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Abstract: We are concerned with the existence and concentration of multi-bump solutions for the
nonlinear Kirchhoff equation

−

(
ε2a + εb

∫
R3
|∇v|2 dx

)
∆v + λv = K(x) |v|2σ v, x ∈ R3

with an L2-constraint in the L2-subcritical case σ ∈
(
0, 2

3

)
and the L2-supercritical case σ ∈

(
2
3 , 2

)
.

Here λ ∈ R appears as a Lagrange multiplier, ε is a small positive parameter and K > 0 possesses
several local maximum points. By employing the variational gluing method and the penalization
technique, we prove the existence of multi-bump solutions that are concentrated at local maximum
points of K for the problem above.
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1. Introduction and main results

1.1. Background and motivation

In this paper, we mainly focus our interest on the existence and concentration of normalized
solutions of the following nonlinear elliptic problem involving a Kirchhoff term: −

(
ε2a + εb

∫
R3 |∇v|2 dx

)
∆v − K(x) |v|2σ v = −λv in R3,

|v|22 =
∫
R3 v2dx = m0ε

α, v(x)→ 0 as |x| → ∞,
(1.1)

where a, b, α are positive real numbers and σ ∈ (0, 2), λ is unkown and appears as a Lagrange
multiplier. Equation (1.1) is related to the stationary solutions of

utt −

(
a + b

∫
R3
|∇u|2

)
∆u = g(x, t). (1.2)
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Equation (1.2) was first proposed by Kirchhoff in [13] and regarded as an extension of the classical
D’Alembert’s wave equation, which describes free vibrations of elastic strings. Kirchhoff-type
problems also appear in other fields like biological systems. To better understand the physical
background, we refer the readers to [1, 2, 4, 14]. From a mathematical point of view, problem (1.1) is
not a pointwise identity because of the appearance of the term (

∫
R3 |∇u|2)∆u. Due to such a

characteristic, Kirchhoff- type equations constitute nonlocal problems. Compared with the semilinear
states (i.e., setting b = 0 in the above two equations), the nonlocal term creates some additional
mathematical difficulties which make the study of such problems particularly interesting.

In the literature about the following related unconstrained Kirchhoff problems, there have been a lot
of results on the existence and concentration of solutions for small values of ε.

−

(
ε2a + εb

∫
R3
|∇u|2 dx

)
∆u + V(x)u = f (u), x ∈ R3. (1.3)

In physics, such solutions are called the semiclassical states for small values of ε. In [10], the existence,
multiplicity and concentration behavior of positive solutions to the Kirchhoff problem (1.3) have been
studied by He and Zou, where V(x) is a continuous function and f is a subcritical nonlinear term. For
the critical case, Wang et al., in [28] obtained some multiplicity and concentration results of positive
solutions for the Kirchhoff problem (1.3). And He et al., in [11] obtained the concentration of solutions
in the critical case. Recently, multi-peak solutions were established by Luo et al., in [18] for the
following problem:

−

(
ε2a + εb

∫
R3
|∇u|2 dx

)
∆u + V(x)u = |u|p−2 u, x ∈ R3. (1.4)

In [15] Li et al., revisited the singular perturbation problem (1.4), where V(x) satisfies some suitable
assumptions. They established the uniqueness and nondegeneracy of positive solutions to the following
limiting Kirchhoff problem:

−

(
a + b

∫
R3
|∇u|2 dx

)
∆u + u = |u|p−2 u, x ∈ R3.

By the Lyapunov-Schmidt reduction method and a local Pohozaev identity, single-peak solutions were
obtained for (1.4). In the past decades, other related results have also been widely studied, such as the
existence of ground states, positive solutions, multiple solutions and sign-changing solutions to (1.4).
We refer the reader to [7, 9, 10, 16, 29] and the references therein.

In recent years, the problems on normalized solutions have attracted much attention from many
researchers. In [25, 26], Stuart considered the problem given by

−∆u + λu = f (u), x ∈ RN ,∫
RN
|u|2 dx = c

(1.5)

in the mass-subcritical case and obtained the existence of normalized solutions by seeking a global
minimizer of the energy functional. In [12], Jeanjean considered the mass supercritical case and studied
the existence of normalized solutions to problem (1.5) by using the mountain pass lemma. For the
Sobolev critical case, Soave in [24] considered normalized ground state solutions of problem (1.5)
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with f (u) = µ|u|q−2u + |u|2
∗−2u, where 2∗ = 2N/(N − 2),N ≥ 3 is the Sobolev critical exponent. For

f (u) = g(u) + |u|2
∗−2u with a mass critical or supercritical state but Sobolev subcritical nonlinearity g,

we refer the reader to [19]. Now, we would like to mention some related results on Kirchhoff problems.
The authors of [29, 30] considered the problem in the mass subcritical and mass critical cases: −

(
a + b

∫
RN |∇v|2 dx

)
∆v = λv + f (v) in RN ,

|v|22 =
∫
RN v2dx = c2,

(1.6)

with a, b > 0 and p ∈ (2, 2∗). The existence and non-existence of normalized solutions are obtained.
In [20], the Kirchhoff problem (1.6) was investigated for f (u) = µ|u|q−2u+ |u|2

∗−2u and N = 3. With the
aid of a subcritical approximation approach, the existence of normalized ground states can be obtained
for µ > 0 large enough. Moreover, the asymptotic behavior of ground state solutions is also considered
as c → ∞. As for further results on Sobolev critical Kirchhoff equations and high energy normalized
solutions, we refer the reader to [21, 22, 32].

In what follows, we turn our attention to normalized multi-bump solutions of the Kirchhoff
problem (1.1). For the related results on Schrödinger equations, we refer the reader to the
references [27, 31]. In [31], the following nonlinear Schrödinger equation was studied by Zhang and
Zhang: {

−ℏ2∆v − K(x) |v|2σ v = −λv in RN ,

|v|22 =
∫
RN v2dx = m0ℏ

α, v(x)→ 0 as |x| → ∞.
(1.7)

For the case that the parameter ℏ goes to 0, the authors of [31] constructed normalized multi-bump
solutions around the local maximum points of K by employing the variational gluing methods of
Séré [23] and Zelati and Rabinowitz [5, 6], as well as the penalization technique [31]. Soon afterward,
Tang et al., in [27] considered normalized solutions to the nonlinear Schrödinger problem

−∆u + λa(x)u + µu = |u|2σ u, x ∈ RN (1.8)

with an L2-constraint. By taking the limit as λ → +∞, they derive the existence of normalized multi-
bump solutions with each bump concentrated around the local minimum set of a(x).

1.2. Main result of this paper

Motivated by [27, 31], the present paper is devoted to the existence and concentration behavior of
the multi-bump solutions for the Kirchhoff problem (1.1). In contrast to the nonlinear Schrödinger
problems, the Kirchhoff term brings us some additional difficulties. We intend to obtain the existence
of multi-bump solutions for (1.1).

Before stating our main result, we give the following assumptions:

(A) α ∈ (3, 2
σ

) if σ ∈ (0, 2
3 ) and α ∈ ( 2

σ
, 3) if σ ∈ ( 2

3 , 2).

(K) K ∈ (R3, (0, +∞)) ∩ L∞(R3) and there are ℓ ≥ 2 mutually disjoint bounded domains Ωi ⊂ R
3,

i = 1, 2, · · · , ℓ such that
ki := max

x∈Ωi
K(x) > max

x∈∂Ωi
K(x).
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Denote Ki = {x ∈ Ωi|K(x) = ki}, which is nonempty and compact and set

β :=
2 − ασ
2 − 3σ

.

Now, we state our main result as follows.

Theorem 1.1. Assume that (A) and (K). There is ε0 > 0 such that for each ε ∈ (0, ε0), it follows
that (1.1) admits a solution (λε, vε) ∈ R × H1(R3) with the following properties:

(a) vε admits exactly ℓ local maximum points Pi, ε, i = 1, 2, · · · , ℓ that satisfy

lim
ε→0

dist(Pi, ε, Ki) = 0.

(b) µ = ε
2σ(3−α)

2−3σ λε → µ0 and ∥ε
3−α

2−3σ vε(εβ·) −
∑ℓ

i=1 ui(· − ε−βPi, ε)∥H1 → 0 as ε→ 0, where

µ0 = m
2σ

2−3σ
0 a−

3σ
2−3σ (

ℓ∑
i=1

θ
− 1
σ

i |U |
2
2)−

2σ
2−3σ ,

ui = θ
− 1

2σ
i µ

1
2σ U(

√
µ

a
·), i = 1, 2, · · · , ℓ,

and U ∈ H1(R3) is a positive solution to{
−∆U + U = |U |2σ U in R3,

U(0) = maxx∈R3 U(x), limx→∞U(x) = 0.
(1.9)

(c) There are constants C, c > 0 that are independent of ε such that

|vε| ≤ Cε−
3−α

2−3σ exp
{
−cε−βdist(x, ∪ℓi=1Ki)

}
.

1.3. The strategy for the proof

The proof of Theorem 1.1 is similar to that in [31]. By virtue of the change of variables techinque,
we have

u(·) = ε
3−α

2−3σ v(εβ·).

Equation(1.1) is transformed into the following problem:{
−(a + ε

(3−α)(σ−2)
2−3σ b |∇u|22)∆u − K(εβx) |u|2σ u = −λε

2σ(3−α)
2−3σ u in R3,

|u|22 = m0, u(x)→ 0 as |x| → ∞.

Let
ℏ := εβ, µ = ε

2σ(3−α)
2−3σ λ, d =

(3 − α)(σ − 2)
2 − ασ

.

Then, under the assumption (A) and given β > 0 and d > 0, we have the following:{
−(a + ℏdb|∇u|22)∆u − K(ℏx)|u|2σu = −µu in R3,

|u|22 = m0, u(x)→ 0 as |x| → ∞.
(1.10)
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Define the energy functional

Eℏ(u) =
a
2

∫
R3
|∇u|2 +

ℏdb
4

(∫
R3
|∇u|2

)2

−
1

2σ + 2

∫
R3

K(ℏx) |u|2σ+2 .

Then, a solution (µℏ, uℏ) of (1.10) can be obtained as a critical point of Eℏ that is restrained on

M :=
{
u ∈ H1(R3)| |u|22 = m0

}
.

By adopting similar deformation arguments in [5, 6, 23, 31], we show that the Lagrange multiplier µℏ
satisfies

µℏ = µ0 + oℏ(1), uℏ =
ℓ∑

i=1

ui(· − qi, ℏ) + oℏ(1) in H1(R3),

where qi, ℏ satisfies the condition that dist(ℏqi, ℏ,Ki)→ 0 as ℏ→ 0, i = 1, 2, · · · , ℓ.
This paper is organized as follows: In Section 2, we study the existence and variational structure

of solutions to the limit equation of Eq (1.1). In Section 3, we introduce the penalized function which
satisfies the Palais-Smale condition. In Section 4, we prove the existence of a critical point of the
penalized function in the subcritical and supercritical cases. In Section 5, we show that the critical
point is a solution to the original problem through the application of a decay estimate.
Notation : In this paper, we make use of the following notations:

• |u|p := (
∫
R3 |u|

p)
1
p , where u ∈ Lp(R3), p ∈ [1, ∞);

• ∥u∥ := (
∫
R3 |∇u|2 + |u|2)

1
2 , where u ∈ H1(R3);

• b± = max {0, ±b} for b ∈ R;
• B(x, ρ) denotes an open ball centered at x ∈ R3 with radius ρ > 0;
• For a domain D ⊂ R3, we denote 1

ℏ
D :=

{
x ∈ R3|ℏx ∈ D

}
;

• Unless stated otherwise, δ and C are general constants.

2. The limit system

Let m0, θ1, θ2, · · · , θℓ be a series of positive numbers. We consider the following system:
−a∆vi − θi |vi|

2σ vi = −µvi in R3,∑ℓ
i=1 |vi|

2
2 = m0,

vi(x) > 0, lim|x|→∞ vi(x) = 0, i = 1, 2, · · · , ℓ.
(2.1)

Next, we refer the reader to [31] to show Lemmas 2.1–2.3 as follows.

Lemma 2.1. For σ ∈
(
0, 2

3

)
∪

(
2
3 , 2

)
, system (2.1) has a unique solution (µ, v1, v2, · · · , vℓ) ∈ R ×

H1(R3)ℓ up to translations of each vi, i = 1, 2, · · · , ℓ, where

µ = m
2σ

2−3σ
0 a−

3σ
2−3σ (

ℓ∑
i=1

θ
− 1
σ

i |U |
2
2)−

2σ
2−3σ , vi(x) = θ−

1
2σ

i µ
1

2σ U(
√
µ

a
x), (2.2)

and U ∈ H1(R3) is the unique positive radial solution to (1.9).

AIMS Mathematics Volume 9, Issue 6, 16790–16809.



16795

By using (2.2), we can obtain the mass distribution for each vi, i = 1, 2, · · · , ℓ in the limit
system (2.1), as follows:

|vi|
2
2 =

m0θ
− 1
σ

i∑ℓ
i=1 θ

− 1
σ

i

and for each i = 1, 2, · · · , ℓ, vi is the ground state of

Iθi(u) =
a
2
|∇u|22 −

θi

2σ + 2
|u|2σ+2

2σ+2

on
Mi :=

{
u ∈ H1(R3)| |u|22 = |vi|

2
2

}
.

Lemma 2.2.
∑ℓ

i=1 Iθi(vi) is continuous and strictly decreasing with respect to m0 and θi, i = 1, 2, · · · , ℓ,
where vi is determined as in Lemma 2.1.

We next characterize the energy level of
∑ℓ

i=1 Iθi(vi). Let

s = (s1, s2, · · · , sℓ) ∈ (0, +∞)ℓ

and for each si > 0, the minimizing problem

bsi = inf
{

Iθi(v)| |v|22 = s2
i , |∇v|22 =

3θiσ

(2σ + 2)a
|v|2σ+2

2σ+2

}
is achieved for each i = 1, 2, · · · , ℓ given some radial function wsi . In particular, vi = ws0

i
for s0

i = |vi|2.

Moreover, if σ ∈
(
0, 2

3

)
, then

bsi = inf
{
Iθi(v)|v ∈ H1(R3), |v|22 = s2

i

}
and if σ ∈

(
2
3 , 2

)
, then

bsi = inf
{

sup
t>0

Iθi(t
3
2 v(t·))|v ∈ H1(R3), |v|22 = s2

i

}
.

Set

S ℓ−1
+ :=

s = (s1, s2, · · · , sℓ) ∈ (0,
√

m0)ℓ|
ℓ∑

i=1

s2
i = m0, i = 1, 2, · · · , ℓ

 ,
and define E(s) :=

∑ℓ
i=1 Iθi(wsi) for s ∈ S ℓ−1

+ .

Lemma 2.3. Denote s0 = (s0
1, s0

2, · · · , s0
ℓ) = (|v1|2 , |v2|2 , · · · , |vℓ|2). For each s ∈ S ℓ−1

+ \
{
s0
}
, the

following statements hold:

(a) If σ ∈ (0, 2
3 ), then

∑ℓ
i=1 Iθi(vi) = E(s0) > E(s);

(b) If σ ∈ ( 2
3 , 2), then

∑ℓ
i=1 Iθi(vi) = E(s0) < E(s).
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3. Existence of constrained localized Palais-Smale sequences

In this section, we adopt the penalization argument and the deformation approach in [31] to obtain
a constrained localized Palais-Smale sequence. Denote (µ0, ui) as the solution of the limit system (2.1)
with m0 = 1 and θi = ki, i = 1, 2, · · · , ℓ, where (ki)ℓi=1 denotes positive numbers given by (K). Next,
we set b0 :=

∑ℓ
i=1 Ii(ui), where

Ii(u) := Iki(u) =
a
2
|∇u|22 −

ki

2σ + 2
|u|2σ+2

2σ+2 .

Then, we will find a positive solution (µℏ, uℏ) to the following system:{
−(a + ℏdb |∇u|22)∆u − K(ℏx) |u|2σ u = −µu in R3,

|u|22 = 1, u(x)→ 0 as |x| → ∞,
(3.1)

satisfying

µℏ = µ0 + oℏ(1), uℏ(x) =
ℓ∑

i=1

ui(x − qi, ℏ) + oℏ(1) in H1(R3)

with ℏqi, ℏ → qi ∈ Ki.

SetM :=
{
u ∈ H1(R3)| |u|2 = 1

}
and for i = 1, 2, · · · , ℓ and τ > 0, define

(Ki)τ :=
{
x ∈ R3|dist(x, Ki) ≤ τ

}
⊂ Ωi.

Define the following equation for each ρ ∈ (0, 1
10 min1≤i≤ℓ ∥ui∥L2(B1(0))):

Z(ρ) =

u =
ℓ∑

i=1

ui(x − qi, ℏ) + v ∈ M|ℏqi, ℏ ∈ (Ki)τ, ∥v∥ ≤ ρ

 .
For u ∈ H1(R3), consider the penalized energy functional Iℏ : H1(R3)→ R is given by

Iℏ(u) := Eℏ(u) +Gℏ(u),

where

Gℏ(u) =
(
ℏ−1

∫
R3
χℏ(x)(|∇u|2 + u2)dx − 1

)2

+

,

and

χℏ =

{
0 x < R3 \ ∪ℓi=1

1
ℏ
Ωi,

1 x ∈ R3 \ ∪ℓi=1
1
ℏ
Ωi.

We also denote
J(u) =

1
2
|u|22 for u ∈ H1(R3).

Note that if uℏ ∈ M with ∥uℏ∥2H1(R3\∪ℓi=1
1
ℏΩi)

< ℏ is a critical point of Iℏ|M, then it solves (3.1) for some
µℏ. Denote the tangent space ofM at u ∈ M by

TuM =

{
v ∈ H1(R3)|

∫
R3

uv = 0
}
.
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Lemma 3.1. For any L ∈ R, there exists ℏL > 0 such that for any fixed ℏ ∈ (0, ℏL), if a sequence{
un, ℏ

}
⊂ Z(ρ) such that

Iℏ(un, ℏ) ≤ L,
∥∥∥Iℏ|′M(un, ℏ)

∥∥∥
T ∗un, ℏ

M
→ 0, (3.2)

as n→ ∞, then un, ℏ has a strong convergent subsequence in H1(R3).

Proof. Set un, ℏ =
∑ℓ

i=1ui(x− zn, i, ℏ)+ vn, ℏ with ℏzn, i, ℏ ∈ (Ki)τ and
∥∥∥vn, ℏ

∥∥∥ ≤ ρ. It follows from un, ℏ ∈ Z(ρ)
that

∥∥∥un, ℏ

∥∥∥ ≤ ρ +∑ℓ
i=1 ∥ui∥, which is bounded. Then, by

Iℏ(un, ℏ) +
1

2σ + 2

∫
R3

K(ℏx)
∣∣∣un, ℏ

∣∣∣2σ+2
=

a
2

∣∣∣∇un, ℏ

∣∣∣2
2
+
ℏdb
4

∣∣∣∇un, ℏ

∣∣∣4
2
+Gℏ(un, ℏ),

we have that Gℏ(un, ℏ) ≤ Iℏ(un, ℏ)+ 1
2σ+2

∫
R3 K(ℏx)

∣∣∣un, ℏ

∣∣∣2σ+2
≤ CL for some CL > 0 that is independent of

ℏ and n. From the assumption (3.2), for some µn, ℏ ∈ R, we deduce that

I′ℏ(un, ℏ) + µn, ℏJ′(un, ℏ)→ 0 in H−1, as n→ ∞. (3.3)

We have ∣∣∣µn, ℏ

∣∣∣ = I′ℏ(un, ℏ)un, ℏ + o(1)

≤ a
∫
R3

∣∣∣∇un, ℏ

∣∣∣2 + ℏdb
(∫
R3

∣∣∣∇un, ℏ

∣∣∣2)2

−

∫
R3

K(ℏx)
∣∣∣un, ℏ

∣∣∣2σ+2
+G′ℏ(un, ℏ)un, ℏ

≤ C(
∥∥∥un, ℏ

∥∥∥2
+

∥∥∥un, ℏ

∥∥∥4
+

∥∥∥un, ℏ

∥∥∥2σ+2
+Gℏ(un, ℏ) +Gℏ(un, ℏ)

1
2 )

≤ C∗L,

where C∗L > 0 is independent of ℏ and n. Then up to a subsequence, µn, ℏ → µℏ in R and un, ℏ ⇀ uℏ =∑ℓ
i=1ui(x − zi, ℏ) + vℏ in H1(R3) with zn, i, ℏ → zi, ℏ ∈

1
ℏ
(Ki)τ and vn, ℏ ⇀ vℏ.

Next, for any φ ∈ H1(R3), note that lim
n→∞

I′ℏ(un, ℏ)φ + µn, ℏJ′(un, ℏ)φ = 0, (µℏ, uℏ) satisfies

a
∫
R3
∇uℏ∇φ + ℏdb

∫
R3
|∇uℏ|2

∫
R3
∇uℏ∇φ −

∫
R3

K(ℏx) |uℏ|2σ uℏφ

+

∫
R3
µℏuℏφ + Qℏ

∫
R3
χℏ(∇uℏ∇φ + uℏφ) = 0,

(3.4)

where Qℏ = 4ℏ−1 limn→∞Gℏ(un, ℏ)
1
2 ≥ 0. Then, we claim that ℏL and µL are two positive constants

such that µℏ > µL for each ℏ ∈ (0, ℏL). Otherwise, we assume that µℏ → µ ≤ 0 as ℏ → 0 up to a
subsequence. Because uℏ is bounded in H1(R3), we can assume that uℏ(· + z1, ℏ) ⇀ u. Note that

lim inf
ℏ→0

∥∥∥uℏ(· + zi, ℏ)
∥∥∥

L2(B1(0))
≥ ∥ui∥L2(B1(0)) − ρ > 0.

We can obtain that u , 0 if ρ > 0 is small. Then set φ = ψ(x − z1, ℏ) in (3.4) for each ψ ∈ C∞0 (R3) and
take the limit ℏ→ 0, that is

lim
ℏ→0

[
a
∫
R3
∇uℏ∇ψ(x − z1, ℏ) + ℏdb

∫
R3
|∇uℏ|2

∫
R3
∇uℏ∇ψ(x − z1, ℏ)

−

∫
R3

K(ℏx) |uℏ|2σ uℏψ(x − z1, ℏ) +
∫
R3
µℏuℏψ(x − z1, ℏ)

+ Qℏ

∫
R3
χℏ(∇uℏ∇ψ(x − z1, ℏ) + uℏψ(x − z1, ℏ))

]
= 0.
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Using the boundedness of uℏ and d > 0, we have

ℏdb
∫
R3
|∇uℏ|2

∫
R3
∇uℏ∇ψ(x − z1, ℏ) = o(1).

We see that u is a nontrivial solution to −a∆u + µu = k0 |u|2σ u in H1(R3) for some k0 > 0, which is
impossible by Lemma 2.1.

Setting φ = un, ℏ − uℏ in (3.4), we have

a
∫
R3
∇uℏ∇(un, ℏ − uℏ) + ℏdb

∫
R3
|∇uℏ|2

∫
R3
∇uℏ∇(un, ℏ − uℏ)

−

∫
R3

K(ℏx) |uℏ|2σ uℏ(un, ℏ − uℏ) +
∫
R3
µℏuℏ(un, ℏ − uℏ)

+ Qℏ

∫
R3
χℏ(∇uℏ∇(un, ℏ − uℏ) + uℏ(un, ℏ − uℏ)) = 0.

(3.5)

Then it follows from (3.3) that〈
I′ℏ(un, ℏ) + µn, ℏJ′(un, ℏ), un, ℏ − uℏ

〉
= o(1)

∥∥∥un, ℏ − uℏ
∥∥∥ .

That is,

a
∫
R3
∇un,ℏ∇(un, ℏ − uℏ) + ℏdb

∫
R3

∣∣∣∇un, ℏ

∣∣∣2 ∫
R3
∇un, ℏ∇(un, ℏ − uℏ)

−

∫
R3

K(ℏx)
∣∣∣un, ℏ

∣∣∣2σ un, ℏ(un, ℏ − uℏ) +
∫
R3
µn, ℏun, ℏ(un, ℏ − uℏ)

+ Qn, ℏ

∫
R3
χℏ(∇un,ℏ∇(un, ℏ − uℏ) + un, ℏ(un, ℏ − uℏ))

= o(1)
∥∥∥un, ℏ − uℏ

∥∥∥ .
(3.6)

We can show that for n large enough,∫
R3

∣∣∣∇un,,ℏ

∣∣∣2 ∫
R3
∇un, ℏ∇(un, ℏ − uℏ) −

∫
R3
|∇uℏ|2

∫
R3
∇uℏ∇(un, ℏ − uℏ)

=

∫
R3

∣∣∣∇un, ℏ

∣∣∣2 ∫
R3
∇un, ℏ∇(un, ℏ − uℏ) −

∫
R3

∣∣∣∇un, ℏ

∣∣∣2 ∫
R3
∇uℏ∇(un,ℏ − uℏ)

+

∫
R3

∣∣∣∇un, ℏ

∣∣∣2 ∫
R3
∇uℏ∇(un, ℏ − uℏ) −

∫
R3
|∇uℏ|2

∫
R3
∇uℏ∇(un, ℏ − uℏ)

=

∫
R3

∣∣∣∇un, ℏ

∣∣∣2 ∫
R3

∣∣∣∇un, ℏ − ∇uℏ
∣∣∣2

+ (
∫
R3

∣∣∣∇un, ℏ

∣∣∣2 − ∫
R3
|∇uℏ|2)

∫
R3
∇uℏ∇(un, ℏ − uℏ)

≥on(1),

(3.7)

where using the fact that un, ℏ ⇀ uℏ in H1(R3), it follows
∫
R3 ∇uℏ∇(un, ℏ − uℏ) → 0. Thus from (3.5)–

(3.7), we have

a
∫
R3

∣∣∣∇(un, ℏ − uℏ)
∣∣∣2 + µℏ ∫

R3
|un, ℏ − uℏ|2

AIMS Mathematics Volume 9, Issue 6, 16790–16809.



16799

−

∫
R3

K(ℏx)
∣∣∣un, ℏ − uℏ

∣∣∣2σ+2
+ Qh

∫
R3
χh

[∣∣∣∇(un, ℏ − uℏ)
∣∣∣2 + |un, ℏ − uh|

2
]

+ ℏdb
∫
R3

∣∣∣∇un, ℏ

∣∣∣2 ∫
R3

∣∣∣∇un, ℏ − ∇uℏ
∣∣∣2 = o(1).

Noting also that
∫
R3 K(ℏx)

∣∣∣un, ℏ − uℏ
∣∣∣2σ+2

≤ C||un, ℏ − uℏ||2σ+2 and

||un, ℏ − uℏ|| = ||
ℓ∑

i=1

ui(· − zn, i, ℏ) + vn, ℏ −

ℓ∑
i=1

ui(· − zi, ℏ) − vℏ||

≤

ℓ∑
i=1

||ui(· − zn, i, ℏ) − ui(· − zi, ℏ)|| + ||vn, ℏ|| + ||vℏ||

≤ 2ρ + on(1),

the following inequality holds:

C∗||un, ℏ − uℏ||2 ≤ a
∫
R3

∣∣∣∇(un, ℏ − uℏ)
∣∣∣2 + µℏ ∫

R3
|un, ℏ − uℏ|2

≤ C||un, ℏ − uℏ||2σ+2 + o(1),

where C∗ is a positive constant since a > 0 and µℏ > 0. Making ρ smaller if necessary given C||un, ℏ −

uℏ||2σ < C∗/2, it follows that un, ℏ → uℏ in H1(R3). This completes the proof of Lemma 3.1. □

Proposition 3.2. For some ρ > 0 small and by letting {ℏn} ⊂ R, {µn} ⊂ R and {un} ⊂ Z(ρ) satisfy that

ℏn → 0+, lim sup
n→∞

Iℏn(un) ≤ b0, (3.8)∥∥∥I′ℏn
(un) + µnJ′(un)

∥∥∥
H−1 → 0, (3.9)

as n→ ∞. Then, µn → µ0 holds, limn→∞ Iℏn(un) = b0 and for some zn, i ∈ R
3, i = 1, 2, · · · , ℓ, we have∥∥∥∥∥∥∥un −

ℓ∑
i=1

ui(· − zn, i)

∥∥∥∥∥∥∥→ 0 and dist(ℏnzn, i, Ki)→ 0.

Proof. The proof is similar to that in [31]. For the sake of completeness, we shall give the details.
Step 1. We claim that µn →

∼
µ > 0.

As {un} ⊂ Z(ρ), we can write that un =
∑ℓ

i=1ui(x− zn, i)+vn with zn, i ∈
1
ℏ
(Ki)τ and ∥vn∥ ≤ ρ. It follows

from un ∈ Z(ρ) and the boundedness of Iℏn(un) that ∥un∥ and Gℏn(un) are bounded. Besides, by (3.9) and
J′(un)un = 1, we know that µn is bounded. Then up to a subsequence, we can assume that µn →

∼
µ in R

and un(· + zn, i) ⇀ wi ∈ H1(R3). For ρ < 1
10 min1≤i≤ℓ ∥ui∥L2(B1(0)), we have

lim inf
n→∞

∥∥∥un(· + zn, i)
∥∥∥

L2(B1(0))
≥ ∥ui∥L2(B1(0)) − ρ > 0.

Notice that for any R > 0, we can obtain that ∥ui − wi∥L2(BR(0)) ≤ ρ. Hence,

∥ui∥2 − ρ ≤ ∥wi∥2 ≤ ∥ui∥2 + ρ. (3.10)
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Then, if ρ is small enough, we know that wi , 0. Next, testing (3.9) with φ(x−zn, i) for each φ ∈ C∞0 (R3),
we deduce that

ℏd
nb

∫
R3

∣∣∣∇un(x + zn, i)
∣∣∣2 ∫

R3
∇un(x + zn, i)∇φ = o(1).

Thus, wi is a solution to −a∆wi +
∼
µwi =

∼

ki |wi|
2σ wi in H1(R3) with lim

n→∞
K(ℏnzn,i) →

∼

ki ∈ [k, k̄], where

k = minx∈Uℓ
i=1Ω̄i

K(x) > 0 and k̄ = max1≤i≤ℓ ki. Then, combining the Pohozaev identity with

a |wi|
2
2 +

∼
µ |wi|

2
2 =

∼

ki |wi|
2σ+2
2σ+2 ,

it follows that there exists a positive contant
∼
µ.

Step 2. un −
∑ℓ

i=1 wi(· − zn, i)→ 0 in L2σ+2(R3) and dist(ℏnzn, i, Ki)→ 0.
We show that

ṽn := un −

ℓ∑
i=1

wi(· − zn, i)→ 0 in L2σ+2(R3).

Otherwise, by Lions’ lemma [17], there exists a sequence of points {zn} ⊂ R
3 such that

lim sup
n→∞

∥∥∥∥∥∥∥un −

ℓ∑
i=1

wi(· − zn, i)

∥∥∥∥∥∥∥
2

L2(B1(zn))

> 0.

Noting that
∣∣∣zn − zn, i

∣∣∣→ ∞ i = 1, 2, · · · , ℓ, we have

lim sup
n→∞

∫
B1(0)
|un(· + zn)|2 > 0. (3.11)

By (3.8), Gℏn(un) ≤ C holds for some C > 0 that is independent of ℏ. Then, we have that
dist

(
ℏnzn, ∪

ℓ
i=1Ωi

)
→ 0. Up to a subsequence, we assume that ṽn(x + zn) ⇀ v0 , 0 in H1(R3) and

K(ℏnzn) → k0 ∈ [k, k̄], where k0 = k(y0), y0 ∈ ∪
ℓ
i=1Ωi. Let D :=

{
x ∈ R3|x3 ≥ −M

}
. For some i0, if

lim
n→∞

dist(ℏnzn, ∂Ωi0 )
ℏn

= M < ∞, we get that ℏnzn → z0 as n → ∞, where z0 ∈ ∂Ωi0 . Next, without loss of

generality we can assume that v0 ∈ H1
0(D). Testing (3.9) with φ(· − zn) for any φ ∈ C∞0 (D), we have

lim
n→∞

[
a
∫
R3
∇un∇φ(x − zn) + ℏd

nb
∫
R3
|∇un|

2
∫
R3
∇un∇φ(x − zn)

−

∫
R3

K(ℏnx)|un|
2σunφ(x − zn) +

∫
R3
µnunφ(x − zn)

+ Qℏn

∫
R3
χℏn(∇un∇φ(x − zn) + unφ(x − zn))

]
= 0.

Then by applying ∥un∥H1(R3\ 1
ℏn
∪ℓi=1Ωi) ≤ Cℏn and

ℏd
nb

∫
R3
|∇un|

2
∫
R3
∇un∇φ(x − zn) = o(1),
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we can obtain that v0 is a solution of −a∆u +
∼
µu = k0 |u|2σ u in H1

0(D), which is impossible since this
equation does not have a nontrivial solution on the half space according to [8]. Thus
lim
n→∞

dist(ℏnzn, ∂Ωi0) = +∞ and zn ∈
1
ℏn
Ωi0 . Now we test (3.9) with φ(· − zn) for any φ ∈ C∞0 (R3) to get

−a∆v0 +
∼
µv0 = k0 |v0|

2σ v0,

where
∼
µ > 0, and |v0|

2
2 > C1 for some C1 > 0 that is independent of ρ.

If we have chosen ρ small enough, then by the Brézis-Lieb lemma,

1 = lim
n→∞
|un|

2
2 = lim

n→∞

∣∣∣un(· + zn, 1) − v0(· + zn, 1)
∣∣∣2
2
+ |v0|

2
2 + o(1)

≥

ℓ∑
i=1

|wi|
2
2 + |v0|

2
2

≥

ℓ∑
i=1

|ui|
2
2 − 2ρ

ℓ∑
i=1

|ui|
2
2 + ℓρ

2 +C1

> 1,

which is a contradiction.
Step 3.

∥∥∥un −
∑ℓ

i=1 wi(· − zn, i)
∥∥∥→ 0 and limn→∞ Iℏn(un) = b0.

Testing (3.9) with un −
∑ℓ

i=1 wi(· − zn, i), given

ℏd
nb

∫
R3
|∇un|

2
∫
R3
∇un∇(un −

ℓ∑
i=1

wi(x − zn, i)) = o(1),

we can get that

a(|∇un|
2
2 −

ℓ∑
i=1

|∇wi|
2
2) +

∼
µ(|un|

2
2 −

ℓ∑
i=1

|wi|
2
2) ≤ on(1).

Next, we have

a|∇(un −

ℓ∑
i=1

wi(· − zn, i))|22 +
∼
µ|un −

ℓ∑
i=1

wi(· − zn, i)|22 = on(1),

i.e., un −
∑ℓ

i=1 wi(· − zn, i)→ 0 in H1(R3).
On the other hand, by Lemma 2.2, we obviously get that lim

n→∞
Iℏn(un) = b0. □

4. Existence of critical points

In this section, let ρ be fixed in Proposition 3.2. We present the result as follows.

Proposition 4.1. There exists ℏ0 > 0 such that for ℏ ∈ (0, ℏ0), Iℏ|M has a critical point uℏ ∈ Z(ρ).
Moreover, limℏ→0 I(uℏ) = b0 and the Lagrange multiplier µℏ ∈ R satisfies

lim
ℏ→0

µℏ = µ0, I′ℏ(uℏ) + µℏJ
′(uℏ) = 0. (4.1)
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Remark 4.2. By Proposition 3.2, it is easy to verify that (4.1) holds if uℏ is a critical point of Iℏ|M such
that lim supℏ→0 Iuℏ ≤ b0.

The proof of Proposition 4.1 can be obtained as in [31] by considering the following contradiction:
{ℏn} with ℏn → 0 such that for some sequence bℏn → b0, Iℏ admits no critical points in{
u ∈ Z(ρ)|Iℏn(u) ≤ bℏn

}
. For brevity, we denote ℏ = ℏn. Then from Lemma 3.1 and Proposition 3.2,

there respectively exist κ0 > 0 and v > 0 independent of ℏ and vℏ > 0 such that∥∥∥Iℏ|
′

M
(u)

∥∥∥
T ∗uM
≥ vℏ, for u ∈ Z(ρ) ∩ [b0 − 2κ0 ≤ Iℏ ≤ bℏ] ,∥∥∥Iℏ|

′

M
(u)

∥∥∥
T ∗uM
≥ v, for u ∈ (Z(ρ) \ Z(ρ/4)) ∩ [b0 − 2κ0 ≤ Iℏ ≤ bℏ] ,

(4.2)

where
[b1 ≤ Iℏ] =

{
u ∈ H1(R3)|b1 ≤ Iℏ(u)

}
,

[Iℏ ≤ b2] =
{
u ∈ H1(R3)|Iℏ(u) ≤ b2

}
,

[b1 ≤ Iℏ ≤ b2] =
{
u ∈ H1(R3)|b1 ≤ Iℏ(u) ≤ b2

}
,

for any b1, b2 ∈ R.
Thanks to (4.2), one can get the following deformation lemma.

Lemma 4.3. Let vℏ and v be given as in (4.2). For any κ ∈
(
0, min

{
κ0,

ρv
16

})
, there exists ℏκ > 0 such

that for ℏ ∈ (0, ℏκ) there is a deformation η :M→M that satisfied the following conditions:

(a) η(u) = u if u ∈ M \ (Z(ρ) ∩ [b0 − 2κ ≤ Iℏ]).
(b) Iℏ(η(u)) ≤ Iℏ(u) if u ∈ M.

(c) η(u) ∈ Z(ρ) ∩ [Iℏ ≤ b0 − κ] if u ∈ Z(ρ/4) ∩ [Iℏ ≤ bℏ] .

To give the proof of Lemma 4.3, we borrow some ideas from [5,6,31] in the L2-subcritical case and
L2-supercritical case.

4.1. L2-subcritical case σ ∈
(
0, 2

3

)
For every δ > 0, we denote

S δ :=
{
s ∈ S ℓ−1

+ |
∣∣∣s − s0

∣∣∣ ≤ δ} ,
where s0 = (|u1|2, · · · , |uℓ|2). Fix qi ∈ Ki and qi, ℏ =

1
ℏ
qi for i = 1, 2, · · · , ℓ and define the (ℓ − 1)-

dimensional initial path by

ξℏ(s) = Bℏ
ℓ∑

i=1

wsi(· − qi, ℏ),

where Bℏ :=
∣∣∣∑ℓ

i=1 wsi(· − qi, ℏ)
∣∣∣−1

2
. Note that we can fix δ > 0 small enough such that

ξℏ(s) ∈ Z(ρ/4) for s ∈ S δ

and
Bℏ → 1 as ℏ→ 0 uniformly in S δ.

Define
bℏ := max

s∈S δ

Iℏ(ξℏ(s)).
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Lemma 4.4. limℏ→0 bℏ = b0 and fix any κ ∈ (0, min
{
κ0,

ρv
16

}
) such that

sup
s∈∂S δ

Iℏ(ξℏ(s)) < b0 − 2κ, (4.3)

where ∂S δ :=
{
s ∈ S ℓ

+|
∣∣∣s − s0

∣∣∣ = δ}.
Proof. Since

ℏdb
(∫
R3
|∇ξℏ|

2
)2

→ 0 as ℏ→ 0,

one can deduce that

Iℏ(ξℏ(s))→
ℓ∑

i=1

Ii(wsi) as ℏ→ 0 uniformly for s ∈ S δ.

By Lemma 2.3(a), we have
sup
s∈∂S δ

Iℏ(ξℏ(s)) < b0 − 2κ.

□

Proof of Proposition 4.1 in the L2-subcritical case. By Lemma 4.3 and (4.3), we have

η(ξℏ(s)) = ξℏ(s) for s ∈ ∂S δ, (4.4)

Iℏ(η(ξℏ(s))) ≤ b0 − κ and η(ξℏ(s)) ∈ Z(ρ) for s ∈ S δ. (4.5)

Define

Ψi,ℏ =

∫
1
ℏΩi

|u|2
 1

2
 ℓ∑

i=1

∫
1
ℏΩi

|u|2
−

1
2

, for u ∈ M.

Similar to the case in [31], there exists s1 ∈ S δ such that Ψi, ℏ(η(ξℏ(s1))) = s0
i = |ui|2. Denote

u0, ℏ := η(ξℏ(s1)), ui, ℏ := γi, ℏu0, ℏ, (4.6)

where γi, ℏ ∈ C∞0 (1
ℏ
(Ω

′

i), [0, 1]) is a cut-off function such that γi, ℏ = 1 on 1
ℏ
Ωi and

∣∣∣∇γi, ℏ

∣∣∣ ≤ Cℏ for
each i = 1, 2, · · · , ℓ and some C > 0; Ω

′

i is an open neighborhood of Ω̄i. By (4.5), we have that
Gℏ(u0, ℏ) ≤ C for some C > 0 that is independent of ℏ, which implies that∥∥∥u0, ℏ

∥∥∥
H1(R3\∪ℓi=1

1
ℏΩi)
≤ Cℏ. (4.7)

Then ∣∣∣ui, ℏ

∣∣∣
2
= |ui|2 + oℏ(1) (4.8)

and
Ii(ui) ≤ Ii(ui, ℏ) + oℏ(1). (4.9)

Hence from (4.5)–(4.9), we have

b0 − κ ≥ Iℏ(u0, ℏ) ≥
ℓ∑

i=1

Ii(ui, ℏ) + oℏ(1) ≥
ℓ∑

i=1

Ii(ui) + oℏ(1) = b0 + oℏ(1),

which is a contradiction. This completes the proof. □
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4.2. L2-supercritical case σ ∈
(

2
3 , 2

)
Fix qi ∈ Ki and denote qi, ℏ =

1
ℏ
qi; we set

ζℏ(s) = B̄ℏ
ℓ∑

i=1

ti
3/2ui(ti(· − qi, ℏ)) for t = (t1, t2, · · · , tℓ) ∈ (0, +∞)ℓ ,

where B̄ℏ :=
∣∣∣∑ℓ

i=1t3/2
i ui(ti(· − qi, ℏ))

∣∣∣−1

2
.

Define
bℏ := max

t∈[1−δ̄, 1+δ̄]ℓ
Iℏ(ζℏ(t)).

Note that we can fix δ̄ > 0 small enough such that

ζℏ(t) ∈ Z(ρ/4) for t ∈ [1 − δ̄, 1 + δ̄]ℓ,

and B̄ℏ → 1 holds. Note also that

Ii(ui) > Ii(t
3/2
i ui(ti·)) for ti ∈ [1 − δ̄, 1 + δ̄] \ {1} .

Since

ℏdb
(∫
R3
|∇ζℏ|

2
)2

→ 0 as ℏ→ 0,

and

Iℏ(ζℏ(t))→
ℓ∑

i=1

Ii(t
3/2
i ui(ti·)) as ℏ→ 0 uniformly for t ∈ [1 − δ̄, 1 + δ̄]ℓ,

one can get the result as in [31].

Lemma 4.5. limℏ→0 bℏ = b0 and fix any κ ∈ (0, min
{
κ0,

ρv
16

}
) such that

sup
t∈∂[1−δ̄, 1+δ̄]ℓ

Iℏ(ζℏ(t)) < b0 − 2κ. (4.10)

Proof of Proposition 4.1 in the L2-supercritical case. By Lemma 4.3 and (4.10),

η(ζℏ(t)) = ζε(t) if t ∈ ∂[1 − δ̄, 1 + δ̄]ℓ, (4.11)

Iℏ(η(ζℏ(t))) ≤ b0 − κ and η(ζℏ(t)) ∈ Z(ρ) for t ∈ [1 − δ̄, 1 + δ̄]ℓ. (4.12)

Define

Φi,ℏ =

∫
1
ℏΩi

|∇u|2
 1

2−3σ
 3σki

(2 + 2σ)a

∫
1
ℏΩi

|u|2σ+2

− 1
2−3σ

, for u ∈ M.

Similar to the case in [31], there exists t1 ∈ [1 − δ̄, 1 + δ̄]ℓ such that

Φi, ℏ(η(ζℏ(t1))) = 1, i = 1, 2, · · · , ℓ. (4.13)
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We denote

ū0,ℏ := η(ζℏ(t1)), ūi, ℏ := γi, ℏū0, ℏ

 ℓ∑
i=1

∣∣∣γi, ℏū0,ℏ

∣∣∣2
2

−
1
2

.

Similar to (4.7) and (4.8), we have ∥∥∥ū0, ℏ

∥∥∥
H1(R3\∪ℓi=1

1
ℏΩi)
= oℏ(1) (4.14)

and
ℓ∑

i=1

∣∣∣γi, ℏū0, ℏ

∣∣∣2
2
= 1 + oℏ(1). (4.15)

From (4.13)–(4.15), we have

ti, ℏ :=
(∣∣∣∇ūi, ℏ

∣∣∣2
2

) 1
2−3σ

(
3σki

(2 + 2σ)a

∣∣∣ūi, ℏ

∣∣∣2σ+2

2σ+2

) 1
3σ−2

= Φi, ℏ(ū0,ℏ) + oℏ(1) = 1 + oℏ(1).

A direct calculation shows that

t∗ :=
(∣∣∣∣t− 3

2
1, ℏū1, ℏ(t−1

1, ℏ·)
∣∣∣∣
2
,
∣∣∣∣t− 3

2
2, ℏū2, ℏ(t−1

2, ℏ·)
∣∣∣∣
2
, · · · ,

∣∣∣∣t− 3
2

ℓ, ℏūℓ, ℏ(t
−1
ℓ, ℏ·)

∣∣∣∣
2

)
∈ S ℓ−1

+

and ∣∣∣∣∣∇ (
t−

3
2

i, ℏ ūi, ℏ(t−1
i, ℏ·)

)∣∣∣∣∣2
2
=

3σki

(2 + 2σ)a

∣∣∣∣t− 3
2

i, ℏ ūi, ℏ(t−1
i, ℏ·)

∣∣∣∣2σ+2

2σ+2
.

Hence by the definition of bsi , we have

ℓ∑
i=1

Ii(ui) = b0 ≤

ℓ∑
i=1

Ii

(
t−

3
2

i, ℏ ūi, ℏ(t−1
i, ℏ·)

)
=

ℓ∑
i=1

Ii(ūi, ℏ) + oℏ(1).

Similarly, one can get a contradiction. □

5. Completion of the proof

Let uℏ be the critical point of the modified function Iℏ given in Proposition 4.1.

Completion of proof of Theorem 1.1.

Proof. We show that there exists c > 0 independent of ℏ such that

∥uℏ∥2H1(R3\∪ℓi=1
1
ℏ (Ki)τ)

≤ e−
C
ℏ . (5.1)

We adopt some arguments from [3, 31]. Set
⌊
2ℏ−1τ

⌋
− 1 := nℏ. For n = 1, 2, · · · , nℏ, we take ϕn ∈

C1(R3, [0, 1]) such that 
ϕn(x) = 0, if x ∈ R3 \ En,

ϕn(x) = 1, if x ∈ En+1,

|∇ϕn(x)| ≤ 2, x ∈ R3,
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where En :=
{
x ∈ R3|dist(x, ∪ℓi=1

1
ℏ
(Ki)

τ
2 ) > n − 1

}
. Then by Proposition 3.2,

lim
ℏ→0
∥uℏ∥H1(E1) ≤ lim

ℏ→0

ℓ∑
i=1

∥ui∥H1(R3\Bℏτ(0)) = 0. (5.2)

Note that for each n = 1, 2, · · · , nℏ,

suppχℏ = R3 \ ∪ℓi=1
1
ℏ
Ωi ⊂ R

3 \ ∪ℓi=1
1
ℏ

(Ki)τ ⊂ ϕ−1
n (1).

Since
〈
I′ℏ(uℏ) + µℏJ

′(uℏ), ϕnuℏ
〉
= 0, we have

a
∫
R3
∇uℏ∇(ϕnuℏ) + ℏdb

∫
R3
|∇uℏ|2

∫
R3
∇uℏ∇(ϕnuℏ)

−

∫
R3

K(ℏx) |uℏ|2σ+2 ϕn +

∫
R3
µℏu2

ℏϕn

= − 4ℏ−1Gℏ(uℏ)
1
2

∫
R3
χℏ(∇uℏ∇(ϕnuℏ) + u2

ℏϕn)

= − 4ℏ−1Gℏ(uℏ)
1
2

∫
R3\∪ℓi=1

1
ℏΩi

(∇uℏ∇(ϕnuℏ) + u2
ℏϕn)

= − 4ℏ−1Gℏ(uℏ)
1
2

∫
R3\∪ℓi=1

1
ℏΩi

(|∇uℏ|2 + u2
ℏ) ≤ 0.

(5.3)

Therefore, by (5.3) and the Sobolev embedding,

min
{
a,
µ0

2

}
∥uℏ∥2H1(En+1)

≤

∫
R3
ϕn(a |∇uℏ|2 + µℏu2

ℏ)

≤

∫
R3

K(ℏx) |uℏ|2σ+2 ϕn − a
∫
R3

uℏ∇uℏ∇ϕn − ℏ
db

∫
R3
|∇uℏ|2

∫
R3
∇uℏ∇(ϕnuℏ)

≤ C ∥uℏ∥2σ+2
H1(En) + a ∥uℏ∥2H1(En) − a ∥uℏ∥2H1(En+1) − ℏ

db
∫
R3
|∇uℏ|2

∫
R3
∇uℏ∇(ϕnuℏ)

≤ (a +C ∥uℏ∥2σH1(E1) + oℏ(1)) ∥uℏ∥2H1(En) − (a + oℏ(1)) ∥uℏ∥2H1(En+1) ,

where −ℏdb
∫
R3 |∇uℏ|2

∫
R3 ∇uℏ∇(ϕnuℏ) ≤ oℏ(1)(2||uℏ||2H1(En) − ||uℏ||

2
H1(En+1)) as ℏ→ 0. By (5.2), we have

∥uℏ∥2H1(En+1) ≤ θ
−1
ℏ ∥uℏ∥

2
H1(En) ,

where

θℏ :=
a +min

{
a, µ0

2

}
+ oℏ(1)

a + oℏ(1)
→ 1 +min

{
1,
µ0

2a

}
as ℏ→ 0.

Nothing that nℏ ≥ τ
ℏ

for small values of ℏ, one can take some θ0 > 1 and obtain

∥uℏ∥2H1(R3\∪ℓi=1
1
ℏ (Ki)τ)

≤ ∥uℏ∥2H1(Enℏ+1) ≤ θ
−nℏ
0 ∥uℏ∥

2
H1(E1) ≤ e−

τ ln θ0
ℏ .

It follows that for small values of ℏ, Gℏ(uℏ) = 0. So uℏ is a solution to the original problem (3.1) for
small values of ℏ. □
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