Research article

Separated boundary value problems via quantum Hilfer and Caputo operators

  • Received: 01 May 2024 Revised: 27 May 2024 Accepted: 07 June 2024 Published: 13 June 2024
  • MSC : 26A33, 34A12, 34A34, 34D20

  • This paper describes a new class of boundary value fractional-order differential equations of the $ q $-Hilfer and $ q $-Caputo types, with separated boundary conditions. The presented problem is converted to an equivalent integral form, and fixed-point theorems are used to prove the existence and uniqueness of solutions. Moreover, several special cases demonstrate how the proposed problems advance beyond the existing literature. Examples are provided to support the analysis presented.

    Citation: Idris Ahmed, Sotiris K. Ntouyas, Jessada Tariboon. Separated boundary value problems via quantum Hilfer and Caputo operators[J]. AIMS Mathematics, 2024, 9(7): 19473-19494. doi: 10.3934/math.2024949

    Related Papers:

  • This paper describes a new class of boundary value fractional-order differential equations of the $ q $-Hilfer and $ q $-Caputo types, with separated boundary conditions. The presented problem is converted to an equivalent integral form, and fixed-point theorems are used to prove the existence and uniqueness of solutions. Moreover, several special cases demonstrate how the proposed problems advance beyond the existing literature. Examples are provided to support the analysis presented.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [2] S. G. Samko, Fractional integrals and derivatives, Theory and Applications, 1993.
    [3] I. Podlubny, Fractional differential equations, 1999.
    [4] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, World Scientific, 2010. https://doi.org/10.1142/9781848163300
    [5] D. S. Oliveira, E. C. de Oliveira, Hilfer-Katugampola fractional derivatives, Comput. Appl. Math., 37 (2018), 3672–3690. https://doi.org/10.1007/s40314-017-0536-8 doi: 10.1007/s40314-017-0536-8
    [6] T. J. Osler, The fractional derivative of a composite function, SIAM J. Math. Anal., 1 (1970), 288–293. https://doi.org/10.1137/0501026 doi: 10.1137/0501026
    [7] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [8] J. V. da C. Sousa, E. C. de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
    [9] Y. Y., Gambo, F. Jarad, D. Baleanu, T. Abdeljawad, On Caputo modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2014, (2014), 10. https://doi.org/10.1186/1687-1847-2014-10 doi: 10.1186/1687-1847-2014-10
    [10] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142
    [11] F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607–2619. https://doi.org/10.22436/jnsa.010.05.27 doi: 10.22436/jnsa.010.05.27
    [12] K. Balachandran, S. Kiruthika, J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci., 33 (2013), 712–720. https://doi.org/10.1016/s0252-9602(13)60032-6 doi: 10.1016/s0252-9602(13)60032-6
    [13] D. Vivek, K. Kanagarajan, S. Sivasundaram, Dynamics and stability of pantograph equations via Hilfer fractional derivative, Nonlinear Stud., 23 (2016), 685–698.
    [14] D. Vivek, K. Kanagarajan, S. Sivasundaram, Theory and analysis of nonlinear neutral pantograph equations via Hilfer fractional derivative, Nonlinear Stud., 24 (2017), 699–712.
    [15] A. Anguraj, A. Vinodkumar, K. Malar, Existence and stability results for random impulsive fractional pantograph equations, Filomat, 30 (2016), 3839–3854. https://doi.org/10.2298/fil1614839a doi: 10.2298/fil1614839a
    [16] K. Shah, D. Vivek, K. Kanagarajan, Dynamics and stability of $\psi$-fractional pantograph equations with boundary conditions, Bol. Soc. Paran. Mat., 39 (2021), 43–55. https://doi.org/10.5269/bspm.41154 doi: 10.5269/bspm.41154
    [17] H. M. Srivastava, Fractional-order integral and derivative operators and their applications, Mathematics, 8 (2020), 1016. https://doi.org/10.3390/math8061016 doi: 10.3390/math8061016
    [18] A. Lachouri, M. S. Abdo, A. Ardjouni, S. Etemad, S. Rezapour, A generalized neutral-type inclusion problem in the frame of the generalized Caputo fractional derivatives, Adv. Differ. Equ., 2021 (2021), 404. https://doi.org/10.1186/s13662-021-03559-7 doi: 10.1186/s13662-021-03559-7
    [19] C. Ravichandran, K. Logeswari, F. Jarad, New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations, Chaos Soliton. Fract., 125 (2019), 194–200. https://doi.org/10.1016/j.chaos.2019.05.014 doi: 10.1016/j.chaos.2019.05.014
    [20] M. S. Abdo, S. K. Panchal, Fractional integro-differential equations involving $\psi$-Hilfer fractional derivative, Adv. Appl. Math. Mech., 11 (2019), 338–359. https://doi.org/10.4208/aamm.oa-2018-0143 doi: 10.4208/aamm.oa-2018-0143
    [21] K. Karthikeyan, P. Karthikeyan, N. Patanarapeelert, T. Sitthiwirattham, Mild solutions for impulsive integro-differential equations involving Hilfer fractional derivative with almost sectorial operators, Axioms, 10 (2021), 313. https://doi.org/10.3390/axioms10040313 doi: 10.3390/axioms10040313
    [22] G. Wang, A. Ghanmi, S. Horrigue, S. Madian, Existence result and uniqueness for some fractional problem, Mathematics, 7 (2019), 516. https://doi.org/10.3390/math7060516 doi: 10.3390/math7060516
    [23] A. Morsy, C. Anusha, K. S. Nisar, C. Ravichandran, Results on generalized neutral fractional impulsive dynamic equation over time scales using nonlocal initial condition, AIMS Math., 9 (2024), 8292–8310. https://doi.org/10.3934/math.2024403 doi: 10.3934/math.2024403
    [24] K. Zhao, J. Liu, X. Lv, A unified approach to solvability and stability of multipoint bvps for Langevin and Sturm-Liouville equations with CH-fractional derivatives and impulses via coincidence theory, Fractal Fract., 8 (2024), 111. https://doi.org/10.3390/fractalfract8020111 doi: 10.3390/fractalfract8020111
    [25] H. Srivastava, A. El-Sayed, F. Gaafar, A class of nonlinear boundary value problems for an arbitrary fractional-order differential equation with the Riemann-Stieltjes functional integral and infinite-point boundary conditions, Symmetry, 10 (2018), 508. https://doi.org/10.3390/sym10100508 doi: 10.3390/sym10100508
    [26] M. Alam, A. Zada, T. Abdeljawad, Stability analysis of an implicit fractional integro-differential equation via integral boundary conditions, Alex. Eng. J., 87 (2024), 501–514. https://doi.org/10.1016/j.aej.2023.12.055 doi: 10.1016/j.aej.2023.12.055
    [27] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: John Wiley, 1993.
    [28] B. Ahmad, S. K. Ntouyas, R. P. Agarwal, A. Alsaedi, Existence results for sequential fractional integro-differential equations with nonlocal multi-point and strip conditions, Bound. Value Probl., 2016 (2016), 205. https://doi.org/10.1186/s13661-016-0713-5 doi: 10.1186/s13661-016-0713-5
    [29] B. Ahmad, S. K. Ntouyas, A. Alsaedi, Sequential fractional differential equations and inclusions with semi-periodic and nonlocal integro-multipoint boundary conditions, J. King Saud Uni. Sci., 31 (2019), 184–193. https://doi.org/10.1016/j.jksus.2017.09.020 doi: 10.1016/j.jksus.2017.09.020
    [30] A. Alsaedi, S. K. Ntouyas, R. P. Agarwal, B. Ahmad, On Caputo type sequential fractional differential equations with nonlocal integral boundary conditions, Adv. Differ. Equ., 2015 (2015), 33. https://doi.org/10.1186/s13662-015-0379-9 doi: 10.1186/s13662-015-0379-9
    [31] B. Ahmad, R. Luca, Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions, Appl. Math. Comput., 339 (2018), 516–534. https://doi.org/10.1016/j.amc.2018.07.025 doi: 10.1016/j.amc.2018.07.025
    [32] W. Saengthong, E. Thailert, S. K. Ntouyas, Existence and uniqueness of solutions for system of Hilfer-Hadamard sequential fractional differential equations with two point boundary conditions, Adv. Differ. Equ., 2019 (2019), 525. https://doi.org/10.1186/s13662-019-2459-8 doi: 10.1186/s13662-019-2459-8
    [33] S. Sitho, S. K. Ntouyas, A. Samadi, J. Tariboon, Boundary value problems for $\psi$-Hilfer type sequential fractional differential equations and inclusions with integral multi-point boundary conditions, Mathematics, 9 (2021), 1001. https://doi.org/10.3390/math9091001 doi: 10.3390/math9091001
    [34] S. K. Ntouyas, D. Vivek, Existence and uniqueness results for sequential $\psi$-Hilfer fractional differential equations with multi-point boundary conditions, Acta Math. Univ. Comenianae, 90 (2021), 171–185.
    [35] G. Wang, X. Ren, L. Zhang, B. Ahmad, Explicit iteration and unique positive solution for a Caputo-Hadamard fractional turbulent flow model, IEEE Access, 7 (2019), 109833–109839. https://doi.org/10.1109/access.2019.2933865 doi: 10.1109/access.2019.2933865
    [36] P. Borisut, S. Phiangsungnoen, Existence and uniqueness of positive solutions for the fractional differential equation involving the $\rho$ ($\tau$)-Laplacian operator and nonlocal integral condition, Mathematics, 11 (2023), 3525. https://doi.org/10.3390/math11163525 doi: 10.3390/math11163525
    [37] J. Tariboon, A. Cuntavepanit, S. K. Ntouyas, W. Nithiarayaphaks, Separated boundary value problems of sequential Caputo and Hadamard fractional differential equations, J. Funct. Space., 2018 (2018), 6974046. https://doi.org/10.1155/2018/6974046 doi: 10.1155/2018/6974046
    [38] S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Korean Math. Soc., 55 (2018), 1639–1657. https://doi.org/10.4134/BKMS.b170887 doi: 10.4134/BKMS.b170887
    [39] F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203.
    [40] F. H. Jackson, XI.–On $q$-functions and a certain difference operator, Earth Env. Sci. T. R. So., 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
    [41] G. Gasper, M. Rahman, Basic hypergeometric series, Cambridge university press, 2009. https://doi.org/10.1017/cbo9780511526251
    [42] V. G. Kac, P. Cheung, Quantum calculus, New York: Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7
    [43] B. Ahmad, S. K. Ntouyas, I. K. Purnaras, Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations, Adv. Differ. Equ., 2012 (2012), 140. https://doi.org/10.1186/1687-1847-2012-140 doi: 10.1186/1687-1847-2012-140
    [44] W. A. Al-Salam, Some fractional $q$-integrals and $q$-derivatives, P. Edinburgh Math. Soc., 15 (1966), 135–140. https://doi.org/10.1017/s0013091500011469 doi: 10.1017/s0013091500011469
    [45] R. P. Agarwal, Certain fractional $q$-integrals and $q$-derivatives, Math. Proce. Cambridge, 66 (1969), 365–370. https://doi.org/10.1017/s0305004100045060 doi: 10.1017/s0305004100045060
    [46] S. Salahshour, A. Ahmadian, C. S. Chan, Successive approximation method for Caputo $q$-fractional IVPs, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 153–158. https://doi.org/10.1016/j.cnsns.2014.12.014 doi: 10.1016/j.cnsns.2014.12.014
    [47] W. X. Zhou, H. Z. Liu, Existence solutions for boundary value problem of nonlinear fractional $q$-difference equations, Adv. Differ. Equ., 2013 (2013), 113. https://doi.org/10.1186/1687-1847-2013-113 doi: 10.1186/1687-1847-2013-113
    [48] S. Abbas, M. Benchohra, N. Laledj, Y. Zhou, Existence and Ulam stability for implicit fractional $q$-difference equations, Adv. Differ. Equ., 2019 (2019), 480. https://doi.org/10.1186/s13662-019-2411-y doi: 10.1186/s13662-019-2411-y
    [49] N. Allouch, J. R. Graef, S. Hamani, Boundary value problem for fractional $q$-difference equations with integral conditions in banach spaces, Fractal Fract., 6 (2022), 237. https://doi.org/10.3390/fractalfract6050237 doi: 10.3390/fractalfract6050237
    [50] P. Rajkovic, S. Marinkovic, M. Stankovic, On $q$-analogues of Caputo derivative and Mittag-Leffler function, Fract. Calc. Appl. Anal., 10 (2007), 359–373.
    [51] N. Limpanukorn, Existence of solution to $q$-Hilfer fractional difference equation with a time-varying order of operations, Mathematical Journal by The Mathematical Association of Thailand Under The Patronage of His Majesty The King, 67 (2022), 1–11.
    [52] M. A. Krasnosel'ski$ \mathop {\rm{i}}\limits^{˘}$, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk, 10 (1955), 123–127.
    [53] A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8
    [54] K. Deimling, Nonlinear functional analysis, Berlin: Springer, 1985. https://doi.org/10.1007/978-3-662-00547-7
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(543) PDF downloads(23) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog