We are concerned with the existence and concentration of multi-bump solutions for the nonlinear Kirchhoff equation
$ \begin{eqnarray*} -\left ( \varepsilon ^{2}a+\varepsilon b\displaystyle {\int}_{\mathbb{R}^{3} }\left | \nabla v \right | ^{2} \mathrm {d} x \right )\Delta v+\lambda v = K(x)\left | v \right |^{2\sigma }v,\,\,\,x\in\mathbb{R}^3 \end{eqnarray*} $
with an $ L^{2} $-constraint in the $ L^{2} $-subcritical case $ \sigma\in\left(0, \, \frac{2}{3}\right) $ and the $ L^{2} $-supercritical case $ \sigma\in\left(\frac{2}{3}, \, 2 \right). $ Here $ \lambda \in \mathbb{R} $ appears as a Lagrange multiplier, $ \varepsilon $ is a small positive parameter and $ K > 0 $ possesses several local maximum points. By employing the variational gluing method and the penalization technique, we prove the existence of multi-bump solutions that are concentrated at local maximum points of $ K $ for the problem above.
Citation: Zhidan Shu, Jianjun Zhang. Normalized multi-bump solutions of nonlinear Kirchhoff equations[J]. AIMS Mathematics, 2024, 9(6): 16790-16809. doi: 10.3934/math.2024814
We are concerned with the existence and concentration of multi-bump solutions for the nonlinear Kirchhoff equation
$ \begin{eqnarray*} -\left ( \varepsilon ^{2}a+\varepsilon b\displaystyle {\int}_{\mathbb{R}^{3} }\left | \nabla v \right | ^{2} \mathrm {d} x \right )\Delta v+\lambda v = K(x)\left | v \right |^{2\sigma }v,\,\,\,x\in\mathbb{R}^3 \end{eqnarray*} $
with an $ L^{2} $-constraint in the $ L^{2} $-subcritical case $ \sigma\in\left(0, \, \frac{2}{3}\right) $ and the $ L^{2} $-supercritical case $ \sigma\in\left(\frac{2}{3}, \, 2 \right). $ Here $ \lambda \in \mathbb{R} $ appears as a Lagrange multiplier, $ \varepsilon $ is a small positive parameter and $ K > 0 $ possesses several local maximum points. By employing the variational gluing method and the penalization technique, we prove the existence of multi-bump solutions that are concentrated at local maximum points of $ K $ for the problem above.
[1] | A. Arosio, S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Am. Math. Soc., 348 (1996), 305–330. https://doi.org/10.1090/S0002-9947-96-01532-2 doi: 10.1090/S0002-9947-96-01532-2 |
[2] | M. Cavalcanti, V. Cavalcanti, J. Soriano, Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation, Adv. Differ. Equ., 6 (2001), 701–730. https://doi.org/10.57262/ade/1357140586 doi: 10.57262/ade/1357140586 |
[3] | S. Chen, Z. Q. Wang, Localized nodal solutions of higher topological type for semiclassical nonlinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 56 (2017), 1–26. https://doi.org/10.1007/s00526-016-1094-4 doi: 10.1007/s00526-016-1094-4 |
[4] | M. Chipot, B. Lovat, Some remarks on non local elliptic and parabolic problems, Nonlinear Anal., 30 (1997), 4619–4627. https://doi.org/10.1016/S0362-546X(97)00169-7 doi: 10.1016/S0362-546X(97)00169-7 |
[5] | V. Coti Zelati, P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Am. Math. Soc., 4 (1991), 693–727. https://doi.org/10.1090/S0894-0347-1991-1119200-3 doi: 10.1090/S0894-0347-1991-1119200-3 |
[6] | V. Coti Zelati, P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $\mathbb{R}^N$, Commun. Pure Appl. Math., 45 (1992), 1217–1269. https://doi.org/10.1002/cpa.3160451002 doi: 10.1002/cpa.3160451002 |
[7] | Y. Deng, S. Peng, W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^3$, J. Funct. Anal., 269 (2015), 3500–3527. https://doi.org/10.1016/J.JFA.2015.09.012 doi: 10.1016/J.JFA.2015.09.012 |
[8] | M. J. Esteban, P. L. Lions, Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A, 93 (1982), 1–14. https://doi.org/10.1017/S0308210500031607 doi: 10.1017/S0308210500031607 |
[9] | X. He, W. Zou, Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal., 70 (2009), 1407–1414. https://doi.org/10.1016/j.na.2008.02.021 doi: 10.1016/j.na.2008.02.021 |
[10] | X. He, W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}^3$, J. Differ. Equ., 252 (2012), 1813–1834. https://doi.org/10.1016/J.JDE.2011.08.035 doi: 10.1016/J.JDE.2011.08.035 |
[11] | Y. He, G. Li, S. Peng, Concentrating bound states for Kirchhoff type problems in $\mathbb{R}^3$ involving critical Sobolev exponents, Adv. Nonlinear Stud., 14 (2014), 483–510. https://doi.org/10.1515/ans-2014-0214 doi: 10.1515/ans-2014-0214 |
[12] | L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28 (1997), 1633–1659. https://doi.org/10.1016/S0362-546X(96)00021-1 doi: 10.1016/S0362-546X(96)00021-1 |
[13] | G. Kirchhoff, Mechanik, Leipzig: Teubner, 1883. |
[14] | G. Kirchhoff, Vorlesungen über Mechanik, Leipzig: Teubner, 1897. |
[15] | G. Li, P. Luo, S. Peng, C. Wang, C. Xiang, A singularly perturbed Kirchhoff problem revisited, J. Differ. Equ., 268 (2020), 541–589. https://doi.org/10.1016/j.jde.2019.08.016 doi: 10.1016/j.jde.2019.08.016 |
[16] | G. Li, H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^3$, J. Differ. Equ., 257 (2014), 566–600. https://doi.org/10.1016/j.jde.2014.04.011 doi: 10.1016/j.jde.2014.04.011 |
[17] | P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case: Ⅱ, Ann. Inst. Henri Poincaré C, 1 (1984), 223–283. https://doi.org/10.1016/S0294-1449(16)30422-X doi: 10.1016/S0294-1449(16)30422-X |
[18] | P. Luo, S. Peng, C. Wang, C. Xiang, Multi-peak positive solutions to a class of Kirchhoff equations, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 1097–1122. https://doi.org/10.1017/prm.2018.108 doi: 10.1017/prm.2018.108 |
[19] | Q. Li, V. D. Rădulescu, W. Zhang, Normalized ground states for the Sobolev critical Schrödinger equation with at least mass critical growth, Nonlinearity, 37 (2024), 025018. https://doi.org/10.1088/1361-6544/ad1b8b doi: 10.1088/1361-6544/ad1b8b |
[20] | Q. Li, J. Nie, W. Zhang, Existence and asymptotics of normalized ground states for a Sobolev critical Kirchhoff equation, J. Geom. Anal., 33 (2023), 126. https://doi.org/10.1007/s12220-022-01171-z doi: 10.1007/s12220-022-01171-z |
[21] | X. Luo, Q. Wang, Existence and asymptotic behavior of high energy normalized solutions for the Kirchhoff type equations in $\mathbb{R}^3$, Nonlinear Anal., 33 (2017), 19–32. https://doi.org/10.1016/j.nonrwa.2016.06.001 doi: 10.1016/j.nonrwa.2016.06.001 |
[22] | G. Li, X. Luo, T. Yang, Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent, Ann. Fenn. Math., 47 (2022), 895–925. https://doi.org/10.54330/afm.120247 doi: 10.54330/afm.120247 |
[23] | E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209 (1992), 27–42. https://doi.org/10.1007/BF02570817 doi: 10.1007/BF02570817 |
[24] | N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal., 279 (2020), 108610. https://doi.org/10.1016/j.jfa.2020.108610 doi: 10.1016/j.jfa.2020.108610 |
[25] | C. A. Stuart, Bifurcation from the continuous spectrum in the $L^2$-theory of elliptic equations on $\mathbb{R}^N$, In: Recent Methods in Nonlinear Analysis and Applications, Naples: Liguori, 1981. |
[26] | C. A. Stuart, Bifurcation from the essential spectrum for some non-compact nonlinearities, Math. Appl. Sci., 11 (1989), 525–542. https://doi.org/10.1002/mma.1670110408 doi: 10.1002/mma.1670110408 |
[27] | Z. Tang, C. Zhang, L. Zhang, L. Zhou, Normalized multibump solutions to nonlinear Schrödinger equations with steep potential well, Nonlinearity, 35 (2022), 4624–4658. https://doi.org/10.1088/1361-6544/ac7b61 doi: 10.1088/1361-6544/ac7b61 |
[28] | J. Wang, L. Tian, J. Xu, F. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equ., 253 (2012), 2314–2351. https://doi.org/10.1016/j.jde.2012.05.023 doi: 10.1016/j.jde.2012.05.023 |
[29] | H. Ye, The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations, Math. Methods Appl. Sci., 38 (2015), 2663–2679. https://doi.org/10.1002/mma.3247 doi: 10.1002/mma.3247 |
[30] | H. Ye, The existence of normalized solutions for $L^2$-critical constrained problems related to Kirchhoff equations, Z. Angew. Math. Phys., 66 (2015), 1483–1497. https://doi.org/10.1007/s00033-014-0474-x doi: 10.1007/s00033-014-0474-x |
[31] | C. Zhang, X. Zhang, Normalized multi-bump solutions of nonlinear Schrödinger equations via variational approach, Calc. Var. Partial Differ. Equ., 61 (2022), 57. https://doi.org/10.1007/s00526-021-02166-4 doi: 10.1007/s00526-021-02166-4 |
[32] | P. Zhang, Z. Han, Normalized ground states for Kirchhoff equations in $\mathbb{R}^3$ with a critical nonlinearity, J. Math. Phys., 63 (2022), 021505. https://doi.org/10.1063/5.0067520 doi: 10.1063/5.0067520 |