Loading [MathJax]/jax/output/SVG/jax.js
Research article

Separated boundary value problems via quantum Hilfer and Caputo operators

  • Received: 01 May 2024 Revised: 27 May 2024 Accepted: 07 June 2024 Published: 13 June 2024
  • MSC : 26A33, 34A12, 34A34, 34D20

  • This paper describes a new class of boundary value fractional-order differential equations of the q-Hilfer and q-Caputo types, with separated boundary conditions. The presented problem is converted to an equivalent integral form, and fixed-point theorems are used to prove the existence and uniqueness of solutions. Moreover, several special cases demonstrate how the proposed problems advance beyond the existing literature. Examples are provided to support the analysis presented.

    Citation: Idris Ahmed, Sotiris K. Ntouyas, Jessada Tariboon. Separated boundary value problems via quantum Hilfer and Caputo operators[J]. AIMS Mathematics, 2024, 9(7): 19473-19494. doi: 10.3934/math.2024949

    Related Papers:

    [1] Adel Lachouri, Naas Adjimi, Mohammad Esmael Samei, Manuel De la Sen . Non-separated inclusion problem via generalized Hilfer and Caputo operators. AIMS Mathematics, 2025, 10(3): 6448-6468. doi: 10.3934/math.2025294
    [2] Ayub Samadi, Chaiyod Kamthorncharoen, Sotiris K. Ntouyas, Jessada Tariboon . Mixed Erdélyi-Kober and Caputo fractional differential equations with nonlocal non-separated boundary conditions. AIMS Mathematics, 2024, 9(11): 32904-32920. doi: 10.3934/math.20241574
    [3] Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi . Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018
    [4] Adel Lachouri, Mohammed S. Abdo, Abdelouaheb Ardjouni, Bahaaeldin Abdalla, Thabet Abdeljawad . On a class of differential inclusions in the frame of generalized Hilfer fractional derivative. AIMS Mathematics, 2022, 7(3): 3477-3493. doi: 10.3934/math.2022193
    [5] Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013
    [6] Chutarat Treanbucha, Weerawat Sudsutad . Stability analysis of boundary value problems for Caputo proportional fractional derivative of a function with respect to another function via impulsive Langevin equation. AIMS Mathematics, 2021, 6(7): 6647-6686. doi: 10.3934/math.2021391
    [7] M. Latha Maheswari, K. S. Keerthana Shri, Mohammad Sajid . Analysis on existence of system of coupled multifractional nonlinear hybrid differential equations with coupled boundary conditions. AIMS Mathematics, 2024, 9(6): 13642-13658. doi: 10.3934/math.2024666
    [8] Lakhlifa Sadek, Tania A Lazǎr . On Hilfer cotangent fractional derivative and a particular class of fractional problems. AIMS Mathematics, 2023, 8(12): 28334-28352. doi: 10.3934/math.20231450
    [9] Sotiris K. Ntouyas, Bashir Ahmad, Jessada Tariboon . Nonlocal integro-multistrip-multipoint boundary value problems for $ \overline{\psi}_{*} $-Hilfer proportional fractional differential equations and inclusions. AIMS Mathematics, 2023, 8(6): 14086-14110. doi: 10.3934/math.2023720
    [10] Djamila Chergui, Taki Eddine Oussaeif, Merad Ahcene . Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions. AIMS Mathematics, 2019, 4(1): 112-133. doi: 10.3934/Math.2019.1.112
  • This paper describes a new class of boundary value fractional-order differential equations of the q-Hilfer and q-Caputo types, with separated boundary conditions. The presented problem is converted to an equivalent integral form, and fixed-point theorems are used to prove the existence and uniqueness of solutions. Moreover, several special cases demonstrate how the proposed problems advance beyond the existing literature. Examples are provided to support the analysis presented.



    The concepts of fractional calculus have gained widespread recognition as an important area within pure mathematics. The concepts within fractional calculus have been studied by numerous mathematicians, given their significance across various fields of knowledge, see [1,2,3,4]. Theoretical aspects of fractional differential equations have attracted considerable interest since the advent of fractional calculus. Owing to the nonlocal nature of fractional-order differential equations, researchers possess the flexibility to choose and apply the most suitable operator, thereby accurately representing complex real-world phenomena. However, there are numerous versions of integrals and derivatives of arbitrary fractional order, employing various types of operators, as detailed in[5,6,7,8,9,10,11].

    Fixed-point theorems serve as valuable tools for establishing both the existence and uniqueness of solutions to fractional differential equations. The methodology has been extensively studied by numerous mathematicians, and vast results have been published, see [12,13,14,15,16,17,18] and references therein. Furthermore, in the physical and life sciences, fractional calculus has widespread applicability across various domains, including image processing, complex systems, traffic flow, etc. Numerous researchers have studied many different kinds of initial and boundary value problems with various types of fractional operators, using techniques based on fixed-point theorems, [19,20,21,22,23,24,25,26].

    The concept of sequential fractional derivatives was first introduced in [27]. Since its inception, numerous researchers have made significant contributions to the advancement of this field. As a result, several research articles have been published. For more research insight, we refer to [28,29,30,31,32,33,34].

    Wang et al. [35], studied the turbulent flow model within the framework of the Caputo-Hadamard fractional derivatives of the form:

    {CHDτ1ψp(s)(CHDτ2u(s))+g(u(s),Iα1,α2u(s))=0,s[1,λ],u(1)=αu(λ),u(1)=u(1)=0,CHDτ2u(1)=0,2<τ2<3,0<τ1<1,α1,α2>0,λ2<α2λ4λ. (1.1)

    In [36], the authors discussed the existence and uniqueness of positive solutions for a class of Caputo fractional differential equations described by:

    {CDα1ψp(s)(CDα2u(s))+g(s,u(s))=0,s[0,1],u(0)=k,u(1)=mn=1φnRLIδnu(βn),mN,φn0,k>0,0<β1<β2<<βm<1,0<α1,α2<1,ψp(s)>2,δn>0. (1.2)

    In 2018, Tariboon et al. [37] considered the sequential Caputo and Hadamard fractional nonseparated boundary value problem given by:

    {CDα1(HDα2u)(s)=g(s,u(s)),s(a,b),0<α1,α2<1,c1u(a)+c2(HDα2u)(b)=0,c3u(a)+c4(HDα2u)(b)=0,andHDα2(CDα1u)(s)=g(s,u(s)),s(a,b),c1u(a)+c2(CDα1u)(b)=0,c3u(a)+c4(CDα1u)(b)=0,c1,c2,c3,c4R. (1.3)

    The investigation employed Banach and Krasnoselskii's fixed-point theorems, alongside Leray-Schauder's nonlinear alternative, to establish the existence and uniqueness of the results.

    Asawasamrit et al. [38] studied the nonlocal boundary value problem involving the Hilfer fractional derivative of the form:

    {HDα1,α2u(s)=g(s,u(s)),s[a,b],1<α1<2,0α21,u(a)=0,u(b)=ki=1ciIα3u(ϑi),ciR,α30,ϑi[a,b]. (1.4)

    Jackson [39,40] initiated the idea of q-difference calculus. For more basic concepts of q-difference calculus, see [41,42]. Since then, numerous researchers have delved into the theoretical analysis of q-fractional-order differential equations, see [43,44,45,46,47,48].

    Allouch et al. [49] studied the q-difference equation with nonlinear integral boundary conditions of the form:

    {Dζqu(κ)=g(κ,u(κ)),κ[0,b],1<ζ<2,0<q<1,b>0,u(0)u(0)=b0g(ϑ,u(ϑ))dϑ,u(A)+u(b)=b0h(ϑ,u(ϑ))dϑ. (1.5)

    Measures of noncompactness and Mönch's fixed point theorems were utilized to derive the results.

    Inspired by recent publications, we propose a new type of separated boundary value problems and investigate its theoretical analysis. The problem under consideration takes the form of

    {HDα,βq(CDδqz)(t)=f(t,z(t)),t[0,T],z(0)+λ1CDγ+δ1qz(0)=0,z(T)+λ2CDγ+δ1qz(T)=0,0<α,δ,q<1,0β1,λ1,λ2R,T>0, (1.6)

    where CDδq() and HDα,βq(), respectively, are the Caputo and Hilfer fractional derivatives of orders δ,α, and type β such that γ=α+β(1α) with γ+δ>1, and f:[0,T]×RR is a continuous function.

    The existence and uniqueness of solutions to q sequential fractional-order boundary value problems have not been extensively studied. In our study, we introduce a new class of sequential q-Hilfer and q-Caputo fractional differential equations with separated boundary conditions and provide a comprehensive theoretical analysis.

    The novelty of our study lies in the fact that we consider a sequential fractional boundary value problem combining q-Hilfer and q-Caputo fractional derivative operators subjected to non-separated boundary conditions. To the best of our knowledge, this is the first paper to appear in the literature. The method used is standard, but its configuration in the Hilfer-Caputo sequential boundary value problem (1.6) is new. The results are new and significantly enrich the existing results in the literature on Hilfer boundary value problems.

    The rest of the paper is organized as follows: Section 2 revisits essential definitions, lemmas, and theorems. Section 3 focuses on establishing an integral equivalent form of the proposed problem, which enables us to prove the existence and uniqueness of results. In Section 4, two examples are presented. Section 5 provides the conclusion of the paper.

    The section includes prerequisite facts, definitions, and key lemmas that will assists in proving the main results. The space X=C([0,T],R) constitutes a Banach space comprising all continuous functions over [0,T] with

    z=supt[0,T]|z(t)|.

    Recall that for q(0,1) and g,hR, the following properties holds [42]:

    [g]q=qg1q1,

    and

    (gh)(0)q=1,(gh)(k)q=k1n=0(ghqn);kN.

    Moreover, for αR, we have

    (gh)(α)q=gαn=0(1(hg)qn1(hg)qn+α).

    The q analog gamma function is given by

    Γq(α)=(1q)(α1)q(1q)α1;αR{0,1,2,},

    such that Γq(α+1)=[α]qΓq(α).

    For u:[0,T]R and 0<q<1, the q-derivative of u is defined by

    Dqu(t)=u(t)u(qt)(1q)t;t0,Dqu(0)=limt0Dqu(t).

    Moreover, the higher-order q-derivative shows

    D0qu(t)=u(t),Dnqu(t)=Dq(Dn1qu)(t),nN.

    For setting Jt={tqn:nN,t0}{0}, the analog q-integral of a function u:JtR is of the form:

    Iqu(t)=t0u(ν)dqν=n=0t(1q)qnu(tqn),

    provided that the right-hand side converges. Note that Dq(Iqu)(t)=u(t), and if u is continuous at 0, then

    Iq(Dqu)(t)=u(t)u(0).

    Definition 2.1. [45] Let w:[0,T]R,ϑ[0,T], and α>0. The integral operator

    Iαqw(ϑ)=1Γq(α)ϑ0(ϑqν)(α1)qw(ν)dqν,

    is called the q-fractional-order integral in the Riemann-Liouville sense of order α>0 for the function w, and I0qw(ϑ)=w(ϑ).

    Lemma 2.1. [45] For 0α< and σ(1,+). If w(ϑ)=(ϑa)(σ), then

    Iαqw(ϑ)=Γq(σ+1)Γq(α+σ+1)(ϑa)(α+σ)q;0<a<ϑ<T,

    also

    (Iαq1)(ϑ)=1Γq(α+1)(ϑa)(α)q.

    Definition 2.2. [50] Let w:[0,T]R,ϑ[0,T],0<α<1. The derivative operator

    RLDαqw(ϑ)=1Γq(1α)Dqϑ0(ϑqν)(α)qw(ν)dqν,

    is called the q-fractional-order derivative in Riemann-Liouville sense of order α for the function w.

    Definition 2.3. [50] Let wC1q([0,T],R),ϑ[0,T],0<α<1. The derivative operator

    CDαqw(ϑ)=1Γq(1α)ϑ0(ϑqν)(α)qDqw(ν)dqν, (2.1)

    is called the q-fractional-order derivative in the Caputo sense of order α.

    Lemma 2.2. [50] Let w:[0,T]R and α,σ0. Thus

    (i).Iαq(Iσqw)(t)=Iα+σqw(t),(ii).CDαq(Iαqw)(t)=w(t).

    Definition 2.4. [51] Let wC1q([0,T]R) and 0<α<1,0β1. The operator

    HDα,βqw(ϑ)=Iβ(1α)q[Dq(I(1β)(1α)qw)](ϑ), (2.2)

    is called q-Hilfer fractional derivative of order α with a parameter β. Note that HDα,βq can be written as

    HDα,βqw=Iβ(1α)qDq(I(1β)(1α)qw)=Iβ(1α)qDq(I1γqw),γ=α+β(1α).

    Lemma 2.3. [50] Suppose that 0<α<1. Then we have

    Iαq(RLDαqw)(ϑ)=w(ϑ)1Γq(α)ϑα1(I1αqw)(0),

    and moreover,

    Iαq(CDαqw)(ϑ)=w(ϑ)+k,kR.

    Remark 2.1. Note that if β=0, from problem (1.6), we have

    {RLDαq(CDδqz)(t)=f(t,z(t)),t[0,T],z(0)+λ1CDα+δ1qz(0)=0,z(T)+λ2CDα+δ1qz(T)=0,

    and if β=1, we have

    {CDαq(CDδqz)(t)=f(t,z(t)),t[0,T],z(0)+λ1CDδqz(0)=0,z(T)+λ2CDδqz(T)=0,

    which are the q sequential Riemann-Liouville and Caputo derivatives with separated boundary conditions.

    In this part, we begin by employing techniques from Lemma 2.3 to establish an integral equation associated with problem (1.6). To this end, we introduce the lemma, addressing a linear variant of problem (1.6), which serves as the fundamental tool for transforming the problem into a fixed-point problem.

    Lemma 3.1. Let 0<α,δ<1, 0β1, γ=α+β(1α), λ1,λ2R and 0<q<1 and

    Q=T(γ+δ1)+(λ2λ1)Γq(γ+δ)0.

    Suppose gC([0,T],R). If zC2q([0,T],R), then, the linear problem

    {HDα,βq(CDδqz)(t)=g(t),t[0,T],z(0)+λ1CDγ+δ1qz(0)=0,z(T)+λ2CDγ+δ1qz(T)=0, (3.1)

    is equivalent to the integral equation:

    z(t)=λ1Γq(γ+δ)t(γ+δ1)Q[1Γq(α+δ)T0(Tqν)(α+δ1)qg(ν)dqν+λ2Γq(αγ+1)T0(Tqν)(αγ)qg(ν)dqν]+1Γq(α+δ)t0(tqν)(α+δ1)qg(ν)dqν,t[0,T]. (3.2)

    Proof. Suppose zC2q([0,T],R) satisfies problem (3.1), then, we show that z is satisfies the integral (3.2). Since

    HDα,βq()=Iβ(1α)qDqIq(1β)(1α)()=Iβ(1α)qDqI1γq(), (3.3)

    then, make use of Eq (3.3), the first equation of (3.1) can be simplified as

    Iβ(1α)qDqI1γq(CDδqz)(t)=g(t). (3.4)

    Taking Iαq to both sides of Eq (3.4) and utilize the techniques in Lemma 2.3, yields

    CDδqz(t)=AΓq(γ)t(γ1)+1Γq(α)t0(tqν)(α1)qg(ν)dqν,AR,(A constant). (3.5)

    Also, taking Iδq to both sides of Eq (3.5) and utilize the techniques in Lemma 2.3, we get

    z(t)=B+AΓq(γ+δ)t(γ+δ1)+1Γq(α+δ)t0(tqν)(α+δ1)qg(ν)dqν, (3.6)

    where BR is an arbitrary constant. Applying the operator CDγ+δ1q to both sides of Eq (3.6), yields

    CDγ+δ1qz(t)=A+1Γq(αγ+1)t0(tqν)(αγ)qg(ν)dqν. (3.7)

    Thus, from the condition z(0)+λ1CDγ+δ1qz(0)=0, Eqs (3.6) and (3.7), we get

    z(0)+λ1CDγ+δ1qz(0)=λ1A+B=0B=λ1A. (3.8)

    From z(T)+λ2CDγ+δ1qz(T)=0, Eqs (3.6) and (3.7), we obtain

    0=B+λ2A+AΓq(γ+δ)T(γ+δ1)+λ2Γq(αγ+1)T0(Tqν)(αγ)qg(ν)dqν+1Γq(α+δ)T0(Tqν)(α+δ1)qg(ν)dqν. (3.9)

    Upon simplification and substituting B=λ1A in Eq (3.9), we get

    B=λ1Γq(γ+δ)Q[1Γq(α+δ)T0(Tqν)(α+δ1)qg(ν)dqν+λ2Γq(αγ+1)T0(Tqν)(αγ)qg(ν)dqν],

    and

    A=Γq(γ+δ)Q[1Γq(α+δ)T0(Tqν)(α+δ1)qg(ν)dqν+λ2Γq(αγ+1)T0(Tqν)(αγ)qg(ν)dqν].

    To explore the numerical behavior of the integral solution of the proposed problem (1.6), we vary the fractional-orders associated with the problem. The following parameters, α,β, and δ, respectively, were considered. The respective graphical analysis are shown in Figures 1 and 2, respectively. Figures 1a1c illustrate the behavior of the solution of the integral (3.2) when varying the fraction-order α. Moreover, the corresponding 3D plots is displayed in Figures 2a2c, respectively.

    Figure 1.  Solution of the integral Eq (3.2) for values of α,β and δ for the function g(t)=t2+2t+1 and t[0,1].
    Figure 2.  3D plots for the solution of (3.2) for the function g(t)=t2+2t+1 and t[0,1].

    By employing Krasnoselskii's fixed-point theorem and Leray-Schauder's nonlinear alternative, in this subsection, we will present the proof of the existence results of (1.6).

    Lemma 3.2. (Krasnoselskii's fixed point theorem) [52] Let MX be closed, bounded, convex, and nonempty. Suppose F1,F2 be operators such that:

    (i) F1z+F2z1M whenever z,z1M;

    (ii) F2 is a contraction mapping;

    (iii) F1 is compact and continuous.

    Then there exists wM such that w=F1w+F2w.

    Theorem 3.1. Let 0<α,δ<1, 0β1, and γ=α+β(1α). Suppose that the function f:[0,T]×RR is continuous and satisfies:

    (H1) There exists L>0,(constant) such that

    |f(t,z)f(t,z1)|L|zz1|,fort[0,T],andz,z1R.

    (H2) |f(t,z)|Ψ(t),(t,z)[0,T]×R and ΨC([0,T],R+);

    Then there exists at least one solution of the quantum Hilfer and Caputo separated boundary value problem (1.6) on [0,T], provided that

    L(ΔT(α+δ)Γq(α+δ+1))<1, (3.10)

    where

    Δ=|λ1|Γq(γ+δ)+T(γ+δ1)|Q|[T(α+δ)Γq(α+δ+1)+|λ2|T(αγ+1)Γq(αγ+2)]+T(α+δ)Γq(α+δ+1). (3.11)

    Proof. Now, from equation 3.2, define F:XX by

    (Fz)(t)=λ1Γq(γ+δ)t(γ+δ1)Q[1Γq(α+δ)T0(Tqν)(α+δ1)qf(ν,z(ν))dqν+λ2Γq(αγ+1)T0(Tqν)(αγ)qf(ν,z(ν))dqν]+1Γq(α+δ)t0(tqν)(α+δ1)qf(ν,z(ν))dqν,t[0,T].

    Suppose supt[0,T]Ψ(t)=Ψ and σΨΔ such that Bσ={xX:zσ}. Now, we set

    F1z(t)=1Γq(α+δ)t0(tqν)(α+δ1)qf(ν,z(ν))dqν,t[0,T],

    and

    F2z(t)=λ1Γq(γ+δ)t(γ+δ1)Q[1Γq(α+δ)T0(Tqν)(α+δ1)qf(ν,z(ν))dqν+λ2Γq(αγ+1)T0(Tqν)(αγ)qf(ν,z(ν))dqν],t[0,T].

    Then, for any z,z1Bσ, we get

    |(F1z)(t)+(F2z1)(t)|supt[0,T]{1Γq(α+δ)t0(tqν)(α+δ1)qf(ν,z(ν))dqν+λ1Γq(γ+δ)tγ+δ1Q[1Γq(α+δ)T0(Tqν)(α+δ1)qf(ν,z1(ν))dqν+λ2Γq(αγ+1)T0(Tqν)(αγ)qf(ν,z1(ν))dqν]}Ψ(T(α+δ)Γq(α+δ+1)+|λ1|Γq(γ+δ)+T(γ+δ1)|Q|(T(α+δ)Γq(α+δ+1)+|λ2|T(αγ+1)Γq(αγ+2)))ΨΔσ.

    Hence F1z+F2z1σ, which shows that F1z+F2z1Bσ. Therefore, the condition (i) of Lemma 3.2 is satisfied.

    To show condition (ii) of Lemma 3.2, we proceed as follows, for any z,z1C([0,T],R), gives

    |(F2z)(t)(F2z1)(t)||λ1|Γq(γ+δ)+t(γ+δ1)|Q|[1Γq(α+δ)T0(Tqν)(α+δ1)q|f(ν,z(ν))dqνf(ν,z1(ν))dqν|+|λ2|Γq(αγ+1)T0(Tqν)(αγ)q|f(ν,z(ν))dqνf(ν,z1(ν))dqν|ν]L(|λ1|Γq(γ+δ)+T(γ+δ1)|Q|(T(α+δ)Γq(α+δ+1)+|λ2|T(αγ+1)Γq(αγ+2)))zz1=L(ΔT(α+δ)Γq(α+δ+1))zz1.

    Consequently, (F2z)(F2z1)L(ΔT(α+δ)Γq(α+δ+1))zz1, and hence, by (3.10), F2 is a contraction. Hence, condition (ii) of Lemma 3.2 is satisfied.

    Moreover, since fC([0,T],R), the operator F1 is continuous and it is uniformly bounded, as

    F1zT(α+δ)Γq(α+δ+1)Ψ.

    Set sup(t,z)[0,T]×Bσ|f(t,z)|=ˆf. Then

    |(F1z)(t2)(F1z)(t1)|=1Γq(α+δ)|t10[(t2qν)(α+δ1)q(t1qν)(α+δ1)]f(ν,z(ν))dqν+t2t1(t2qν)(α+δ1)qf(ν,z(ν))dqν|ˆfΓq(α+δ+1)[2(t2t1)(α+δ)q+|t(α+δ)2t(α+δ)1|],

    0. as t2t10, independently of z. Hence, as a consequence of the Arzelá-Ascoli theorem, this shows that F1 is compact on Bσ.

    Therefore, since all the assumptions of Lemma 3.2 are satisfied, we conclude that there exists at least one solution of quantum Hilfer and Caputo separated boundary value problem (1.6) on [0,T].

    The next existence result relies on Leray-Schauder's nonlinear alternative.

    Lemma 3.3. (Leray-Schauder's Nonlinear Alternative) [53] Let CX be closed and convex of X, UC be open, and 0U. Suppose F:ˉUC is a continuous and compact map. Then either

    (i) F has a fixed point in ˉU or

    (ii) zU and ω(0,1) with z=ωF(z).

    Theorem 3.2. Suppose that the function f:[0,T]×RR is continuous and satisfies:

    (H3) there exists a function Λ:[0,)(0,) continuous and nondecreasing and a function GC([0,T],R+) such that

    |f(t,z)|G(t)Λ(z)for each(t,z)[0,T]×R;

    (H4) There exists C>0(constant) such that

    1<CΛ(C)GΔ.

    Then, there exists at least one solution of problem (1.6) on [0,T].

    Proof. Firstly, we show that F maps a bounded set into bounded sets in X. For any k>0, let Bk={zX:zk} be a bounded set in X. Then, for t[0,T] yields

    |(Fz)(t)|supt[0,T]{1Γq(α+δ)t0(tqν)(α+δ1)qf(ν,z(ν))dqν+λ1Γq(γ+δ)tγ+δ1Q[1Γq(α+δ)T0(Tqν)(α+δ1)qf(ν,z(ν))dqν+λ2Γq(αγ+1)T0(Tqν)(αγ)qf(ν,z(ν))dqν]}Λ(z)G{T(α+δ)Γq(α+δ+1)+|λ1|Γq(γ+δ)+T(γ+δ1)|Q|(T(α+δ)Γq(α+δ+1)+|λ2|T(αγ+1)Γq(αγ+2))}Λ(z)GΔ, (3.12)

    which implies that

    FzΛ(z)GΔ.

    Moreover, for t1,t2[0,T] with t1<t2 and zBk, we obtain

    |(Fz)(t2)(Fz)(t1)||tγ+δ12tγ+δ11||Q|[1Γq(α+δ)T0(Tqν)(α+δ1)q|f(ν,z(ν))|dqν+|λ2|Γq(αγ+1)T0(Tqν)(αγ)q|f(ν,z(ν))|dqν]+1Γq(α+δ)|t10[(t2qν)(α+δ1)q(t1qν)(α+δ1)]|f(ν,z(ν))|dqν+t2t1(t2qν)(α+δ1)q|f(ν,z(ν))|dqν||tγ+δ12tγ+δ11||Q|Λ(k)[1Γq(α+δ)T0(Tqν)(α+δ1)qg(ν)dqν+|λ2|Γq(αγ+1)T0(Tqν)(αγ)qg(ν)dqν]+1Γq(α+δ)Λ(k)|t10[(t2qν)(α+δ1)q(t1qν)(α+δ1)]g(ν)dqν+t2t1(t2qν)(α+δ1)qg(ν)dqν|GΛ(k)|tγ+δ12tγ+δ11||Q|{T(α+δ)Γq(α+δ+1)+|λ2|T(αγ+1)Γq(αγ+2)}+GΛ(k)Γq(α+δ+1)[2(t2t1)(α+δ)q+|t(α+δ)2t(α+δ)1|],0ast2t10.

    This proves the equicontinuity of the set F(Bk), and by the Arzelá-Ascoli theorem, it is relatively compact. Thus, F:XX is completely continuous.

    Now, for t[0,T], as in step 1, yields

    |z(t)|GΛ(z)Δ,

    which gives

    zGΛ(z)Δ1.

    By (H4) C such that Cz. Let

    U={zX:z<C}.

    Then, F:ˉUC is both continuous and completely continuous. From U, there exists no zˉU such that z=ωF(z) for any ω(0,1). Thus, as a consequence of Lemma 3.3, we conclude that F has a fixed point zˉU which is a solution of problem (1.6).

    We proceed to establish the uniqueness of problem (1.6) using the Banach contraction principle [54].

    Theorem 3.3. Let 0<α,δ<1, 0β1, and γ=α+β(1α). Suppose that f:[0,T]×RR fulfills the assumption (H1). If

    LΔ<1, (3.13)

    where Δ is defined by (3.11), then, there exists a unique solution of problem (1.6) on [0,T].

    Proof. To do so, problem (1.6) can be viewed as a fixed-point problem, z=Fz, where F is defined as in (3.1). Next, we show that F has a unique fixed point. Indeed, let supt[0,T]|f(t,0)|=K< and KΔ1LΔk. First, we show that FBkBk, where Bk={zX:zk}. Given zBk, gives

    |(Fz)(t)|supt[0,T]{1Γq(α+δ)t0(tqν)(α+δ1)q|f(ν,z(ν))|dqν+λ1Γq(γ+δ)t(γ+δ1)Q[1Γq(α+δ)T0(Tqν)(α+δ1)q|f(ν,z(ν))|dqν+λ2Γq(αγ+1)T0(Tqν)(αγ)q|f(ν,z(ν))|dqν]}1Γq(α+δ)T0(Tqν)(α+δ1)q(|f(ν,z(ν))f(ν,0)|+|f(ν,0)|)dqν+|λ1|Γq(γ+δ)+T(γ+δ1)|Q|×[1Γq(α+δ)T0(Tqν)(α+δ1)q(|f(ν,z(ν))f(ν,0)|+|f(ν,0)|)f(ν,z(ν))dqν+|λ2|Γq(αγ+1)T0(Tqν)(αγ)q(|f(ν,z(ν))f(ν,0)|+|f(ν,0)|)dqν](Lz+K){1Γq(α+δ)T0(Tqν)(α+δ1)qdqν+|λ1|Γq(γ+δ)+T(γ+δ1)|Q|[1Γq(α+δ)T0(Tqν)(α+δ1)qdqν+|λ2|Γq(αγ+1)T0(Tqν)(αγ)qdqν]},(Lz+K){T(α+δ)Γq(α+δ+1)+|λ1|Γq(γ+δ)+T(γ+δ1)|Q|(T(α+δ)Γq(α+δ+1)+|λ2|T(αγ+1)Γq(αγ+2))}(Lk+K)Δk,

    and hence (Fz)k, which means that FBkBk.

    Subsequently, for t[0,T] and any z,z1C([0,T],R), we get

    |(Fz)(t)(Fz1)(t)|1Γq(α+δ)t0(tqν)(α+δ1)q|f(ν,z(ν))f(ν,z1(ν))|dqν+|λ1|Γq(γ+δ)+t(γ+δ1)|Q|[1Γq(α+δ)T0(Tqν)(α+δ1)q|f(ν,z(ν))f(ν,z1(ν))|dqν+|λ2|Γq(αγ+1)T0(Tqν)(αγ)q|f(ν,z(ν))f(ν,z1(ν))|dqν]Lzz1(|λ1|Γq(γ+δ)+T(γ+δ1)|Q|[T(α+δ)Γq(α+δ+1)+|λ2|T(αγ+1)Γq(αγ+2)]+T(α+δ)Γq(α+δ+1))=LΔzz1.

    Therefore, (Fz)(Fz1)LΔzz1, and hence, by (3.13), F is a contraction, and hence, problem (1.6) has a unique solution on [0,T].

    Case Ⅰ. If λ1=λ2=0, problem (1.6) reduces to sequential q-Hilfer problems of the form:

    {HDα,βq(CDδqz)(t)=f(t,z(t)),t[0,T],z(0)=0,z(T)=0. (3.14)

    Corollary 3.1. Let 0<α,δ<1, 0β1, and γ=α+β(1α). Suppose f:[0,T]×RR is a continuous function. If zC2q([0,T],R), then z satisfies the problem (3.14) if and only if z satisfies the integral equation:

    z(t)=1Γq(α+δ)t0(tqν)(α+δ1)qf(ν,z(ν))dqνt(γ+δ1)T(γ+δ1)1Γq(α+δ)T0(Tqν)(α+δ1)qf(ν,z(ν))dqν. (3.15)

    Case Ⅱ. If λ1=λ2=1, problem (1.6) reduces to sequential q-Hilfer problems of the form:

    {HDα,βq(CDδqz)(t)=f(t,z(t)),t[0,T],z(0)+CDγ+δ1qz(0)=0,z(T)+CDγ+δ1qz(T)=0. (3.16)

    Corollary 3.2. Let 0<α,δ<1, 0β1, and γ=α+β(1α). Suppose f:[0,T]×RR is a continuous function. If zC2q([0,T],R), then z satisfies the problem (3.16) if and only if z satisfies the integral equation:

    z(t)=Γq(γ+δ)t(γ+δ1)T(γ+δ1)[1Γq(α+δ)T0(Tqν)(α+δ1)qf(ν,z(ν))dqν+1Γq(αγ+1)T0(Tqν)(αγ)qf(ν,z(ν))dqν]+1Γq(α+δ)t0(tqν)(α+δ1)qf(ν,z(ν))dqν. (3.17)

    Case Ⅲ. Let β=1, then γ=1, and problem (1.6) reduces to the sequential q-Caputo fractional-order differential equation given by

    {CDαq(CDδqz)(t)=f(t,z(t)),t[0,T],z(0)+λ1CDδqz(0)=0,z(T)+λ2CDδqz(T)=0. (3.18)

    Corollary 3.3. Let 0<α,δ<1 be orders of fractional derivative and 0<q<1 be quantum number. Suppose f:[0,T]×RR is a continuous function. If zC2q([0,T],R), then z satisfies the problem (3.18) if and only if z satisfies the integral equation:

    z(t)=λ1Γq(δ+1)tδT(δ)+(λ2λ1)Γq(δ+1)[1Γq(α+δ)T0(Tqν)(α+δ1)qf(ν,z(ν))dqν+λ2Γq(α)T0(Tqν)(α1)qf(ν,z(ν))dqν]+1Γq(α+δ)t0(tqν)(α+δ1)qf(ν,z(ν))dqν. (3.19)

    Case Ⅳ. Let β=0, then γ=α, and problem (1.6) reduces to the sequential q-Riemann and Caputo fractional-order differential equation given by

    {RLDαq(CDδqz)(t)=f(t,z(t)),t[0,T],z(0)+λ1CDα+δ1qz(0)=0,z(T)+λ2CDα+δ1qz(T)=0. (3.20)

    Corollary 3.4. Let 0<α,δ<1, and f:[0,T]×RR is a continuous function. If zC([0,T],R), then z satisfies the problem (3.20) if and only if z satisfies the integral equation:

    z(t)=λ1Γq(α+δ)t(α+δ1)Q[1Γq(α+δ)T0(Tqν)(α+δ1)qf(ν,z(ν))dqν+λ2T0f(ν,z(ν))dqν]+1Γq(α+δ)t0(tqν)(α+δ1)qf(ν,z(ν))dqν, (3.21)

    where Q=T(α+δ1)+(λ2λ1)Γq(α+δ).

    Case Ⅴ. If q=1, then problem (1.6) reduces to the sequential Hilfer and Caputo boundary value problem of the form:

    {HDα,β(CDδz)(t)=f(t,z(t)),t[0,T],z(0)+λ1CDγ+δ1z(0)=0,z(T)+λ2CDγ+δ1z(T)=0. (3.22)

    Corollary 3.5. Let 0<α,δ<1, 0β1, and γ=α+β(1α). Suppose f:[0,T]×RR is a continuous function. If zC2([0,T],R), then z satisfies the problem (3.22) if and only if z satisfies the integral equation:

    z(t)=λ1Γ(γ+δ)tγ+δ1Q[1Γ(α+δ)T0(Tν)α+δ1f(ν,z(ν))dν+λ2Γ(αγ+1)T0(Tν)αγf(ν,z(ν))dν]+1Γ(α+δ)t0(tν)α+δ1f(ν,z(ν))dν. (3.23)

    Example 4.1. Consider the sequential fractional differential equation involving q-Hilfer and q-Caputo fractional derivatives:

    {HD35,2512(CD4512z)(t)=f(t,z(t)),t[0,97],z(0)+1123CD142512z(0)=0,z(97)+1329CD142512z(97)=0. (4.1)

    Now, we choose constants as α=3/5, β=2/5, δ=4/5, q=1/2, T=9/7, λ1=11/23, λ2=13/29. Then we compute γ=19/25, which yields γ+δ1=14/25. These information can be used to find that Q1.123420003, Δ3.821919331, and Δ(T(α+δ)/Γq(α+δ))2.578777897.

    Case (i). Let the nonlinear bounded function f(t,z) be presented by

    f(t,z)=h(t)+|z|p+|z|, (4.2)

    where h:[0,9/7]R, and p is a positive constant.

    Thus,

    |f(t,z)||h(t)|+1:=Ψ(t).

    and

    |f(t,z)f(t,z1)|1p|zz1|,

    for all t[0,9/7] and z,z1R. Therefore, conditions (H1) and (H2) in Theorem 3.1 are satisfied with L=1/p. Thus, from Theorem 3.1, we say that problem (4.1) with (4.2) has at least one solution on [0,9/7] if p>2.578777897. In addition, the unique solution of problem (4.1) with (4.2), can be guaranteed if p>3.821919331 by applying the result in Theorem 3.3.

    Case (ii). If the nonlinear, unbounded function f(t,z) is expressed as

    f(t,z)=12(t2+4)(z2+2|z|1+|z|)+34, (4.3)

    then it is easy to check that condition (H1) is fulfilled by inequality

    |f(t,z)f(t,z1)|14|zz1|,

    with L=1/4, which leads to

    LΔ0.9554798328<1.

    Hence, problem (4.1) with (4.3) has a unique solution on [0,9/7].

    Example 4.2. Consider the sequential boundary value differential equations in the frame of q-Hilfer and q-Caputo fractional derivatives given by:

    {HD57,3423(CD6723z)(t)=1t+2(z2024(t)4(1+z2022(t))+1t+3),t[0,89],z(0)+1731CD111423z(0)=0,z(89)+1937CD111423z(89)=0. (4.4)

    Here α=5/7, β=3/4, γ=13/14 (by computing), q=2/3, δ=6/7, T=8/9, λ1=17/31, λ2=19/37, and γ+δ1=11/14. From all constants, we have Q0.8787426597 and Δ2.500884518.

    Now, we see that the nonlinear non-Lipschitzian function f(t,z) shown in the right-side of the first equation in (4.4), is bounded by

    |f(t,z)|=|1t+2(z2024(t)4(1+z2022(t))+1t+3)|1t+2(14z2+13).

    Choosing G(t)=1/(t+2) and Λ(u)=(1/4)u2+(1/3), we have G=1/2, and we can find that C(0.492701921,2.706166297) satisfying (H4). Thus, by applying Theorem 3.2, we say that problem (4.4) has at least one solution on [0,8/9].

    Since the appearance of fractional operators, many research articles have been dedicated to improving and generalizing those operators. This paper investigates the existence and uniqueness of the results of a sequential boundary value problem in the setting of q-Hilfer and q-Caputo fractional derivatives with separated boundary conditions. The proposed problem is new and can be visualized as a generalization of Hilfer, q-Caputo, Caputo, q-Riemann-Liouville, and Riemann-Liouville fractional differential equations.

    All authors contributed equally and significantly to writing this article. All authors read and approved the final manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The first author was supported by King Mongkut's University of Technology North Bangkok with contract no. KMUTNB-Post-67-08. This research budget was allocated by National Science, Research and Innovation Fund (NSRF) and King Mongkut's University of Technology North Bangkok with Contract no. KMUTNB-FF-67-B-02.

    The authors declare no conflict of interest.



    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [2] S. G. Samko, Fractional integrals and derivatives, Theory and Applications, 1993.
    [3] I. Podlubny, Fractional differential equations, 1999.
    [4] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, World Scientific, 2010. https://doi.org/10.1142/9781848163300
    [5] D. S. Oliveira, E. C. de Oliveira, Hilfer-Katugampola fractional derivatives, Comput. Appl. Math., 37 (2018), 3672–3690. https://doi.org/10.1007/s40314-017-0536-8 doi: 10.1007/s40314-017-0536-8
    [6] T. J. Osler, The fractional derivative of a composite function, SIAM J. Math. Anal., 1 (1970), 288–293. https://doi.org/10.1137/0501026 doi: 10.1137/0501026
    [7] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [8] J. V. da C. Sousa, E. C. de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
    [9] Y. Y., Gambo, F. Jarad, D. Baleanu, T. Abdeljawad, On Caputo modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2014, (2014), 10. https://doi.org/10.1186/1687-1847-2014-10 doi: 10.1186/1687-1847-2014-10
    [10] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142
    [11] F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607–2619. https://doi.org/10.22436/jnsa.010.05.27 doi: 10.22436/jnsa.010.05.27
    [12] K. Balachandran, S. Kiruthika, J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci., 33 (2013), 712–720. https://doi.org/10.1016/s0252-9602(13)60032-6 doi: 10.1016/s0252-9602(13)60032-6
    [13] D. Vivek, K. Kanagarajan, S. Sivasundaram, Dynamics and stability of pantograph equations via Hilfer fractional derivative, Nonlinear Stud., 23 (2016), 685–698.
    [14] D. Vivek, K. Kanagarajan, S. Sivasundaram, Theory and analysis of nonlinear neutral pantograph equations via Hilfer fractional derivative, Nonlinear Stud., 24 (2017), 699–712.
    [15] A. Anguraj, A. Vinodkumar, K. Malar, Existence and stability results for random impulsive fractional pantograph equations, Filomat, 30 (2016), 3839–3854. https://doi.org/10.2298/fil1614839a doi: 10.2298/fil1614839a
    [16] K. Shah, D. Vivek, K. Kanagarajan, Dynamics and stability of ψ-fractional pantograph equations with boundary conditions, Bol. Soc. Paran. Mat., 39 (2021), 43–55. https://doi.org/10.5269/bspm.41154 doi: 10.5269/bspm.41154
    [17] H. M. Srivastava, Fractional-order integral and derivative operators and their applications, Mathematics, 8 (2020), 1016. https://doi.org/10.3390/math8061016 doi: 10.3390/math8061016
    [18] A. Lachouri, M. S. Abdo, A. Ardjouni, S. Etemad, S. Rezapour, A generalized neutral-type inclusion problem in the frame of the generalized Caputo fractional derivatives, Adv. Differ. Equ., 2021 (2021), 404. https://doi.org/10.1186/s13662-021-03559-7 doi: 10.1186/s13662-021-03559-7
    [19] C. Ravichandran, K. Logeswari, F. Jarad, New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations, Chaos Soliton. Fract., 125 (2019), 194–200. https://doi.org/10.1016/j.chaos.2019.05.014 doi: 10.1016/j.chaos.2019.05.014
    [20] M. S. Abdo, S. K. Panchal, Fractional integro-differential equations involving ψ-Hilfer fractional derivative, Adv. Appl. Math. Mech., 11 (2019), 338–359. https://doi.org/10.4208/aamm.oa-2018-0143 doi: 10.4208/aamm.oa-2018-0143
    [21] K. Karthikeyan, P. Karthikeyan, N. Patanarapeelert, T. Sitthiwirattham, Mild solutions for impulsive integro-differential equations involving Hilfer fractional derivative with almost sectorial operators, Axioms, 10 (2021), 313. https://doi.org/10.3390/axioms10040313 doi: 10.3390/axioms10040313
    [22] G. Wang, A. Ghanmi, S. Horrigue, S. Madian, Existence result and uniqueness for some fractional problem, Mathematics, 7 (2019), 516. https://doi.org/10.3390/math7060516 doi: 10.3390/math7060516
    [23] A. Morsy, C. Anusha, K. S. Nisar, C. Ravichandran, Results on generalized neutral fractional impulsive dynamic equation over time scales using nonlocal initial condition, AIMS Math., 9 (2024), 8292–8310. https://doi.org/10.3934/math.2024403 doi: 10.3934/math.2024403
    [24] K. Zhao, J. Liu, X. Lv, A unified approach to solvability and stability of multipoint bvps for Langevin and Sturm-Liouville equations with CH-fractional derivatives and impulses via coincidence theory, Fractal Fract., 8 (2024), 111. https://doi.org/10.3390/fractalfract8020111 doi: 10.3390/fractalfract8020111
    [25] H. Srivastava, A. El-Sayed, F. Gaafar, A class of nonlinear boundary value problems for an arbitrary fractional-order differential equation with the Riemann-Stieltjes functional integral and infinite-point boundary conditions, Symmetry, 10 (2018), 508. https://doi.org/10.3390/sym10100508 doi: 10.3390/sym10100508
    [26] M. Alam, A. Zada, T. Abdeljawad, Stability analysis of an implicit fractional integro-differential equation via integral boundary conditions, Alex. Eng. J., 87 (2024), 501–514. https://doi.org/10.1016/j.aej.2023.12.055 doi: 10.1016/j.aej.2023.12.055
    [27] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: John Wiley, 1993.
    [28] B. Ahmad, S. K. Ntouyas, R. P. Agarwal, A. Alsaedi, Existence results for sequential fractional integro-differential equations with nonlocal multi-point and strip conditions, Bound. Value Probl., 2016 (2016), 205. https://doi.org/10.1186/s13661-016-0713-5 doi: 10.1186/s13661-016-0713-5
    [29] B. Ahmad, S. K. Ntouyas, A. Alsaedi, Sequential fractional differential equations and inclusions with semi-periodic and nonlocal integro-multipoint boundary conditions, J. King Saud Uni. Sci., 31 (2019), 184–193. https://doi.org/10.1016/j.jksus.2017.09.020 doi: 10.1016/j.jksus.2017.09.020
    [30] A. Alsaedi, S. K. Ntouyas, R. P. Agarwal, B. Ahmad, On Caputo type sequential fractional differential equations with nonlocal integral boundary conditions, Adv. Differ. Equ., 2015 (2015), 33. https://doi.org/10.1186/s13662-015-0379-9 doi: 10.1186/s13662-015-0379-9
    [31] B. Ahmad, R. Luca, Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions, Appl. Math. Comput., 339 (2018), 516–534. https://doi.org/10.1016/j.amc.2018.07.025 doi: 10.1016/j.amc.2018.07.025
    [32] W. Saengthong, E. Thailert, S. K. Ntouyas, Existence and uniqueness of solutions for system of Hilfer-Hadamard sequential fractional differential equations with two point boundary conditions, Adv. Differ. Equ., 2019 (2019), 525. https://doi.org/10.1186/s13662-019-2459-8 doi: 10.1186/s13662-019-2459-8
    [33] S. Sitho, S. K. Ntouyas, A. Samadi, J. Tariboon, Boundary value problems for ψ-Hilfer type sequential fractional differential equations and inclusions with integral multi-point boundary conditions, Mathematics, 9 (2021), 1001. https://doi.org/10.3390/math9091001 doi: 10.3390/math9091001
    [34] S. K. Ntouyas, D. Vivek, Existence and uniqueness results for sequential ψ-Hilfer fractional differential equations with multi-point boundary conditions, Acta Math. Univ. Comenianae, 90 (2021), 171–185.
    [35] G. Wang, X. Ren, L. Zhang, B. Ahmad, Explicit iteration and unique positive solution for a Caputo-Hadamard fractional turbulent flow model, IEEE Access, 7 (2019), 109833–109839. https://doi.org/10.1109/access.2019.2933865 doi: 10.1109/access.2019.2933865
    [36] P. Borisut, S. Phiangsungnoen, Existence and uniqueness of positive solutions for the fractional differential equation involving the ρ (τ)-Laplacian operator and nonlocal integral condition, Mathematics, 11 (2023), 3525. https://doi.org/10.3390/math11163525 doi: 10.3390/math11163525
    [37] J. Tariboon, A. Cuntavepanit, S. K. Ntouyas, W. Nithiarayaphaks, Separated boundary value problems of sequential Caputo and Hadamard fractional differential equations, J. Funct. Space., 2018 (2018), 6974046. https://doi.org/10.1155/2018/6974046 doi: 10.1155/2018/6974046
    [38] S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Korean Math. Soc., 55 (2018), 1639–1657. https://doi.org/10.4134/BKMS.b170887 doi: 10.4134/BKMS.b170887
    [39] F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203.
    [40] F. H. Jackson, XI.–On q-functions and a certain difference operator, Earth Env. Sci. T. R. So., 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
    [41] G. Gasper, M. Rahman, Basic hypergeometric series, Cambridge university press, 2009. https://doi.org/10.1017/cbo9780511526251
    [42] V. G. Kac, P. Cheung, Quantum calculus, New York: Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7
    [43] B. Ahmad, S. K. Ntouyas, I. K. Purnaras, Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations, Adv. Differ. Equ., 2012 (2012), 140. https://doi.org/10.1186/1687-1847-2012-140 doi: 10.1186/1687-1847-2012-140
    [44] W. A. Al-Salam, Some fractional q-integrals and q-derivatives, P. Edinburgh Math. Soc., 15 (1966), 135–140. https://doi.org/10.1017/s0013091500011469 doi: 10.1017/s0013091500011469
    [45] R. P. Agarwal, Certain fractional q-integrals and q-derivatives, Math. Proce. Cambridge, 66 (1969), 365–370. https://doi.org/10.1017/s0305004100045060 doi: 10.1017/s0305004100045060
    [46] S. Salahshour, A. Ahmadian, C. S. Chan, Successive approximation method for Caputo q-fractional IVPs, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 153–158. https://doi.org/10.1016/j.cnsns.2014.12.014 doi: 10.1016/j.cnsns.2014.12.014
    [47] W. X. Zhou, H. Z. Liu, Existence solutions for boundary value problem of nonlinear fractional q-difference equations, Adv. Differ. Equ., 2013 (2013), 113. https://doi.org/10.1186/1687-1847-2013-113 doi: 10.1186/1687-1847-2013-113
    [48] S. Abbas, M. Benchohra, N. Laledj, Y. Zhou, Existence and Ulam stability for implicit fractional q-difference equations, Adv. Differ. Equ., 2019 (2019), 480. https://doi.org/10.1186/s13662-019-2411-y doi: 10.1186/s13662-019-2411-y
    [49] N. Allouch, J. R. Graef, S. Hamani, Boundary value problem for fractional q-difference equations with integral conditions in banach spaces, Fractal Fract., 6 (2022), 237. https://doi.org/10.3390/fractalfract6050237 doi: 10.3390/fractalfract6050237
    [50] P. Rajkovic, S. Marinkovic, M. Stankovic, On q-analogues of Caputo derivative and Mittag-Leffler function, Fract. Calc. Appl. Anal., 10 (2007), 359–373.
    [51] N. Limpanukorn, Existence of solution to q-Hilfer fractional difference equation with a time-varying order of operations, Mathematical Journal by The Mathematical Association of Thailand Under The Patronage of His Majesty The King, 67 (2022), 1–11.
    [52] M. A. Krasnosel'ski˘i, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk, 10 (1955), 123–127.
    [53] A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8
    [54] K. Deimling, Nonlinear functional analysis, Berlin: Springer, 1985. https://doi.org/10.1007/978-3-662-00547-7
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(913) PDF downloads(26) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog