbe.2016030

    Related Papers:

    [1] Konstantin E. Starkov, Giovana Andres Garfias . Dynamics of the tumor-immune-virus interactions: Convergence conditions to tumor-only or tumor-free equilibrium points. Mathematical Biosciences and Engineering, 2019, 16(1): 421-437. doi: 10.3934/mbe.2019020
    [2] OPhir Nave, Shlomo Hareli, Miriam Elbaz, Itzhak Hayim Iluz, Svetlana Bunimovich-Mendrazitsky . BCG and IL − 2 model for bladder cancer treatment with fast and slow dynamics based on SPVF method—stability analysis. Mathematical Biosciences and Engineering, 2019, 16(5): 5346-5379. doi: 10.3934/mbe.2019267
    [3] Svetlana Bunimovich-Mendrazitsky, Yakov Goltser . Use of quasi-normal form to examine stability of tumor-free equilibrium in a mathematical model of bcg treatment of bladder cancer. Mathematical Biosciences and Engineering, 2011, 8(2): 529-547. doi: 10.3934/mbe.2011.8.529
    [4] Alexander P. Krishchenko, Konstantin E. Starkov . The four-dimensional Kirschner-Panetta type cancer model: How to obtain tumor eradication?. Mathematical Biosciences and Engineering, 2018, 15(5): 1243-1254. doi: 10.3934/mbe.2018057
    [5] Rujing Zhao, Xiulan Lai . Evolutionary analysis of replicator dynamics about anti-cancer combination therapy. Mathematical Biosciences and Engineering, 2023, 20(1): 656-682. doi: 10.3934/mbe.2023030
    [6] Donggu Lee, Sunju Oh, Sean Lawler, Yangjin Kim . Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. Mathematical Biosciences and Engineering, 2025, 22(4): 744-809. doi: 10.3934/mbe.2025028
    [7] Denise E. Kirschner, Alexei Tsygvintsev . On the global dynamics of a model for tumor immunotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 573-583. doi: 10.3934/mbe.2009.6.573
    [8] Yuyang Xiao, Juan Shen, Xiufen Zou . Mathematical modeling and dynamical analysis of anti-tumor drug dose-response. Mathematical Biosciences and Engineering, 2022, 19(4): 4120-4144. doi: 10.3934/mbe.2022190
    [9] Erin N. Bodine, K. Lars Monia . A proton therapy model using discrete difference equations with an example of treating hepatocellular carcinoma. Mathematical Biosciences and Engineering, 2017, 14(4): 881-899. doi: 10.3934/mbe.2017047
    [10] Nikolaos Kazantzis, Vasiliki Kazantzi . Characterization of the dynamic behavior of nonlinear biosystems in the presence of model uncertainty using singular invariance PDEs: Application to immobilized enzyme and cell bioreactors. Mathematical Biosciences and Engineering, 2010, 7(2): 401-419. doi: 10.3934/mbe.2010.7.401
  • Understanding the global interaction dynamics between tumor and the immunesystem plays a key role in the advancement of cancer therapy.Bunimovich-Mendrazitsky et al. (2015) developed a mathematical model for thestudy of the immune system response to combined therapy for bladder cancerwith Bacillus Calmette-Guérin (BCG) and interleukin-2 (IL-2) . Weutilized a mathematical approach for bladder cancer treatment model forderivation of ultimate upper and lower bounds and proving dissipativityproperty in the sense of Levinson. Furthermore, tumor clearance conditionsfor BCG treatment of bladder cancer are presented. Our method is based onlocalization of compact invariant sets and may be exploited for a predictionof the cells populations dynamics involved into the model.


    [1] Bull. Math. Biol., 69 (2007), 1847-1870.
    [2] Bull. Math. Biol., 70 (2008), 2055-2076.
    [3] Math. Med. Biol., 33 (2016), 159-188.
    [4] Math. Biosci. Eng., 8 (2011), 529-547.
    [5] Teubner Wiesbaden, 2005.
    [6] J. Math. Biol., 37 (1998), 235-252.
    [7] Differ. Equ., 41 (2005), 1669-1676.
    [8] Phys. Lett. A, 353 (2006), 383-388.
    [9] Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 1159-1165.
    [10] J. Urol., 116 (1976), 180-183.
    [11] IMA J. Appl. Math., 15 (1998), 165-185.
    [12] Phys. Lett. A, 375 (2011), 3184-3187.
    [13] Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 1037-1042.
    [14] Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 2565-2570.
    [15] Nonlinear Anal. Real World Appl., 14 (2013), 1425-1433.
    [16] Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350020, 9pp.
    [17] Math. Methods Appl. Sci, 37 (2014), 2854-2863.
    [18] Bull. Math. Biol., 63 (2001), 731-768.
  • This article has been cited by:

    1. Subhas Khajanchi, Chaotic dynamics of a delayed tumor–immune interaction model, 2020, 13, 1793-5245, 2050009, 10.1142/S1793524520500096
    2. Konstantin E. Starkov, Alexander P. Krishchenko, Ultimate dynamics of the Kirschner–Panetta model: Tumor eradication and related problems, 2017, 381, 03759601, 3409, 10.1016/j.physleta.2017.08.048
    3. Farouk Tijjani Saad, Evren Hincal, Bilgen Kaymakamzade, Dynamics of Immune Checkpoints, Immune System, and BCG in the Treatment of Superficial Bladder Cancer, 2017, 2017, 1748-670X, 1, 10.1155/2017/3573082
    4. Konstantin E. Starkov, On dynamic tumor eradication conditions under combined chemical/anti-angiogenic therapies, 2018, 382, 03759601, 387, 10.1016/j.physleta.2017.12.025
    5. Konstantin E. Starkov, Laura Jimenez Beristain, Dynamic Analysis of the Melanoma Model: From Cancer Persistence to Its Eradication, 2017, 27, 0218-1274, 1750151, 10.1142/S0218127417501516
    6. Kristen Abernathy, Zachary Abernathy, Arden Baxter, Meghan Stevens, Global Dynamics of a Breast Cancer Competition Model, 2020, 28, 0971-3514, 791, 10.1007/s12591-017-0346-x
    7. Isa Abdullahi Baba, A fractional-order bladder cancer model with BCG treatment effect, 2019, 38, 2238-3603, 10.1007/s40314-019-0810-z
    8. Kristen Abernathy, Zachary Abernathy, Kelsey Brown, Claire Burgess, Rebecca Hoehne, Global dynamics of a colorectal cancer treatment model with cancer stem cells, 2017, 3, 24058440, e00247, 10.1016/j.heliyon.2017.e00247
    9. K. E. Starkov, Ultimate Dynamics Analysis of the 5D Structural Leukemia Model and Partitioning of the Parameter Space, 2022, 32, 0218-1274, 10.1142/S0218127422502388
    10. Teddy Lazebnik, Cell-Level Spatio-Temporal Model for a Bacillus Calmette–Guérin-Based Immunotherapy Treatment Protocol of Superficial Bladder Cancer, 2022, 11, 2073-4409, 2372, 10.3390/cells11152372
    11. Alexander P. Krishchenko, Konstantin E. Starkov, 5D model of pancreatic cancer: Key features of ultimate dynamics, 2021, 103, 10075704, 105997, 10.1016/j.cnsns.2021.105997
    12. Alpna Mishra, Khursheed Alam, Analysis of Cancer Model Using Delayed Modeling, 2023, 407, 1022-1360, 2100498, 10.1002/masy.202100498
    13. Anatolij N. Kanatnikov, Konstantin E. Starkov, Ultimate Dynamics of the Two-Phenotype Cancer Model: Attracting Sets and Global Cancer Eradication Conditions, 2023, 11, 2227-7390, 4275, 10.3390/math11204275
    14. Megan Dixon, Tuan Anh Phan, J.C. Dallon, Jianjun Paul Tian, Mathematical model for IL-2-based cancer immunotherapy, 2024, 00255564, 109187, 10.1016/j.mbs.2024.109187
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3806) PDF downloads(539) Cited by(13)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog