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1. Introduction

The concepts of fractional calculus have gained widespread recognition as an important area
within pure mathematics. The concepts within fractional calculus have been studied by numerous
mathematicians, given their significance across various fields of knowledge, see [1–4]. Theoretical
aspects of fractional differential equations have attracted considerable interest since the advent of
fractional calculus. Owing to the nonlocal nature of fractional-order differential equations, researchers
possess the flexibility to choose and apply the most suitable operator, thereby accurately representing
complex real-world phenomena. However, there are numerous versions of integrals and derivatives of
arbitrary fractional order, employing various types of operators, as detailed in [5–11].
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Fixed-point theorems serve as valuable tools for establishing both the existence and uniqueness of
solutions to fractional differential equations. The methodology has been extensively studied by
numerous mathematicians, and vast results have been published, see [12–18] and references therein.
Furthermore, in the physical and life sciences, fractional calculus has widespread applicability across
various domains, including image processing, complex systems, traffic flow, etc. Numerous
researchers have studied many different kinds of initial and boundary value problems with various
types of fractional operators, using techniques based on fixed-point theorems, [19–26].

The concept of sequential fractional derivatives was first introduced in [27]. Since its inception,
numerous researchers have made significant contributions to the advancement of this field. As a result,
several research articles have been published. For more research insight, we refer to [28–34].

Wang et al. [35], studied the turbulent flow model within the framework of the Caputo-Hadamard
fractional derivatives of the form:

CHDτ1ψp(s)

(
CHD

τ2u(s)
)
+ g(u(s),Iα1,α2u(s)) = 0, s ∈ [1, λ],

u′(1) = αu(λ), u(1) = u′′(1) = 0,
CHDτ2u(1) = 0,

2 < τ2 < 3, 0 < τ1 < 1, α1, α2 > 0,
λ

2
< α ≤

2λ
4 − λ

.

(1.1)

In [36], the authors discussed the existence and uniqueness of positive solutions for a class of Caputo
fractional differential equations described by:

CDα1ψp(s)

(
CD

α2u(s)
)
+ g(s, u(s)) = 0, s ∈ [0, 1],

u(0) = k, u(1) =
m∑

n=1

φn
RL
I
δnu(βn), m ∈ N, φn ≥ 0, k > 0,

0 < β1 < β2 < . . . < βm < 1, 0 < α1, α2 < 1, ψp(s) > 2, δn > 0.

(1.2)

In 2018, Tariboon et al. [37] considered the sequential Caputo and Hadamard fractional nonseparated
boundary value problem given by:

CDα1
(

HD
α2u

)
(s) = g(s, u(s)), s ∈ (a, b), 0 < α1, α2 < 1,

c1u(a) + c2

(
HD

α2u
)
(b) = 0, c3u(a) + c4

(
HD

α2u
)
(b) = 0,

and
HDα2

(
CD

α1u
)
(s) = g(s, u(s)), s ∈ (a, b),

c1u(a) + c2

(
CD

α1u
)
(b) = 0, c3u(a) + c4

(
CD

α1u
)
(b) = 0, c1, c2, c3, c4 ∈ R.

(1.3)

The investigation employed Banach and Krasnoselskii’s fixed-point theorems, alongside
Leray-Schauder’s nonlinear alternative, to establish the existence and uniqueness of the results.

Asawasamrit et al. [38] studied the nonlocal boundary value problem involving the Hilfer fractional
derivative of the form:

HDα1,α2u(s) = g(s, u(s)), s ∈ [a, b], 1 < α1 < 2, 0 ≤ α2 ≤ 1,

u(a) = 0, u(b) =
k∑

i=1

ciI
α3u(ϑi), ci ∈ R, α3 ≥ 0, ϑi ∈ [a, b].

(1.4)
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Jackson [39, 40] initiated the idea of q-difference calculus. For more basic concepts of q-difference
calculus, see [41, 42]. Since then, numerous researchers have delved into the theoretical analysis of
q-fractional-order differential equations, see [43–48].

Allouch et al. [49] studied the q-difference equation with nonlinear integral boundary conditions of
the form: 

D
ζ
qu(κ) = g(κ, u(κ)), κ ∈ [0, b], 1 < ζ < 2, 0 < q < 1, b > 0,

u(0) − u′(0) =
∫ b

0
g(ϑ, u(ϑ))dϑ, u(A) + u′(b) =

∫ b

0
h(ϑ, u(ϑ))dϑ.

(1.5)

Measures of noncompactness and Mönch’s fixed point theorems were utilized to derive the results.
Inspired by recent publications, we propose a new type of separated boundary value problems and

investigate its theoretical analysis. The problem under consideration takes the form of
HD

α,β
q

(CD
δ
qz
)
(t) = f (t, z(t)), t ∈ [0,T ],

z(0) + λ1
CD

γ+δ−1
q z(0) = 0, z(T ) + λ2

CD
γ+δ−1
q z(T ) = 0,

0 < α, δ, q < 1, 0 ≤ β ≤ 1, λ1, λ2 ∈ R, T > 0,

(1.6)

where CD
δ
q(·) and HD

α,β
q (·), respectively, are the Caputo and Hilfer fractional derivatives of orders δ, α,

and type β such that γ = α + β(1 − α) with γ + δ > 1, and f : [0,T ] × R→ R is a continuous function.
The existence and uniqueness of solutions to q sequential fractional-order boundary value

problems have not been extensively studied. In our study, we introduce a new class of sequential
q-Hilfer and q-Caputo fractional differential equations with separated boundary conditions and
provide a comprehensive theoretical analysis.

The novelty of our study lies in the fact that we consider a sequential fractional boundary value
problem combining q-Hilfer and q-Caputo fractional derivative operators subjected to non-separated
boundary conditions. To the best of our knowledge, this is the first paper to appear in the literature.
The method used is standard, but its configuration in the Hilfer-Caputo sequential boundary value
problem (1.6) is new. The results are new and significantly enrich the existing results in the literature
on Hilfer boundary value problems.

The rest of the paper is organized as follows: Section 2 revisits essential definitions, lemmas, and
theorems. Section 3 focuses on establishing an integral equivalent form of the proposed problem,
which enables us to prove the existence and uniqueness of results. In Section 4, two examples are
presented. Section 5 provides the conclusion of the paper.

2. Preliminaries

The section includes prerequisite facts, definitions, and key lemmas that will assists in proving
the main results. The space X = C([0,T ],R) constitutes a Banach space comprising all continuous
functions over [0,T ] with

∥z∥ = sup
t∈[0,T ]

|z(t)|.

Recall that for q ∈ (0, 1) and g, h ∈ R, the following properties holds [42]:

[g]q =
qg − 1
q − 1

,
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and

(g − h)(0)
q = 1, (g − h)(k)

q =

k−1∏
n=0

(g − hqn); k ∈ N.

Moreover, for α ∈ R, we have

(g − h)(α)
q = gα

∞∏
n=0

 1 − (h
g )qn

1 − ( h
g )qn+α

 .
The q analog gamma function is given by

Γq(α) =
(1 − q)(α−1)

q

(1 − q)α−1 ; α ∈ R\{0,−1,−2, . . . },

such that Γq(α + 1) = [α]qΓq(α).
For u : [0,T ]→ R and 0 < q < 1, the q-derivative of u is defined by

Dqu(t) =
u(t) − u(qt)

(1 − q)t
; t , 0, Dqu(0) = lim

t→0
Dqu(t).

Moreover, the higher-order q-derivative shows

D0
qu(t) = u(t), Dn

qu(t) = Dq

(
Dn−1

q u
)

(t), n ∈ N.

For setting Jt = {tqn : n ∈ N, t ≥ 0} ∪ {0}, the analog q-integral of a function u : Jt → R is of the form:

Iqu(t) =
∫ t

0
u(ν)dqν =

∞∑
n=0

t(1 − q)qnu(tqn),

provided that the right-hand side converges. Note that Dq

(
Iqu

)
(t) = u(t), and if u is continuous at 0,

then
Iq

(
Dqu

)
(t) = u(t) − u(0).

Definition 2.1. [45] Let w : [0,T ]→ R, ϑ ∈ [0,T ], and α > 0. The integral operator

Iαqw(ϑ) =
1
Γq(α)

∫ ϑ

0
(ϑ − qν)(α−1)

q w(ν)dqν,

is called the q-fractional-order integral in the Riemann-Liouville sense of order α > 0 for the function
w, and I0

qw(ϑ) = w(ϑ).

Lemma 2.1. [45] For 0 ≤ α < ∞ and σ ∈ (−1,+∞). If w(ϑ) = (ϑ − a)(σ), then

Iαqw(ϑ) =
Γq(σ + 1)
Γq(α + σ + 1)

(ϑ − a)(α+σ)
q ; 0 < a < ϑ < T,

also
(Iαq1)(ϑ) =

1
Γq(α + 1)

(ϑ − a)(α)
q .
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Definition 2.2. [50] Let w : [0,T ]→ R, ϑ ∈ [0,T ], 0 < α < 1. The derivative operator

RLDα
qw(ϑ) =

1
Γq(1 − α)

Dq

∫ ϑ

0
(ϑ − qν)(−α)

q w(ν)dqν,

is called the q-fractional-order derivative in Riemann-Liouville sense of order α for the function w.

Definition 2.3. [50] Let w ∈ C1
q([0,T ],R), ϑ ∈ [0,T ], 0 < α < 1. The derivative operator

CDα
qw(ϑ) =

1
Γq(1 − α)

∫ ϑ

0
(ϑ − qν)(−α)

q Dqw(ν)dqν, (2.1)

is called the q-fractional-order derivative in the Caputo sense of order α.

Lemma 2.2. [50] Let w : [0,T ]→ R and α, σ ≥ 0. Thus

(i). Iαq (Iσq w)(t) = Iα+σq w(t),

(ii). CDα
q (Iαqw)(t) = w(t).

Definition 2.4. [51] Let w ∈ C1
q([0,T ]R) and 0 < α < 1, 0 ≤ β ≤ 1. The operator

HDα,β
q w(ϑ) = Iβ(1−α)

q

[
Dq

(
I(1−β)(1−α)

q w
)]

(ϑ), (2.2)

is called q-Hilfer fractional derivative of order α with a parameter β. Note that HD
α,β
q can be written

as
HDα,β

q w = Iβ(1−α)
q Dq

(
I(1−β)(1−α)

q w
)
= Iβ(1−α)

q Dq

(
I1−γ

q w
)
, γ = α + β(1 − α).

Lemma 2.3. [50] Suppose that 0 < α < 1. Then we have

Iαq

(
RLDα

qw
)

(ϑ) = w(ϑ) −
1
Γq(α)

ϑα−1(I1−α
q w)(0),

and moreover,
Iαq

(
CDα

qw
)

(ϑ) = w(ϑ) + k, k ∈ R.

Remark 2.1. Note that if β = 0, from problem (1.6), we haveRLDα
q
(CD

δ
qz

)
(t) = f (t, z(t)), t ∈ [0,T ],

z(0) + λ1
CDα+δ−1

q z(0) = 0, z(T ) + λ2
CDα+δ−1

q z(T ) = 0,

and if β = 1, we have CDα
q
(CDδ

qz
)
(t) = f (t, z(t)), t ∈ [0,T ],

z(0) + λ1
CDδ

qz(0) = 0, z(T ) + λ2
CDδ

qz(T ) = 0,

which are the q sequential Riemann-Liouville and Caputo derivatives with separated boundary
conditions.
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3. Main results

In this part, we begin by employing techniques from Lemma 2.3 to establish an integral equation
associated with problem (1.6). To this end, we introduce the lemma, addressing a linear variant of
problem (1.6), which serves as the fundamental tool for transforming the problem into a fixed-point
problem.

Lemma 3.1. Let 0 < α, δ < 1, 0 ≤ β ≤ 1, γ = α + β(1 − α), λ1, λ2 ∈ R and 0 < q < 1 and

Q = T (γ+δ−1) + (λ2 − λ1)Γq(γ + δ) , 0.

Suppose g ∈ C([0,T ],R). If z ∈ C2
q([0,T ],R), then, the linear problem

HD
α,β
q

(CD
δ
qz

)
(t) = g(t), t ∈ [0,T ],

z(0) + λ1
CD

γ+δ−1
q z(0) = 0, z(T ) + λ2

CD
γ+δ−1
q z(T ) = 0,

(3.1)

is equivalent to the integral equation:

z(t) =
λ1Γq(γ + δ) − t(γ+δ−1)

Q

[
1

Γq(α + δ)

∫ T

0
(T − qν)(α+δ−1)

q g(ν)dqν

+
λ2

Γq(α − γ + 1)

∫ T

0
(T − qν)(α−γ)

q g(ν)dqν

]
+

1
Γq(α + δ)

∫ t

0
(t − qν)(α+δ−1)

q g(ν)dqν, t ∈ [0,T ].

(3.2)

Proof. Suppose z ∈ C2
q([0,T ],R) satisfies problem (3.1), then, we show that z is satisfies the

integral (3.2). Since

HDα,β
q (·) = Iβ(1−α)

q DqIq
(1−β)(1−α)(·) = Iβ(1−α)

q DqI
1−γ
q (·), (3.3)

then, make use of Eq (3.3), the first equation of (3.1) can be simplified as

Iβ(1−α)
q DqI

1−γ
q

(CD
δ

qz
)
(t) = g(t). (3.4)

Taking Iαq to both sides of Eq (3.4) and utilize the techniques in Lemma 2.3, yields

CD
δ

qz(t) =
A
Γq(γ)

t(γ−1) +
1
Γq(α)

∫ t

0
(t − qν)(α−1)

q g(ν)dqν, A ∈ R, (A constant). (3.5)

Also, taking Iδq to both sides of Eq (3.5) and utilize the techniques in Lemma 2.3, we get

z(t) = B +
A

Γq(γ + δ)
t(γ+δ−1) +

1
Γq(α + δ)

∫ t

0
(t − qν)(α+δ−1)

q g(ν)dqν, (3.6)

where B ∈ R is an arbitrary constant. Applying the operator CD
γ+δ−1
q to both sides of Eq (3.6), yields

CDγ+δ−1
q z(t) = A +

1
Γq(α − γ + 1)

∫ t

0
(t − qν)(α−γ)

q g(ν)dqν. (3.7)
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Thus, from the condition z(0) + λ1
CD

γ+δ−1
q z(0) = 0, Eqs (3.6) and (3.7), we get

z(0) + λ1
CDγ+δ−1

q z(0) = λ1A + B = 0 =⇒ B = −λ1A. (3.8)

From z(T ) + λ2
CD

γ+δ−1
q z(T ) = 0, Eqs (3.6) and (3.7), we obtain

0 = B + λ2A +
A

Γq(γ + δ)
T (γ+δ−1) +

λ2

Γq(α − γ + 1)

∫ T

0
(T − qν)(α−γ)

q g(ν)dqν (3.9)

+
1

Γq(α + δ)

∫ T

0
(T − qν)(α+δ−1)

q g(ν)dqν.

Upon simplification and substituting B = −λ1A in Eq (3.9), we get

B =
λ1Γq(γ + δ)

Q

[
1

Γq(α + δ)

∫ T

0
(T − qν)(α+δ−1)

q g(ν)dqν +
λ2

Γq(α − γ + 1)

∫ T

0
(T − qν)(α−γ)

q g(ν)dqν

]
,

and

A = −
Γq(γ + δ)

Q

[
1

Γq(α + δ)

∫ T

0
(T − qν)(α+δ−1)

q g(ν)dqν +
λ2

Γq(α − γ + 1)

∫ T

0
(T − qν)(α−γ)

q g(ν)dqν

]
.

□

To explore the numerical behavior of the integral solution of the proposed problem (1.6), we vary
the fractional-orders associated with the problem. The following parameters, α, β, and δ, respectively,
were considered. The respective graphical analysis are shown in Figures 1 and 2, respectively. Figures
1a–1c illustrate the behavior of the solution of the integral (3.2) when varying the fraction-order α.
Moreover, the corresponding 3D plots is displayed in Figures 2a–2c, respectively.
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Figure 1. Solution of the integral Eq (3.2) for values of α, β and δ for the function g(t) =
t2 + 2t + 1 and t ∈ [0, 1].
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(a) (b)

(c)

Figure 2. 3D plots for the solution of (3.2) for the function g(t) = t2 + 2t + 1 and t ∈ [0, 1].

3.1. Existence results

By employing Krasnoselskii’s fixed-point theorem and Leray-Schauder’s nonlinear alternative, in
this subsection, we will present the proof of the existence results of (1.6).

Lemma 3.2. (Krasnoselskii’s fixed point theorem) [52] Let M ⊂ X be closed, bounded, convex, and
nonempty. Suppose F1, F2 be operators such that:

(i) F1z + F2z1 ∈ M whenever z, z1 ∈ M;
(ii) F2 is a contraction mapping;

(iii) F1 is compact and continuous.

Then there exists w ∈ M such that w = F1w + F2w.

Theorem 3.1. Let 0 < α, δ < 1, 0 ≤ β ≤ 1, and γ = α + β(1 − α). Suppose that the function
f : [0,T ] × R→ R is continuous and satisfies:

AIMS Mathematics Volume 9, Issue 7, 19473–19494.
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(H1) There exists L > 0, (constant) such that

| f (t, z) − f (t, z1)| ≤ L|z − z1|, for t ∈ [0,T ], and z, z1 ∈ R.

(H2) | f (t, z)| ≤ Ψ(t),∀ ∈ (t, z) ∈ [0,T ] × R and Ψ ∈ C([0,T ],R+);

Then there exists at least one solution of the quantum Hilfer and Caputo separated boundary value
problem (1.6) on [0,T ], provided that

L
(
∆ −

T (α+δ)

Γq(α + δ + 1)

)
< 1, (3.10)

where

∆ =
|λ1|Γq(γ + δ) + T (γ+δ−1)

|Q|

[
T (α+δ)

Γq(α + δ + 1)
+ |λ2|

T (α−γ+1)

Γq(α − γ + 2)

]
+

T (α+δ)

Γq(α + δ + 1)
. (3.11)

Proof. Now, from equation 3.2, define F : X → X by

(F z)(t) =
λ1Γq(γ + δ) − t(γ+δ−1)

Q

[
1

Γq(α + δ)

∫ T

0
(T − qν)(α+δ−1)

q f (ν, z(ν))dqν

+
λ2

Γq(α − γ + 1)

∫ T

0
(T − qν)(α−γ)

q f (ν, z(ν))dqν

]
+

1
Γq(α + δ)

∫ t

0
(t − qν)(α+δ−1)

q f (ν, z(ν))dqν, t ∈ [0,T ].

Suppose supt∈[0,T ]Ψ(t) = ∥Ψ∥ and σ ≥ ∥Ψ∥∆ such that Bσ = {x ∈ X : ∥z∥ ≤ σ} . Now, we set

F1z(t) =
1

Γq(α + δ)

∫ t

0
(t − qν)(α+δ−1)

q f (ν, z(ν))dqν, t ∈ [0,T ],

and

F2z(t) =
λ1Γq(γ + δ) − t(γ+δ−1)

Q

[
1

Γq(α + δ)

∫ T

0
(T − qν)(α+δ−1)

q f (ν, z(ν))dqν

+
λ2

Γq(α − γ + 1)

∫ T

0
(T − qν)(α−γ)

q f (ν, z(ν))dqν

]
, t ∈ [0,T ].

Then, for any z, z1 ∈ Bσ, we get

|(F1z)(t) + (F2z1)(t)|

≤ sup
t∈[0,T ]

{
1

Γq(α + δ)

∫ t

0
(t − qν)(α+δ−1)

q f (ν, z(ν))dqν

+
λ1Γq(γ + δ) − tγ+δ−1

Q

[
1

Γq(α + δ)

∫ T

0
(T − qν)(α+δ−1)

q f (ν, z1(ν))dqν

+
λ2

Γq(α − γ + 1)

∫ T

0
(T − qν)(α−γ)

q f (ν, z1(ν))dqν

]}
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≤ ∥Ψ∥

(
T (α+δ)

Γq(α + δ + 1)
+
|λ1|Γq(γ + δ) + T (γ+δ−1)

|Q|

(
T (α+δ)

Γq(α + δ + 1)
+ |λ2|

T (α−γ+1)

Γq(α − γ + 2)

))
≤ ∥Ψ∥∆ ≤ σ.

Hence ∥F1z+F2z1∥ ≤ σ, which shows that F1z+F2z1 ∈ Bσ. Therefore, the condition (i) of Lemma 3.2
is satisfied.

To show condition (ii) of Lemma 3.2, we proceed as follows, for any z, z1 ∈ C([0,T ],R), gives

|(F2z)(t) − (F2z1)(t)|

≤
|λ1|Γq(γ + δ) + t(γ+δ−1)

|Q|

[
1

Γq(α + δ)

∫ T

0
(T − qν)(α+δ−1)

q | f (ν, z(ν))dqν − f (ν, z1(ν))dqν|

+
|λ2|

Γq(α − γ + 1)

∫ T

0
(T − qν)(α−γ)

q | f (ν, z(ν))dqν − f (ν, z1(ν))dqν|ν

]
≤ L

(
|λ1|Γq(γ + δ) + T (γ+δ−1)

|Q|

(
T (α+δ)

Γq(α + δ + 1)
+ |λ2|

T (α−γ+1)

Γq(α − γ + 2)

))
∥z − z1∥

= L
(
∆ −

T (α+δ)

Γq(α + δ + 1)

)
∥z − z1∥.

Consequently, ∥(F2z)−(F2z1)∥ ≤ L
(
∆−

T (α+δ)

Γq(α + δ + 1)

)
∥z−z1∥, and hence, by (3.10), F2 is a contraction.

Hence, condition (ii) of Lemma 3.2 is satisfied.
Moreover, since f ∈ C([0,T ],R), the operator F1 is continuous and it is uniformly bounded, as

∥F1z∥ ≤
T (α+δ)

Γq(α + δ + 1)
∥Ψ∥.

Set sup
(t,z)∈[0,T ]×Bσ

| f (t, z)| = f̂ . Then

|(F1z)(t2) − (F1z)(t1)| =
1

Γq(α + δ)

∣∣∣∣∣∣
∫ t1

0
[(t2 − qν)(α+δ−1)

q − (t1 − qν)(α+δ−1)] f (ν, z(ν))dqν

+

∫ t2

t1
(t2 − qν)(α+δ−1)

q f (ν, z(ν))dqν

∣∣∣∣∣∣
≤

f̂
Γq(α + δ + 1)

[2(t2 − t1)(α+δ)
q + |t(α+δ)

2 − t(α+δ)
1 |],

→ 0. as t2 − t1 → 0, independently of z. Hence, as a consequence of the Arzelá-Ascoli theorem, this
shows that F1 is compact on Bσ.

Therefore, since all the assumptions of Lemma 3.2 are satisfied, we conclude that there exists at
least one solution of quantum Hilfer and Caputo separated boundary value problem (1.6) on [0,T ]. □

The next existence result relies on Leray-Schauder’s nonlinear alternative.

Lemma 3.3. (Leray-Schauder’s Nonlinear Alternative) [53] Let C ⊂ X be closed and convex of X,
U ⊂ C be open, and 0 ∈ U. Suppose F : Ū → C is a continuous and compact map. Then either
(i) F has a fixed point in Ū or
(ii) ∃z ∈ ∂U and ω ∈ (0, 1) with z = ωF (z).
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Theorem 3.2. Suppose that the function f : [0,T ] × R→ R is continuous and satisfies:

(H3) there exists a function Λ : [0,∞) → (0,∞) continuous and nondecreasing and a function G ∈
C([0,T ],R+) such that

| f (t, z)| ≤ G(t)Λ(∥z∥) for each (t, z) ∈ [0,T ] × R;

(H4) There exists C > 0 (constant) such that

1 <
C

Λ(C)∥G∥∆
.

Then, there exists at least one solution of problem (1.6) on [0,T ].

Proof. Firstly, we show that F maps a bounded set into bounded sets in X. For any k > 0, let Bk = {z ∈
X : ∥z∥ ≤ k} be a bounded set in X. Then, for t ∈ [0,T ] yields

|(F z)(t)| ≤ sup
t∈[0,T ]

{
1

Γq(α + δ)

∫ t

0
(t − qν)(α+δ−1)

q f (ν, z(ν))dqν

+
λ1Γq(γ + δ) − tγ+δ−1

Q

[ 1
Γq(α + δ)

∫ T

0
(T − qν)(α+δ−1)

q f (ν, z(ν))dqν

+
λ2

Γq(α − γ + 1)

∫ T

0
(T − qν)(α−γ)

q f (ν, z(ν))dqν
]}

≤ Λ(∥z∥)∥G∥
{

T (α+δ)

Γq(α + δ + 1)
+
|λ1|Γq(γ + δ) + T (γ+δ−1)

|Q|

(
T (α+δ)

Γq(α + δ + 1)

+|λ2|
T (α−γ+1)

Γq(α − γ + 2)

)}
≤ Λ(∥z∥)∥G∥∆, (3.12)

which implies that
∥F z∥ ≤ Λ(∥z∥)∥G∥∆.

Moreover, for t1, t2 ∈ [0,T ] with t1 < t2 and z ∈ Bk, we obtain

|(F z)(t2) − (Fz)(t1)|

≤
|tγ+δ−1

2 − tγ+δ−1
1 |

|Q|

[
1

Γq(α + δ)

∫ T

0
(T − qν)(α+δ−1)

q | f (ν, z(ν))|dqν

+
|λ2|

Γq(α − γ + 1)

∫ T

0
(T − qν)(α−γ)

q | f (ν, z(ν))|dqν

]
+

1
Γq(α + δ)

∣∣∣∣∣∣
∫ t1

0
[(t2 − qν)(α+δ−1)

q − (t1 − qν)(α+δ−1)]| f (ν, z(ν))|dqν

+

∫ t2

t1
(t2 − qν)(α+δ−1)

q | f (ν, z(ν))|dqν

∣∣∣∣∣∣
≤
|tγ+δ−1

2 − tγ+δ−1
1 |

|Q|
Λ(k)

[
1

Γq(α + δ)

∫ T

0
(T − qν)(α+δ−1)

q g(ν)dqν
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+
|λ2|

Γq(α − γ + 1)

∫ T

0
(T − qν)(α−γ)

q g(ν)dqν

]
+

1
Γq(α + δ)

Λ(k)

∣∣∣∣∣∣
∫ t1

0
[(t2 − qν)(α+δ−1)

q − (t1 − qν)(α+δ−1)]g(ν)dqν

+

∫ t2

t1
(t2 − qν)(α+δ−1)

q g(ν)dqν

∣∣∣∣∣∣
≤
∥G∥Λ(k)|tγ+δ−1

2 − tγ+δ−1
1 |

|Q|

{
T (α+δ)

Γq(α + δ + 1)
+ |λ2|

T (α−γ+1)

Γq(α − γ + 2)

}
+
∥G∥Λ(k)
Γq(α + δ + 1)

[2(t2 − t1)(α+δ)
q + |t(α+δ)

2 − t(α+δ)
1 |],

→ 0 as t2 − t1 → 0.

This proves the equicontinuity of the set F (Bk), and by the Arzelá-Ascoli theorem, it is relatively
compact. Thus, F : X → X is completely continuous.

Now, for t ∈ [0,T ], as in step 1, yields

|z(t)| ≤ ∥G∥Λ(∥z∥)∆,

which gives
∥z∥

∥G∥Λ(∥z∥)∆
≤ 1.

By (H4) ∃C such that C , ∥z∥. Let

U = {z ∈ X : ∥z∥ < C}.

Then, F : Ū → C is both continuous and completely continuous. FromU, there exists no z ∈ Ū such
that z = ωF (z) for any ω ∈ (0, 1). Thus, as a consequence of Lemma 3.3, we conclude that F has a
fixed point z ∈ Ū which is a solution of problem (1.6). □

3.2. Uniqueness result

We proceed to establish the uniqueness of problem (1.6) using the Banach contraction principle [54].

Theorem 3.3. Let 0 < α, δ < 1, 0 ≤ β ≤ 1, and γ = α + β(1 − α). Suppose that f : [0,T ] × R → R
fulfills the assumption (H1). If

L∆ < 1, (3.13)

where ∆ is defined by (3.11), then, there exists a unique solution of problem (1.6) on [0,T ].

Proof. To do so, problem (1.6) can be viewed as a fixed-point problem, z = F z, where F is defined
as in (3.1). Next, we show that F has a unique fixed point. Indeed, let sup

t∈[0,T ]
| f (t, 0)| = K < ∞ and

K∆

1 − L∆
≤ k. First, we show that FBk ⊂ Bk, where Bk = {z ∈ X : ∥z∥ ≤ k}. Given z ∈ Bk, gives

|(F z)(t)| ≤ sup
t∈[0,T ]

{
1

Γq(α + δ)

∫ t

0
(t − qν)(α+δ−1)

q | f (ν, z(ν))|dqν
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+
λ1Γq(γ + δ) − t(γ+δ−1)

Q

[
1

Γq(α + δ)

∫ T

0
(T − qν)(α+δ−1)

q | f (ν, z(ν))|dqν

+
λ2

Γq(α − γ + 1)

∫ T

0
(T − qν)(α−γ)

q | f (ν, z(ν))|dqν

]}
≤

1
Γq(α + δ)

∫ T

0
(T − qν)(α+δ−1)

q (| f (ν, z(ν)) − f (ν, 0)| + | f (ν, 0)|)dqν

+
|λ1|Γq(γ + δ) + T (γ+δ−1)

|Q|

×

[
1

Γq(α + δ)

∫ T

0
(T − qν)(α+δ−1)

q (| f (ν, z(ν)) − f (ν, 0)| + | f (ν, 0)|) f (ν, z(ν))dqν

+
|λ2|

Γq(α − γ + 1)

∫ T

0
(T − qν)(α−γ)

q (| f (ν, z(ν)) − f (ν, 0)| + | f (ν, 0)|)dqν

]
≤ (L∥z∥ +K)

{
1

Γq(α + δ)

∫ T

0
(T − qν)(α+δ−1)

q dqν

+
|λ1|Γq(γ + δ) + T (γ+δ−1)

|Q|

[
1

Γq(α + δ)

∫ T

0
(T − qν)(α+δ−1)

q dqν

+
|λ2|

Γq(α − γ + 1)

∫ T

0
(T − qν)(α−γ)

q dqν

]}
,

≤ (L∥z∥ +K)
{

T (α+δ)

Γq(α + δ + 1)
+
|λ1|Γq(γ + δ) + T (γ+δ−1)

|Q|

( T (α+δ)

Γq(α + δ + 1)

+|λ2|
T (α−γ+1)

Γq(α − γ + 2)

)}
≤ (Lk +K)∆
≤ k,

and hence ∥(F z)∥ ≤ k, which means that FBk ⊂ Bk.

Subsequently, for t ∈ [0,T ] and any z, z1 ∈ C([0,T ],R), we get

|(F z)(t) − (F z1)(t)|

≤
1

Γq(α + δ)

∫ t

0
(t − qν)(α+δ−1)

q | f (ν, z(ν)) − f (ν, z1(ν))|dqν

+
|λ1|Γq(γ + δ) + t(γ+δ−1)

|Q|

[
1

Γq(α + δ)

∫ T

0
(T − qν)(α+δ−1)

q | f (ν, z(ν)) − f (ν, z1(ν))|dqν

+
|λ2|

Γq(α − γ + 1)

∫ T

0
(T − qν)(α−γ)

q | f (ν, z(ν)) − f (ν, z1(ν))|dqν

]
≤ L∥z − z1∥

(
|λ1|Γq(γ + δ) + T (γ+δ−1)

|Q|

[
T (α+δ)

Γq(α + δ + 1)

+|λ2|
T (α−γ+1)

Γq(α − γ + 2)

]
+

T (α+δ)

Γq(α + δ + 1)

)
= L∆∥z − z1∥.
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Therefore, ∥(F z) − (F z1)∥ ≤ L∆∥z − z1∥, and hence, by (3.13), F is a contraction, and hence,
problem (1.6) has a unique solution on [0,T ]. □

3.3. Special cases of the proposed problem.

Case I. If λ1 = λ2 = 0, problem (1.6) reduces to sequential q-Hilfer problems of the form:HD
α,β
q

(CD
δ
qz
)
(t) = f (t, z(t)), t ∈ [0,T ],

z(0) = 0, z(T ) = 0.
(3.14)

Corollary 3.1. Let 0 < α, δ < 1, 0 ≤ β ≤ 1, and γ = α + β(1 − α). Suppose f : [0,T ] × R → R is a
continuous function. If z ∈ C2

q([0,T ],R), then z satisfies the problem (3.14) if and only if z satisfies the
integral equation:

z(t) =
1

Γq(α + δ)

∫ t

0
(t − qν)(α+δ−1)

q f (ν, z(ν))dqν

−
t(γ+δ−1)

T (γ+δ−1)

1
Γq(α + δ)

∫ T

0
(T − qν)(α+δ−1)

q f (ν, z(ν))dqν.

(3.15)

Case II. If λ1 = λ2 = 1, problem (1.6) reduces to sequential q-Hilfer problems of the form:HD
α,β
q

(CD
δ
qz

)
(t) = f (t, z(t)), t ∈ [0,T ],

z(0) + CD
γ+δ−1
q z(0) = 0, z(T ) + CD

γ+δ−1
q z(T ) = 0.

(3.16)

Corollary 3.2. Let 0 < α, δ < 1, 0 ≤ β ≤ 1, and γ = α + β(1 − α). Suppose f : [0,T ] × R → R is a
continuous function. If z ∈ C2

q([0,T ],R), then z satisfies the problem (3.16) if and only if z satisfies the
integral equation:

z(t) =
Γq(γ + δ) − t(γ+δ−1)

T (γ+δ−1)

[
1

Γq(α + δ)

∫ T

0
(T − qν)(α+δ−1)

q f (ν, z(ν))dqν

+
1

Γq(α − γ + 1)

∫ T

0
(T − qν)(α−γ)

q f (ν, z(ν))dqν

]
+

1
Γq(α + δ)

∫ t

0
(t − qν)(α+δ−1)

q f (ν, z(ν))dqν.

(3.17)

Case III. Let β = 1, then γ = 1, and problem (1.6) reduces to the sequential q-Caputo fractional-order
differential equation given byCDα

q
(CD

δ
qz

)
(t) = f (t, z(t)), t ∈ [0,T ],

z(0) + λ1
CDδ

qz(0) = 0, z(T ) + λ2
CDδ

qz(T ) = 0.
(3.18)

Corollary 3.3. Let 0 < α, δ < 1 be orders of fractional derivative and 0 < q < 1 be quantum
number. Suppose f : [0,T ] × R → R is a continuous function. If z ∈ C2

q([0,T ],R), then z satisfies the

AIMS Mathematics Volume 9, Issue 7, 19473–19494.



19488

problem (3.18) if and only if z satisfies the integral equation:

z(t) =
λ1Γq(δ + 1) − tδ

T (δ) + (λ2 − λ1)Γq(δ + 1)

[
1

Γq(α + δ)

∫ T

0
(T − qν)(α+δ−1)

q f (ν, z(ν))dqν

+
λ2

Γq(α)

∫ T

0
(T − qν)(α−1)

q f (ν, z(ν))dqν

]
+

1
Γq(α + δ)

∫ t

0
(t − qν)(α+δ−1)

q f (ν, z(ν))dqν.

(3.19)

Case IV. Let β = 0, then γ = α, and problem (1.6) reduces to the sequential q-Riemann and Caputo
fractional-order differential equation given byRLDα

q
(CD

δ
qz

)
(t) = f (t, z(t)), t ∈ [0,T ],

z(0) + λ1
CDα+δ−1

q z(0) = 0, z(T ) + λ2
CDα+δ−1

q z(T ) = 0.
(3.20)

Corollary 3.4. Let 0 < α, δ < 1, and f : [0,T ] × R → R is a continuous function. If z ∈ C([0,T ],R),
then z satisfies the problem (3.20) if and only if z satisfies the integral equation:

z(t) =
λ1Γq(α + δ) − t(α+δ−1)

Q∗

[
1

Γq(α + δ)

∫ T

0
(T − qν)(α+δ−1)

q f (ν, z(ν))dqν

+λ2

∫ T

0
f (ν, z(ν))dqν

]
+

1
Γq(α + δ)

∫ t

0
(t − qν)(α+δ−1)

q f (ν, z(ν))dqν,

(3.21)

where Q∗ = T (α+δ−1) + (λ2 − λ1)Γq(α + δ).

Case V. If q = 1, then problem (1.6) reduces to the sequential Hilfer and Caputo boundary value
problem of the form: HDα,β(CD

δz
)
(t) = f (t, z(t)), t ∈ [0,T ],

z(0) + λ1
CDγ+δ−1z(0) = 0, z(T ) + λ2

CDγ+δ−1z(T ) = 0.
(3.22)

Corollary 3.5. Let 0 < α, δ < 1, 0 ≤ β ≤ 1, and γ = α + β(1 − α). Suppose f : [0,T ] × R → R is a
continuous function. If z ∈ C2([0,T ],R), then z satisfies the problem (3.22) if and only if z satisfies the
integral equation:

z(t) =
λ1Γ(γ + δ) − tγ+δ−1

Q

[
1

Γ(α + δ)

∫ T

0
(T − ν)α+δ−1 f (ν, z(ν))dν

+
λ2

Γ(α − γ + 1)

∫ T

0
(T − ν)α−γ f (ν, z(ν))dν

]
+

1
Γ(α + δ)

∫ t

0
(t − ν)α+δ−1 f (ν, z(ν))dν.

(3.23)
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4. Examples

Example 4.1. Consider the sequential fractional differential equation involving q-Hilfer and q-Caputo
fractional derivatives: 

HD
3
5 ,

2
5

1
2

(CD
4
5
1
2
z
)
(t) = f (t, z(t)), t ∈

[
0, 9

7

]
,

z(0) + 11
23

CD
14
25
1
2

z(0) = 0, z
(

9
7

)
+ 13

29
CD

14
25
1
2

z
(

9
7

)
= 0.

(4.1)

Now, we choose constants as α = 3/5, β = 2/5, δ = 4/5, q = 1/2, T = 9/7, λ1 = 11/23, λ2 = 13/29.
Then we compute γ = 19/25, which yields γ + δ − 1 = 14/25. These information can be used to find
that Q ≈ 1.123420003, ∆ ≈ 3.821919331, and ∆ − (T (α+δ)/Γq(α + δ)) ≈ 2.578777897.
Case (i). Let the nonlinear bounded function f (t, z) be presented by

f (t, z) = h(t) +
|z|

p + |z|
, (4.2)

where h : [0, 9/7]→ R, and p is a positive constant.
Thus,

| f (t, z)| ≤ |h(t)| + 1 := Ψ(t).

and
| f (t, z) − f (t, z1)| ≤

1
p
|z − z1|,

for all t ∈ [0, 9/7] and z, z1 ∈ R. Therefore, conditions (H1) and (H2) in Theorem 3.1 are satisfied
with L = 1/p. Thus, from Theorem 3.1, we say that problem (4.1) with (4.2) has at least one solution
on [0, 9/7] if p > 2.578777897. In addition, the unique solution of problem (4.1) with (4.2), can be
guaranteed if p > 3.821919331 by applying the result in Theorem 3.3.
Case (ii). If the nonlinear, unbounded function f (t, z) is expressed as

f (t, z) =
1

2(t2 + 4)

(
z2 + 2|z|
1 + |z|

)
+

3
4
, (4.3)

then it is easy to check that condition (H1) is fulfilled by inequality

| f (t, z) − f (t, z1)| ≤
1
4
|z − z1|,

with L = 1/4, which leads to
L∆ ≈ 0.9554798328 < 1.

Hence, problem (4.1) with (4.3) has a unique solution on [0, 9/7].

Example 4.2. Consider the sequential boundary value differential equations in the frame of q-Hilfer
and q-Caputo fractional derivatives given by:

HD
5
7 ,

3
4

2
3

(CD
6
7
2
3
z
)
(t) = 1

t+2

(
z2024(t)

4(1+z2022(t)) +
1
√

t+3

)
, t ∈

[
0, 8

9

]
,

z(0) + 17
31

CD
11
14
2
3

z(0) = 0, z
(

8
9

)
+ 19

37
CD

11
14
2
3

z
(

8
9

)
= 0.

(4.4)
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Here α = 5/7, β = 3/4, γ = 13/14 (by computing), q = 2/3, δ = 6/7, T = 8/9, λ1 = 17/31, λ2 =

19/37, and γ + δ− 1 = 11/14. From all constants, we have Q ≈ 0.8787426597 and ∆ ≈ 2.500884518.
Now, we see that the nonlinear non-Lipschitzian function f (t, z) shown in the right-side of the first

equation in (4.4), is bounded by

| f (t, z)| =

∣∣∣∣∣∣ 1
t + 2

(
z2024(t)

4(1 + z2022(t))
+

1
√

t + 3

)∣∣∣∣∣∣ ≤ 1
t + 2

(
1
4

z2 +
1
3

)
.

Choosing G(t) = 1/(t + 2) and Λ(u) = (1/4)u2 + (1/3), we have ∥G∥ = 1/2, and we can find that
∃C ∈ (0.492701921, 2.706166297) satisfying (H4). Thus, by applying Theorem 3.2, we say that
problem (4.4) has at least one solution on [0, 8/9].

5. Conclusions

Since the appearance of fractional operators, many research articles have been dedicated to
improving and generalizing those operators. This paper investigates the existence and uniqueness of
the results of a sequential boundary value problem in the setting of q-Hilfer and q-Caputo fractional
derivatives with separated boundary conditions. The proposed problem is new and can be visualized
as a generalization of Hilfer, q-Caputo, Caputo, q-Riemann-Liouville, and Riemann-Liouville
fractional differential equations.
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