Mathematics

Research article

Normalized multi-bump solutions of nonlinear Kirchhoff equations

Zhidan Shu and Jianjun Zhang*

College of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China

* Correspondence: Email: zhangjianjun09@tsinghua.org.cn

Abstract

We are concerned with the existence and concentration of multi-bump solutions for the nonlinear Kirchhoff equation $$
-\left(\varepsilon^{2} a+\varepsilon b \int_{\mathbb{R}^{3}}|\nabla v|^{2} \mathrm{~d} x\right) \Delta v+\lambda v=K(x)|v|^{2 \sigma} v, \quad x \in \mathbb{R}^{3}
$$ with an L^{2}-constraint in the L^{2}-subcritical case $\sigma \in\left(0, \frac{2}{3}\right)$ and the L^{2}-supercritical case $\sigma \in\left(\frac{2}{3}, 2\right)$. Here $\lambda \in \mathbb{R}$ appears as a Lagrange multiplier, ε is a small positive parameter and $K>0$ possesses several local maximum points. By employing the variational gluing method and the penalization technique, we prove the existence of multi-bump solutions that are concentrated at local maximum points of K for the problem above.

Keywords: Kirchhoff equation; normalized solutions; concentration behavior
Mathematics Subject Classification: 35A15, 35B25, 35B40

1. Introduction and main results

1.1. Background and motivation

In this paper, we mainly focus our interest on the existence and concentration of normalized solutions of the following nonlinear elliptic problem involving a Kirchhoff term:

$$
\begin{cases}-\left(\varepsilon^{2} a+\varepsilon b \int_{\mathbb{R}^{3}}|\nabla v|^{2} \mathrm{~d} x\right) \Delta v-K(x)|v|^{2 \sigma} v=-\lambda v & \text { in } \mathbb{R}^{3}, \tag{1.1}\\ |v|_{2}^{2}=\int_{\mathbb{R}^{3}} v^{2} \mathrm{~d} x=m_{0} \varepsilon^{\alpha}, \quad v(x) \rightarrow 0 & \text { as }|x| \rightarrow \infty,\end{cases}
$$

where a, b, α are positive real numbers and $\sigma \in(0,2), \lambda$ is unkown and appears as a Lagrange multiplier. Equation (1.1) is related to the stationary solutions of

$$
\begin{equation*}
u_{t t}-\left(a+b \int_{\mathbb{R}^{3}}|\nabla u|^{2}\right) \Delta u=g(x, t) . \tag{1.2}
\end{equation*}
$$

Equation (1.2) was first proposed by Kirchhoff in [13] and regarded as an extension of the classical D'Alembert's wave equation, which describes free vibrations of elastic strings. Kirchhoff-type problems also appear in other fields like biological systems. To better understand the physical background, we refer the readers to $[1,2,4,14]$. From a mathematical point of view, problem (1.1) is not a pointwise identity because of the appearance of the term $\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2}\right) \Delta u$. Due to such a characteristic, Kirchhoff- type equations constitute nonlocal problems. Compared with the semilinear states (i.e., setting $b=0$ in the above two equations), the nonlocal term creates some additional mathematical difficulties which make the study of such problems particularly interesting.

In the literature about the following related unconstrained Kirchhoff problems, there have been a lot of results on the existence and concentration of solutions for small values of ε.

$$
\begin{equation*}
-\left(\varepsilon^{2} a+\varepsilon b \int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u+V(x) u=f(u), x \in \mathbb{R}^{3} . \tag{1.3}
\end{equation*}
$$

In physics, such solutions are called the semiclassical states for small values of ε. In [10], the existence, multiplicity and concentration behavior of positive solutions to the Kirchhoff problem (1.3) have been studied by He and Zou, where $V(x)$ is a continuous function and f is a subcritical nonlinear term. For the critical case, Wang et al., in [28] obtained some multiplicity and concentration results of positive solutions for the Kirchhoff problem (1.3). And He et al., in [11] obtained the concentration of solutions in the critical case. Recently, multi-peak solutions were established by Luo et al., in [18] for the following problem:

$$
\begin{equation*}
-\left(\varepsilon^{2} a+\varepsilon b \int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u+V(x) u=|u|^{p-2} u, x \in \mathbb{R}^{3} . \tag{1.4}
\end{equation*}
$$

In [15] Li et al., revisited the singular perturbation problem (1.4), where $V(x)$ satisfies some suitable assumptions. They established the uniqueness and nondegeneracy of positive solutions to the following limiting Kirchhoff problem:

$$
-\left(a+b \int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u+u=|u|^{p-2} u, x \in \mathbb{R}^{3} .
$$

By the Lyapunov-Schmidt reduction method and a local Pohozaev identity, single-peak solutions were obtained for (1.4). In the past decades, other related results have also been widely studied, such as the existence of ground states, positive solutions, multiple solutions and sign-changing solutions to (1.4). We refer the reader to $[7,9,10,16,29]$ and the references therein.

In recent years, the problems on normalized solutions have attracted much attention from many researchers. In [25,26], Stuart considered the problem given by

$$
\left\{\begin{array}{l}
-\Delta u+\lambda u=f(u), \quad x \in \mathbb{R}^{N}, \tag{1.5}\\
\int_{\mathbb{R}^{N}}|u|^{2} \mathrm{~d} x=c
\end{array}\right.
$$

in the mass-subcritical case and obtained the existence of normalized solutions by seeking a global minimizer of the energy functional. In [12], Jeanjean considered the mass supercritical case and studied the existence of normalized solutions to problem (1.5) by using the mountain pass lemma. For the Sobolev critical case, Soave in [24] considered normalized ground state solutions of problem (1.5)
with $f(u)=\mu|u|^{q-2} u+|u|^{*^{*}-2} u$, where $2^{*}=2 N /(N-2), N \geq 3$ is the Sobolev critical exponent. For $f(u)=g(u)+|u|^{*}-2 u$ with a mass critical or supercritical state but Sobolev subcritical nonlinearity g, we refer the reader to [19]. Now, we would like to mention some related results on Kirchhoff problems. The authors of $[29,30]$ considered the problem in the mass subcritical and mass critical cases:

$$
\left\{\begin{array}{l}
-\left(a+b \int_{\mathbb{R}^{N}}|\nabla v|^{2} \mathrm{~d} x\right) \Delta v=\lambda v+f(v) \quad \text { in } \mathbb{R}^{N} \tag{1.6}\\
|v|_{2}^{2}=\int_{\mathbb{R}^{N}} v^{2} \mathrm{~d} x=c^{2}
\end{array}\right.
$$

with $a, b>0$ and $p \in\left(2,2^{*}\right)$. The existence and non-existence of normalized solutions are obtained. In [20], the Kirchhoff problem (1.6) was investigated for $f(u)=\mu|u|^{q-2} u+|u|^{2^{*}-2} u$ and $N=3$. With the aid of a subcritical approximation approach, the existence of normalized ground states can be obtained for $\mu>0$ large enough. Moreover, the asymptotic behavior of ground state solutions is also considered as $c \rightarrow \infty$. As for further results on Sobolev critical Kirchhoff equations and high energy normalized solutions, we refer the reader to [21,22,32].

In what follows, we turn our attention to normalized multi-bump solutions of the Kirchhoff problem (1.1). For the related results on Schrödinger equations, we refer the reader to the references [27,31]. In [31], the following nonlinear Schrödinger equation was studied by Zhang and Zhang:

$$
\begin{cases}-\hbar^{2} \Delta v-K(x)|v|^{2 \sigma} v=-\lambda v & \text { in } \mathbb{R}^{N}, \tag{1.7}\\ |v|_{2}^{2}=\int_{\mathbb{R}^{N}} v^{2} \mathrm{~d} x=m_{0} \hbar^{\alpha}, \quad v(x) \rightarrow 0 & \text { as }|x| \rightarrow \infty .\end{cases}
$$

For the case that the parameter \hbar goes to 0 , the authors of [31] constructed normalized multi-bump solutions around the local maximum points of K by employing the variational gluing methods of Séré [23] and Zelati and Rabinowitz [5, 6], as well as the penalization technique [31]. Soon afterward, Tang et al., in [27] considered normalized solutions to the nonlinear Schrödinger problem

$$
\begin{equation*}
-\Delta u+\lambda a(x) u+\mu u=|u|^{2 \sigma} u, \quad x \in \mathbb{R}^{N} \tag{1.8}
\end{equation*}
$$

with an L^{2}-constraint. By taking the limit as $\lambda \rightarrow+\infty$, they derive the existence of normalized multibump solutions with each bump concentrated around the local minimum set of $a(x)$.

1.2. Main result of this paper

Motivated by [27,31], the present paper is devoted to the existence and concentration behavior of the multi-bump solutions for the Kirchhoff problem (1.1). In contrast to the nonlinear Schrödinger problems, the Kirchhoff term brings us some additional difficulties. We intend to obtain the existence of multi-bump solutions for (1.1).

Before stating our main result, we give the following assumptions:
(A) $\alpha \in\left(3, \frac{2}{\sigma}\right)$ if $\sigma \in\left(0, \frac{2}{3}\right)$ and $\alpha \in\left(\frac{2}{\sigma}, 3\right)$ if $\sigma \in\left(\frac{2}{3}, 2\right)$.
$(K) K \in\left(\mathbb{R}^{3},(0,+\infty)\right) \cap L^{\infty}\left(\mathbb{R}^{3}\right)$ and there are $\ell \geq 2$ mutually disjoint bounded domains $\Omega_{i} \subset \mathbb{R}^{3}$, $i=1,2, \cdots, \ell$ such that

$$
k_{i}:=\max _{x \in \Omega_{i}} K(x)>\max _{x \in \partial \Omega_{i}} K(x) .
$$

Denote $\mathcal{K}_{i}=\left\{x \in \Omega_{i} \mid K(x)=k_{i}\right\}$, which is nonempty and compact and set

$$
\beta:=\frac{2-\alpha \sigma}{2-3 \sigma} .
$$

Now, we state our main result as follows.
Theorem 1.1. Assume that (A) and (K). There is $\varepsilon_{0}>0$ such that for each $\varepsilon \in\left(0, \varepsilon_{0}\right)$, it follows that (1.1) admits a solution $\left(\lambda_{\varepsilon}, v_{\varepsilon}\right) \in \mathbb{R} \times H^{1}\left(\mathbb{R}^{3}\right)$ with the following properties:
(a) v_{ε} admits exactly ℓ local maximum points $P_{i, \varepsilon}, i=1,2, \cdots, \ell$ that satisfy

$$
\lim _{\varepsilon \rightarrow 0} \operatorname{dist}\left(P_{i, \varepsilon}, \mathcal{K}_{i}\right)=0
$$

(b) $\mu=\varepsilon^{\frac{2 \sigma(3-\alpha)}{2-3 \sigma}} \lambda_{\varepsilon} \rightarrow \mu_{0}$ and $\| \varepsilon^{\frac{3-\alpha}{2-3 \sigma}} v_{\varepsilon}\left(\varepsilon^{\beta} \cdot\right)-\sum_{i=1}^{\ell} u_{i}\left(\cdot-\varepsilon^{-\beta} P_{i, \varepsilon} \|_{H^{1}} \rightarrow 0\right.$ as $\varepsilon \rightarrow 0$, where

$$
\begin{gathered}
\mu_{0}=m_{0}^{\frac{2 \sigma}{2-3 \sigma}} a^{-\frac{3 \sigma}{2-3 \sigma}}\left(\sum_{i=1}^{\ell} \theta_{i}^{-\frac{1}{\sigma}}|U|_{2}^{2}\right)^{-\frac{2 \sigma}{2-3 \sigma}}, \\
u_{i}=\theta_{i}^{-\frac{1}{2 \sigma}} \mu^{\frac{1}{2 \sigma}} U\left(\sqrt{\frac{\mu}{a}} \cdot\right), i=1,2, \cdots, \ell,
\end{gathered}
$$

and $U \in H^{1}\left(\mathbb{R}^{3}\right)$ is a positive solution to

$$
\left\{\begin{array}{lc}
-\Delta U+U=|U|^{2 \sigma} U & \text { in } \mathbb{R}^{3}, \tag{1.9}\\
U(0)=\max _{x \in \mathbb{R}^{3}} U(x), & \lim _{x \rightarrow \infty} U(x)=0 .
\end{array}\right.
$$

(c) There are constants $C, c>0$ that are independent of ε such that

$$
\left|v_{\varepsilon}\right| \leq C \varepsilon^{-\frac{3-\alpha}{2-3 \sigma}} \exp \left\{-c \varepsilon^{-\beta} \operatorname{dist}\left(x, \cup_{i=1}^{\ell} \mathcal{K}_{i}\right)\right\} .
$$

1.3. The strategy for the proof

The proof of Theorem 1.1 is similar to that in [31]. By virtue of the change of variables techinque, we have

$$
u(\cdot)=\varepsilon^{\frac{3-\alpha}{2-3 \sigma}} v\left(\varepsilon^{\beta} \cdot\right) .
$$

Equation(1.1) is transformed into the following problem:

$$
\begin{cases}-\left(a+\varepsilon^{\frac{(3-\alpha)(\sigma-2)}{2-3 \sigma}} b|\nabla u|_{2}^{2}\right) \Delta u-K\left(\varepsilon^{\beta} x\right)|u|^{2 \sigma} u=-\lambda \varepsilon^{\frac{2(3-\alpha)}{2-3 \sigma}} u & \text { in } \mathbb{R}^{3}, \\ |u|_{2}^{2}=m_{0}, \quad u(x) \rightarrow 0 & \text { as }|x| \rightarrow \infty .\end{cases}
$$

Let

$$
\hbar:=\varepsilon^{\beta}, \mu=\varepsilon^{\frac{2 \sigma(3-\alpha)}{2-3 \sigma \sigma}} \lambda, d=\frac{(3-\alpha)(\sigma-2)}{2-\alpha \sigma} .
$$

Then, under the assumption (A) and given $\beta>0$ and $d>0$, we have the following:

$$
\begin{cases}-\left(a+\hbar^{d} b|\nabla u|_{2}^{2}\right) \Delta u-K(\hbar x)|u|^{2 \sigma} u=-\mu u & \text { in } \mathbb{R}^{3}, \tag{1.10}\\ |u|_{2}^{2}=m_{0}, \quad u(x) \rightarrow 0 & \text { as }|x| \rightarrow \infty .\end{cases}
$$

Define the energy functional

$$
E_{\hbar}(u)=\frac{a}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2}+\frac{\hbar^{d} b}{4}\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2}\right)^{2}-\frac{1}{2 \sigma+2} \int_{\mathbb{R}^{3}} K(\hbar x)|u|^{2 \sigma+2} .
$$

Then, a solution $\left(\mu_{\hbar}, u_{\hbar}\right)$ of (1.10) can be obtained as a critical point of E_{\hbar} that is restrained on

$$
\mathcal{M}:=\left\{\left.u \in H^{1}\left(\mathbb{R}^{3}\right)| | u\right|_{2} ^{2}=m_{0}\right\} .
$$

By adopting similar deformation arguments in $[5,6,23,31]$, we show that the Lagrange multiplier μ_{\hbar} satisfies

$$
\mu_{\hbar}=\mu_{0}+o_{\hbar}(1), \quad u_{\hbar}=\sum_{i=1}^{\ell} u_{i}\left(\cdot-q_{i, \hbar}\right)+o_{\hbar}(1) \quad \text { in } H^{1}\left(\mathbb{R}^{3}\right),
$$

where $q_{i, \hbar}$ satisfies the condition that $\operatorname{dist}\left(\hbar q_{i, \hbar}, \mathcal{K}_{i}\right) \rightarrow 0$ as $\hbar \rightarrow 0, i=1,2, \cdots, \ell$.
This paper is organized as follows: In Section 2, we study the existence and variational structure of solutions to the limit equation of Eq (1.1). In Section 3, we introduce the penalized function which satisfies the Palais-Smale condition. In Section 4, we prove the existence of a critical point of the penalized function in the subcritical and supercritical cases. In Section 5, we show that the critical point is a solution to the original problem through the application of a decay estimate.
Notation : In this paper, we make use of the following notations:

- $|u|_{p}:=\left(\int_{\mathbb{R}^{3}}|u|^{p}\right)^{\frac{1}{p}}$, where $u \in L^{p}\left(\mathbb{R}^{3}\right), p \in[1, \infty)$;
- $\|u\|:=\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2}+|u|^{2}\right)^{\frac{1}{2}}$, where $u \in H^{1}\left(\mathbb{R}^{3}\right)$;
- $b^{ \pm}=\max \{0, \pm b\}$ for $b \in \mathbb{R}$;
- $B(x, \rho)$ denotes an open ball centered at $x \in \mathbb{R}^{3}$ with radius $\rho>0$;
- For a domain $D \subset \mathbb{R}^{3}$, we denote $\frac{1}{\hbar} D:=\left\{x \in \mathbb{R}^{3} \mid \hbar x \in D\right\}$;
- Unless stated otherwise, δ and C are general constants.

2. The limit system

Let $m_{0}, \theta_{1}, \theta_{2}, \cdots, \theta_{\ell}$ be a series of positive numbers. We consider the following system:

$$
\left\{\begin{array}{c}
-a \Delta v_{i}-\theta_{i}\left|v_{i}\right|^{2 \sigma} v_{i}=-\mu v_{i} \tag{2.1}\\
\sum_{i=1}^{\ell}\left|v_{i}\right|_{2}^{2}=m_{0}, \\
v_{i}(x)>0, \quad \lim _{|x| \rightarrow \infty} v_{i}(x)=0, \quad i=1,2, \cdots, \ell
\end{array}\right.
$$

Next, we refer the reader to [31] to show Lemmas 2.1-2.3 as follows.
Lemma 2.1. For $\sigma \in\left(0, \frac{2}{3}\right) \cup\left(\frac{2}{3}, 2\right)$, system (2.1) has a unique solution $\left(\mu, v_{1}, v_{2}, \cdots, v_{\ell}\right) \in \mathbb{R} \times$ $H^{1}\left(\mathbb{R}^{3}\right)^{\ell}$ up to translations of each $v_{i}, i=1,2, \cdots, \ell$, where

$$
\begin{equation*}
\mu=m_{0}^{\frac{2 \sigma}{2-3 \sigma}} a^{-\frac{3 \sigma}{2-3 \sigma}}\left(\sum_{i=1}^{\ell} \theta_{i}^{-\frac{1}{\sigma}}|U|_{2}^{2}\right)^{-\frac{2 \sigma}{2-3 \sigma}}, \quad v_{i}(x)=\theta_{i}^{-\frac{1}{2 \sigma}} \mu^{\frac{1}{2 \sigma}} U\left(\sqrt{\frac{\mu}{a}} x\right), \tag{2.2}
\end{equation*}
$$

and $U \in H^{1}\left(\mathbb{R}^{3}\right)$ is the unique positive radial solution to (1.9).

By using (2.2), we can obtain the mass distribution for each $v_{i}, i=1,2, \cdots, \ell$ in the limit system (2.1), as follows:

$$
\left|v_{i}\right|_{2}^{2}=\frac{m_{0} \theta_{i}^{-\frac{1}{\sigma}}}{\sum_{i=1}^{\ell} \theta_{i}^{-\frac{1}{\sigma}}}
$$

and for each $i=1,2, \cdots, \ell, v_{i}$ is the ground state of

$$
I_{\theta_{i}}(u)=\frac{a}{2}|\nabla u|_{2}^{2}-\frac{\theta_{i}}{2 \sigma+2}|u|_{2 \sigma+2}^{2 \sigma+2}
$$

on

$$
\mathcal{M}_{i}:=\left\{\left.u \in H^{1}\left(\mathbb{R}^{3}\right)| | u\right|_{2} ^{2}=\left|v_{i}\right|_{2}^{2}\right\} .
$$

Lemma 2.2. $\sum_{i=1}^{\ell} I_{\theta_{i}}\left(v_{i}\right)$ is continuous and strictly decreasing with respect to m_{0} and $\theta_{i}, i=1,2, \cdots, \ell$, where v_{i} is determined as in Lemma 2.1.

We next characterize the energy level of $\sum_{i=1}^{\ell} I_{\theta_{i}}\left(v_{i}\right)$. Let

$$
s=\left(s_{1}, s_{2}, \cdots, s_{\ell}\right) \in(0,+\infty)^{\ell}
$$

and for each $s_{i}>0$, the minimizing problem

$$
b_{s_{i}}=\inf \left\{\left.I_{\theta_{i}}(v)| | v\right|_{2} ^{2}=s_{i}^{2},|\nabla v|_{2}^{2}=\frac{3 \theta_{i} \sigma}{(2 \sigma+2) a}|v|_{2 \sigma+2}^{2 \sigma+2}\right\}
$$

is achieved for each $i=1,2, \cdots, \ell$ given some radial function $w_{s_{i}}$. In particular, $v_{i}=w_{s_{i}^{0}}$ for $s_{i}^{0}=\left|v_{i}\right|_{2}$. Moreover, if $\sigma \in\left(0, \frac{2}{3}\right)$, then

$$
b_{s_{i}}=\inf \left\{I_{\theta_{i}}(v)\left|v \in H^{1}\left(\mathbb{R}^{3}\right),|v|_{2}^{2}=s_{i}^{2}\right\}\right.
$$

and if $\sigma \in\left(\frac{2}{3}, 2\right)$, then

$$
b_{s_{i}}=\inf \left\{\sup _{t>0} I_{\theta_{i}}\left(t^{\frac{3}{2}} v(t \cdot)\right)\left|v \in H^{1}\left(\mathbb{R}^{3}\right),|v|_{2}^{2}=s_{i}^{2}\right\} .\right.
$$

Set

$$
S_{+}^{\ell-1}:=\left\{s=\left(s_{1}, s_{2}, \cdots, s_{\ell}\right) \in\left(0, \sqrt{m_{0}}\right)^{\ell} \mid \sum_{i=1}^{\ell} s_{i}^{2}=m_{0}, i=1,2, \cdots, \ell\right\}
$$

and define $E(s):=\sum_{i=1}^{\ell} I_{\theta_{i}}\left(w_{s_{i}}\right)$ for $s \in S_{+}^{\ell-1}$.
Lemma 2.3. Denote $s^{0}=\left(s_{1}^{0}, s_{2}^{0}, \cdots, s_{\ell}^{0}\right)=\left(\left|v_{1}\right|_{2},\left|v_{2}\right|_{2}, \cdots,\left|v_{\ell}\right|_{2}\right)$. For each $s \in S_{+}^{\ell-1} \backslash\left\{s^{0}\right\}$, the following statements hold:
(a) If $\sigma \in\left(0, \frac{2}{3}\right)$, then $\sum_{i=1}^{\ell} I_{\theta_{i}}\left(v_{i}\right)=E\left(s^{0}\right)>E(s)$;
(b) If $\sigma \in\left(\frac{2}{3}, 2\right)$, then $\sum_{i=1}^{\ell} I_{\theta_{i}}\left(v_{i}\right)=E\left(s^{0}\right)<E(s)$.

3. Existence of constrained localized Palais-Smale sequences

In this section, we adopt the penalization argument and the deformation approach in [31] to obtain a constrained localized Palais-Smale sequence. Denote $\left(\mu_{0}, u_{i}\right)$ as the solution of the limit system (2.1) with $m_{0}=1$ and $\theta_{i}=k_{i}, i=1,2, \cdots, \ell$, where $\left(k_{i}\right)_{i=1}^{\ell}$ denotes positive numbers given by (K). Next, we set $b_{0}:=\sum_{i=1}^{\ell} I_{i}\left(u_{i}\right)$, where

$$
I_{i}(u):=I_{k_{i}}(u)=\frac{a}{2}|\nabla u|_{2}^{2}-\frac{k_{i}}{2 \sigma+2}|u|_{2 \sigma+2}^{2 \sigma+2} .
$$

Then, we will find a positive solution $\left(\mu_{\hbar}, u_{\hbar}\right)$ to the following system:

$$
\begin{cases}-\left(a+\hbar^{d} b|\nabla u|_{2}^{2}\right) \Delta u-K(\hbar x)|u|^{2 \sigma} u=-\mu u & \text { in } \mathbb{R}^{3} \tag{3.1}\\ |u|_{2}^{2}=1, \quad u(x) \rightarrow 0 & \text { as }|x| \rightarrow \infty\end{cases}
$$

satisfying

$$
\mu_{\hbar}=\mu_{0}+o_{\hbar}(1), \quad u_{\hbar}(x)=\sum_{i=1}^{\ell} u_{i}\left(x-q_{i, \hbar}\right)+o_{\hbar}(1) \quad \text { in } H^{1}\left(\mathbb{R}^{3}\right)
$$

with $\hbar q_{i, \hbar} \rightarrow q_{i} \in \mathcal{K}_{i}$.
Set $\mathcal{M}:=\left\{\left.u \in H^{1}\left(\mathbb{R}^{3}\right)| | u\right|_{2}=1\right\}$ and for $i=1,2, \cdots, \ell$ and $\tau>0$, define

$$
\left(\mathcal{K}_{i}\right)^{\tau}:=\left\{x \in \mathbb{R}^{3} \mid \operatorname{dist}\left(x, \mathcal{K}_{i}\right) \leq \tau\right\} \subset \Omega_{i} .
$$

Define the following equation for each $\rho \in\left(0, \frac{1}{10} \min _{1 \leq i \leq \ell}\left\|u_{i}\right\|_{L^{2}\left(B_{1}(0)\right)}\right)$:

$$
Z(\rho)=\left\{u=\sum_{i=1}^{\ell} u_{i}\left(x-q_{i, \hbar}\right)+v \in \mathcal{M} \mid \hbar q_{i, \hbar} \in\left(\mathcal{K}_{i}\right)^{\tau},\|v\| \leq \rho\right\} .
$$

For $u \in H^{1}\left(\mathbb{R}^{3}\right)$, consider the penalized energy functional $I_{\hbar}: H^{1}\left(\mathbb{R}^{3}\right) \rightarrow \mathbb{R}$ is given by

$$
I_{\hbar}(u):=E_{\hbar}(u)+G_{\hbar}(u),
$$

where

$$
G_{\hbar}(u)=\left(\hbar^{-1} \int_{\mathbb{R}^{3}} \chi_{\hbar}(x)\left(|\nabla u|^{2}+u^{2}\right) \mathrm{d} x-1\right)_{+}^{2}
$$

and

$$
\chi_{\hbar}= \begin{cases}0 & x \notin \mathbb{R}^{3} \backslash \cup_{i=1}^{\ell} \frac{1}{\hbar} \Omega_{i}, \\ 1 & x \in \mathbb{R}^{3} \backslash \cup_{i=1}^{\ell} \frac{1}{\hbar} \Omega_{i} .\end{cases}
$$

We also denote

$$
J(u)=\frac{1}{2}|u|_{2}^{2} \quad \text { for } u \in H^{1}\left(\mathbb{R}^{3}\right)
$$

Note that if $u_{\hbar} \in \mathcal{M}$ with $\left\|u_{\hbar}\right\|_{H^{1}\left(\mathbb{R}^{3} \backslash \cup_{i=1}^{e} \frac{1}{\hbar} \Omega_{i}\right)}^{2}<\hbar$ is a critical point of $\left.I_{\hbar}\right|_{\mathcal{M}}$, then it solves (3.1) for some μ_{\hbar}. Denote the tangent space of \mathcal{M} at $u \in \mathcal{M}$ by

$$
T_{u} \mathcal{M}=\left\{v \in H^{1}\left(\mathbb{R}^{3}\right) \mid \int_{\mathbb{R}^{3}} u v=0\right\} .
$$

Lemma 3.1. For any $L \in \mathbb{R}$, there exists $\hbar_{L}>0$ such that for any fixed $\hbar \in\left(0, \hbar_{L}\right)$, if a sequence $\left\{u_{n, \hbar}\right\} \subset Z(\rho)$ such that

$$
\begin{equation*}
I_{\hbar}\left(u_{n, \hbar}\right) \leq L, \quad\left\|I_{\left.\hbar\right|_{\mathcal{M}} ^{\prime}}^{\prime}\left(u_{n, \hbar}\right)\right\|_{T_{u_{n, \hbar}^{*}} \mathcal{M}} \rightarrow 0, \tag{3.2}
\end{equation*}
$$

as $n \rightarrow \infty$, then $u_{n, \hbar}$ has a strong convergent subsequence in $H^{1}\left(\mathbb{R}^{3}\right)$.
Proof. Set $u_{n, \hbar}=\sum_{i=1}^{\ell} u_{i}\left(x-z_{n, i, \hbar}\right)+v_{n, \hbar}$ with $\hbar z_{n, i, \hbar} \in\left(\mathcal{K}_{i}\right)^{\tau}$ and $\left\|v_{n, \hbar}\right\| \leq \rho$. It follows from $u_{n, \hbar} \in Z(\rho)$ that $\left\|u_{n, \hbar}\right\| \leq \rho+\sum_{i=1}^{\ell}\left\|u_{i}\right\|$, which is bounded. Then, by

$$
I_{\hbar}\left(u_{n, \hbar}\right)+\frac{1}{2 \sigma+2} \int_{\mathbb{R}^{3}} K(\hbar x)\left|u_{n, \hbar}\right|^{2 \sigma+2}=\frac{a}{2}\left|\nabla u_{n, \hbar}\right|_{2}^{2}+\frac{\hbar^{d} b}{4}\left|\nabla u_{n, \hbar}\right|_{2}^{4}+G_{\hbar}\left(u_{n, \hbar}\right),
$$

we have that $G_{\hbar}\left(u_{n, \hbar}\right) \leq I_{\hbar}\left(u_{n, \hbar}\right)+\frac{1}{2 \sigma+2} \int_{\mathbb{R}^{3}} K(\hbar x)\left|u_{n, \hbar}\right|^{2 \sigma+2} \leq C_{L}$ for some $C_{L}>0$ that is independent of \hbar and n. From the assumption (3.2), for some $\mu_{n, \hbar} \in \mathbb{R}$, we deduce that

$$
\begin{equation*}
I_{\hbar}^{\prime}\left(u_{n, \hbar}\right)+\mu_{n, \hbar} J^{\prime}\left(u_{n, \hbar}\right) \rightarrow 0 \quad \text { in } H^{-1}, \quad \text { as } n \rightarrow \infty . \tag{3.3}
\end{equation*}
$$

We have

$$
\begin{aligned}
& \left|\mu_{n, \hbar}\right|=I_{\hbar}^{\prime}\left(u_{n, \hbar}\right) u_{n, \hbar}+o(1) \\
& \leq a \int_{\mathbb{R}^{3}}\left|\nabla u_{n, \hbar}\right|^{2}+\hbar^{d} b\left(\int_{\mathbb{R}^{3}}\left|\nabla u_{n, \hbar}\right|^{2}\right)^{2}-\int_{\mathbb{R}^{3}} K(\hbar x)\left|u_{n, \hbar}\right|^{2 \sigma+2}+G_{\hbar}^{\prime}\left(u_{n, \hbar}\right) u_{n, \hbar} \\
& \leq C\left(\left\|u_{n, \hbar}\right\|^{2}+\left\|u_{n, \hbar}\right\|^{4}+\left\|u_{n, \hbar}\right\|^{2 \sigma+2}+G_{\hbar}\left(u_{n, \hbar}\right)+G_{\hbar}\left(u_{\left.n, \hbar)^{\frac{1}{2}}\right)}\right.\right. \\
& \leq C_{L}^{*},
\end{aligned}
$$

where $C_{L}^{*}>0$ is independent of \hbar and n. Then up to a subsequence, $\mu_{n, \hbar} \rightarrow \mu_{\hbar}$ in \mathbb{R} and $u_{n, \hbar} \rightharpoonup u_{\hbar}=$ $\sum_{i=1}^{\ell} u_{i}\left(x-z_{i, \hbar}\right)+v_{\hbar}$ in $H^{1}\left(\mathbb{R}^{3}\right)$ with $z_{n, i, \hbar} \rightarrow z_{i, \hbar} \in \frac{1}{\hbar}\left(\mathcal{K}_{i}\right)^{\tau}$ and $v_{n, \hbar} \rightharpoonup v_{\hbar}$.

Next, for any $\varphi \in H^{1}\left(\mathbb{R}^{3}\right)$, note that $\lim _{n \rightarrow \infty} I_{\hbar}^{\prime}\left(u_{n, \hbar}\right) \varphi+\mu_{n, \hbar} J^{\prime}\left(u_{n, \hbar}\right) \varphi=0,\left(\mu_{\hbar}, u_{\hbar}\right)$ satisfies

$$
\begin{align*}
& a \int_{\mathbb{R}^{3}} \nabla u_{\hbar} \nabla \varphi+\hbar^{d} b \int_{\mathbb{R}^{3}}\left|\nabla u_{\hbar}\right|^{2} \int_{\mathbb{R}^{3}} \nabla u_{\hbar} \nabla \varphi-\int_{\mathbb{R}^{3}} K(\hbar x)\left|u_{\hbar}\right|^{2 \sigma} u_{\hbar} \varphi \\
& +\int_{\mathbb{R}^{3}} \mu_{\hbar} u_{\hbar} \varphi+Q_{\hbar} \int_{\mathbb{R}^{3}} \chi_{\hbar}\left(\nabla u_{\hbar} \nabla \varphi+u_{\hbar} \varphi\right)=0, \tag{3.4}
\end{align*}
$$

where $Q_{\hbar}=4 \hbar^{-1} \lim _{n \rightarrow \infty} G_{\hbar}\left(u_{n, \hbar}\right)^{\frac{1}{2}} \geq 0$. Then, we claim that \hbar_{L} and μ_{L} are two positive constants such that $\mu_{\hbar}>\mu_{L}$ for each $\hbar \in\left(0, \hbar_{L}\right)$. Otherwise, we assume that $\mu_{\hbar} \rightarrow \mu \leq 0$ as $\hbar \rightarrow 0$ up to a subsequence. Because u_{\hbar} is bounded in $H^{1}\left(\mathbb{R}^{3}\right)$, we can assume that $u_{\hbar}\left(\cdot+z_{1, \hbar}\right) \rightharpoonup u$. Note that

$$
\liminf _{\hbar \rightarrow 0}\left\|u_{\hbar}\left(\cdot+z_{i, \hbar}\right)\right\|_{L^{2}\left(B_{1}(0)\right)} \geq\left\|u_{i}\right\|_{L^{2}\left(B_{1}(0)\right)}-\rho>0
$$

We can obtain that $u \neq 0$ if $\rho>0$ is small. Then set $\varphi=\psi\left(x-z_{1, \hbar}\right)$ in (3.4) for each $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$ and take the limit $\hbar \rightarrow 0$, that is

$$
\begin{aligned}
& \lim _{\hbar \rightarrow 0}\left[a \int_{\mathbb{R}^{3}} \nabla u_{\hbar} \nabla \psi\left(x-z_{1, \hbar}\right)+\hbar^{d} b \int_{\mathbb{R}^{3}}\left|\nabla u_{\hbar}\right|^{2} \int_{\mathbb{R}^{3}} \nabla u_{\hbar} \nabla \psi\left(x-z_{1, \hbar}\right)\right. \\
& -\int_{\mathbb{R}^{3}} K(\hbar x)\left|u_{\hbar}\right|^{2 \sigma} u_{\hbar} \psi\left(x-z_{1, \hbar}\right)+\int_{\mathbb{R}^{3}} \mu_{\hbar} u_{\hbar} \psi\left(x-z_{1, \hbar}\right) \\
& \left.+Q_{\hbar} \int_{\mathbb{R}^{3}} \chi_{\hbar}\left(\nabla u_{\hbar} \nabla \psi\left(x-z_{1, \hbar}\right)+u_{\hbar} \psi\left(x-z_{1, \hbar}\right)\right)\right]=0 .
\end{aligned}
$$

Using the boundedness of u_{\hbar} and $d>0$, we have

$$
\hbar^{d} b \int_{\mathbb{R}^{3}}\left|\nabla u_{\hbar}\right|^{2} \int_{\mathbb{R}^{3}} \nabla u_{\hbar} \nabla \psi\left(x-z_{1, \hbar}\right)=o(1)
$$

We see that u is a nontrivial solution to $-a \Delta u+\mu u=k_{0}|u|^{2 \sigma} u$ in $H^{1}\left(\mathbb{R}^{3}\right)$ for some $k_{0}>0$, which is impossible by Lemma 2.1.

Setting $\varphi=u_{n, \hbar}-u_{\hbar}$ in (3.4), we have

$$
\begin{align*}
& a \int_{\mathbb{R}^{3}} \nabla u_{\hbar} \nabla\left(u_{n, \hbar}-u_{\hbar}\right)+\hbar^{d} b \int_{\mathbb{R}^{3}}\left|\nabla u_{\hbar}\right|^{2} \int_{\mathbb{R}^{3}} \nabla u_{\hbar} \nabla\left(u_{n, \hbar}-u_{\hbar}\right) \\
& -\int_{\mathbb{R}^{3}} K(\hbar x)\left|u_{\hbar}\right|^{2 \sigma} u_{\hbar}\left(u_{n, \hbar}-u_{\hbar}\right)+\int_{\mathbb{R}^{3}} \mu_{\hbar} u_{\hbar}\left(u_{n, \hbar}-u_{\hbar}\right) \tag{3.5}\\
& +Q_{\hbar} \int_{\mathbb{R}^{3}} \chi_{\hbar}\left(\nabla u_{\hbar} \nabla\left(u_{n, \hbar}-u_{\hbar}\right)+u_{\hbar}\left(u_{n, \hbar}-u_{\hbar}\right)\right)=0 .
\end{align*}
$$

Then it follows from (3.3) that

$$
\left\langle I_{\hbar}^{\prime}\left(u_{n, \hbar}\right)+\mu_{n, \hbar} J^{\prime}\left(u_{n, \hbar}\right), u_{n, \hbar}-u_{\hbar}\right\rangle=o(1)\left\|u_{n, \hbar}-u_{\hbar}\right\|
$$

That is,

$$
\begin{align*}
& a \int_{\mathbb{R}^{3}} \nabla u_{n, \hbar} \nabla\left(u_{n, \hbar}-u_{\hbar}\right)+\hbar^{d} b \int_{\mathbb{R}^{3}}\left|\nabla u_{n, \hbar}\right|^{2} \int_{\mathbb{R}^{3}} \nabla u_{n, \hbar} \nabla\left(u_{n, \hbar}-u_{\hbar}\right) \\
& -\int_{\mathbb{R}^{3}} K(\hbar x)\left|u_{n, \hbar}\right|^{2 \sigma} u_{n, \hbar}\left(u_{n, \hbar}-u_{\hbar}\right)+\int_{\mathbb{R}^{3}} \mu_{n, \hbar} u_{n, \hbar}\left(u_{n, \hbar}-u_{\hbar}\right) \tag{3.6}\\
& +Q_{n, \hbar} \int_{\mathbb{R}^{3}} \chi_{\hbar}\left(\nabla u_{n, \hbar} \nabla\left(u_{n, \hbar}-u_{\hbar}\right)+u_{n, \hbar}\left(u_{n, \hbar}-u_{\hbar}\right)\right) \\
& =o(1)\left\|u_{n, \hbar}-u_{\hbar}\right\| .
\end{align*}
$$

We can show that for n large enough,

$$
\begin{align*}
& \int_{\mathbb{R}^{3}}\left|\nabla u_{n, \hbar}\right|^{2} \int_{\mathbb{R}^{3}} \nabla u_{n, \hbar} \nabla\left(u_{n, \hbar}-u_{\hbar}\right)-\int_{\mathbb{R}^{3}}\left|\nabla u_{\hbar}\right|^{2} \int_{\mathbb{R}^{3}} \nabla u_{\hbar} \nabla\left(u_{n, \hbar}-u_{\hbar}\right) \\
= & \int_{\mathbb{R}^{3}}\left|\nabla u_{n, \hbar}\right|^{2} \int_{\mathbb{R}^{3}} \nabla u_{n, \hbar} \nabla\left(u_{n, \hbar}-u_{\hbar}\right)-\int_{\mathbb{R}^{3}}\left|\nabla u_{n, \hbar}\right|^{2} \int_{\mathbb{R}^{3}} \nabla u_{\hbar} \nabla\left(u_{n, \hbar}-u_{\hbar}\right) \\
& +\int_{\mathbb{R}^{3}}\left|\nabla u_{n, \hbar}\right|^{2} \int_{\mathbb{R}^{3}} \nabla u_{\hbar} \nabla\left(u_{n, \hbar}-u_{\hbar}\right)-\int_{\mathbb{R}^{3}}\left|\nabla u_{\hbar}\right|^{2} \int_{\mathbb{R}^{3}} \nabla u_{\hbar} \nabla\left(u_{n, \hbar}-u_{\hbar}\right) \tag{3.7}\\
= & \int_{\mathbb{R}^{3}}\left|\nabla u_{n, \hbar}\right|^{2} \int_{\mathbb{R}^{3}}\left|\nabla u_{n, \hbar}-\nabla u_{\hbar}\right|^{2} \\
& +\left(\int_{\mathbb{R}^{3}}\left|\nabla u_{n, \hbar}\right|^{2}-\int_{\mathbb{R}^{3}}\left|\nabla u_{\hbar}\right|^{2}\right) \int_{\mathbb{R}^{3}} \nabla u_{\hbar} \nabla\left(u_{n, \hbar}-u_{\hbar}\right) \\
\geq & o_{n}(1),
\end{align*}
$$

where using the fact that $u_{n, \hbar} \rightharpoonup u_{\hbar}$ in $H^{1}\left(\mathbb{R}^{3}\right)$, it follows $\int_{\mathbb{R}^{3}} \nabla u_{\hbar} \nabla\left(u_{n, \hbar}-u_{\hbar}\right) \rightarrow 0$. Thus from (3.5)(3.7), we have

$$
a \int_{\mathbb{R}^{3}}\left|\nabla\left(u_{n, \hbar}-u_{\hbar}\right)\right|^{2}+\mu_{\hbar} \int_{\mathbb{R}^{3}}\left|u_{n, \hbar}-u_{\hbar}\right|^{2}
$$

$$
\begin{aligned}
& -\int_{\mathbb{R}^{3}} K(\hbar x)\left|u_{n, \hbar}-u_{\hbar}\right|^{2 \sigma+2}+Q_{h} \int_{\mathbb{R}^{3}} \chi_{h}\left[\left|\nabla\left(u_{n, \hbar}-u_{\hbar}\right)\right|^{2}+\left|u_{n, \hbar}-u_{h}\right|^{2}\right] \\
& +\hbar^{d} b \int_{\mathbb{R}^{3}}\left|\nabla u_{n, \hbar}\right|^{2} \int_{\mathbb{R}^{3}}\left|\nabla u_{n, \hbar}-\nabla u_{\hbar}\right|^{2}=o(1) .
\end{aligned}
$$

Noting also that $\int_{\mathbb{R}^{3}} K(\hbar x)\left|u_{n, \hbar}-u_{\hbar}\right|^{2 \sigma+2} \leq C\left\|u_{n, \hbar}-u_{\hbar}\right\|^{2 \sigma+2}$ and

$$
\begin{aligned}
\left\|u_{n, \hbar}-u_{\hbar}\right\| & =\left\|\sum_{i=1}^{\ell} u_{i}\left(\cdot-z_{n, i, \hbar}\right)+v_{n, \hbar}-\sum_{i=1}^{\ell} u_{i}\left(\cdot-z_{i, \hbar}\right)-v_{\hbar}\right\| \\
& \leq \sum_{i=1}^{\ell}\left\|u_{i}\left(\cdot-z_{n, i, \hbar}\right)-u_{i}\left(\cdot-z_{i, \hbar}\right)\right\|+\left\|v_{n, \hbar}\right\|+\left\|v_{\hbar}\right\| \\
& \leq 2 \rho+o_{n}(1),
\end{aligned}
$$

the following inequality holds:

$$
\begin{aligned}
C^{*}\left\|u_{n, \hbar}-u_{\hbar}\right\|^{2} & \leq a \int_{\mathbb{R}^{3}}\left|\nabla\left(u_{n, \hbar}-u_{\hbar}\right)\right|^{2}+\mu_{\hbar} \int_{\mathbb{R}^{3}}\left|u_{n, \hbar}-u_{\hbar}\right|^{2} \\
& \leq C\left\|u_{n, \hbar}-u_{\hbar}\right\|^{2 \sigma+2}+o(1),
\end{aligned}
$$

where C^{*} is a positive constant since $a>0$ and $\mu_{\hbar}>0$. Making ρ smaller if necessary given $C \| u_{n, \hbar}-$ $u_{\hbar} \|^{2 \sigma}<C^{*} / 2$, it follows that $u_{n, \hbar} \rightarrow u_{\hbar}$ in $H^{1}\left(\mathbb{R}^{3}\right)$. This completes the proof of Lemma 3.1.

Proposition 3.2. For some $\rho>0$ small and by letting $\left\{\hbar_{n}\right\} \subset \mathbb{R},\left\{\mu_{n}\right\} \subset \mathbb{R}$ and $\left\{u_{n}\right\} \subset Z(\rho)$ satisfy that

$$
\begin{gather*}
\hbar_{n} \rightarrow 0^{+}, \quad \underset{n \rightarrow \infty}{\limsup } I_{\hbar_{n}}\left(u_{n}\right) \leq b_{0}, \tag{3.8}\\
\left\|I_{\hbar_{n}}^{\prime}\left(u_{n}\right)+\mu_{n} J^{\prime}\left(u_{n}\right)\right\|_{H^{-1}} \rightarrow 0, \tag{3.9}
\end{gather*}
$$

as $n \rightarrow \infty$. Then, $\mu_{n} \rightarrow \mu_{0}$ holds, $\lim _{n \rightarrow \infty} I_{\hbar_{n}}\left(u_{n}\right)=b_{0}$ and for some $z_{n, i} \in \mathbb{R}^{3}, i=1,2, \cdots, \ell$, we have

$$
\left\|u_{n}-\sum_{i=1}^{\ell} u_{i}\left(\cdot-z_{n, i}\right)\right\| \rightarrow 0 \text { and } \operatorname{dist}\left(\hbar_{n} z_{n, i}, \mathcal{K}_{i}\right) \rightarrow 0
$$

Proof. The proof is similar to that in [31]. For the sake of completeness, we shall give the details.
Step 1. We claim that $\mu_{n} \rightarrow \tilde{\mu}>0$.
As $\left\{u_{n}\right\} \subset Z(\rho)$, we can write that $u_{n}=\sum_{i=1}^{\ell} u_{i}\left(x-z_{n, i}\right)+v_{n}$ with $z_{n, i} \in \frac{1}{\hbar}\left(\mathcal{K}_{i}\right)^{\tau}$ and $\left\|v_{n}\right\| \leq \rho$. It follows from $u_{n} \in Z(\rho)$ and the boundedness of $I_{\hbar_{n}}\left(u_{n}\right)$ that $\left\|u_{n}\right\|$ and $G_{\hbar_{n}}\left(u_{n}\right)$ are bounded. Besides, by (3.9) and $J^{\prime}\left(u_{n}\right) u_{n}=1$, we know that μ_{n} is bounded. Then up to a subsequence, we can assume that $\mu_{n} \rightarrow \tilde{\mu}$ in \mathbb{R} and $u_{n}\left(\cdot+z_{n, i}\right) \rightharpoonup w_{i} \in H^{1}\left(\mathbb{R}^{3}\right)$. For $\rho<\frac{1}{10} \min _{1 \leq i \leq \ell}\left\|u_{i}\right\|_{L^{2}\left(B_{1}(0)\right)}$, we have

$$
\liminf _{n \rightarrow \infty}\left\|u_{n}\left(\cdot+z_{n, i}\right)\right\|_{L^{2}\left(B_{1}(0)\right)} \geq\left\|u_{i}\right\|_{L^{2}\left(B_{1}(0)\right)}-\rho>0
$$

Notice that for any $R>0$, we can obtain that $\left\|u_{i}-w_{i}\right\|_{L^{2}\left(B_{R}(0)\right)} \leq \rho$. Hence,

$$
\begin{equation*}
\left\|u_{i}\right\|_{2}-\rho \leq\left\|w_{i}\right\|_{2} \leq\left\|u_{i}\right\|_{2}+\rho . \tag{3.10}
\end{equation*}
$$

Then, if ρ is small enough, we know that $w_{i} \neq 0$. Next, testing (3.9) with $\varphi\left(x-z_{n, i}\right)$ for each $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$, we deduce that

$$
\hbar_{n}^{d} b \int_{R^{3}}\left|\nabla u_{n}\left(x+z_{n, i}\right)\right|^{2} \int_{R^{3}} \nabla u_{n}\left(x+z_{n, i}\right) \nabla \varphi=o(1) .
$$

Thus, w_{i} is a solution to $-a \Delta w_{i}+\tilde{\mu} w_{i}=\tilde{k}_{i}\left|w_{i}\right|^{2 \sigma} w_{i}$ in $H^{1}\left(\mathbb{R}^{3}\right)$ with $\lim _{n \rightarrow \infty} K\left(\hbar_{n} z_{n, i}\right) \rightarrow \tilde{k}_{i} \in[\underline{k}, \bar{k}]$, where $\underline{k}=\min _{x \in U_{i=1}^{\ell} \bar{\Omega}_{i}} K(x)>0$ and $\bar{k}=\max _{1 \leq i \leq t} k_{i}$. Then, combining the Pohozaev identity with

$$
a\left|w_{i}\right|_{2}^{2}+\tilde{\mu}\left|w_{i}\right|_{2}^{2}=\tilde{k}_{i}\left|w_{i}\right|_{2 \sigma+2}^{2 \sigma+2}
$$

it follows that there exists a positive contant $\tilde{\mu}$.
Step 2. $u_{n}-\sum_{i=1}^{\ell} w_{i}\left(\cdot-z_{n, i}\right) \rightarrow 0$ in $L^{2 \sigma+2}\left(\mathbb{R}^{3}\right)$ and $\operatorname{dist}\left(\hbar_{n} z_{n, i}, \mathcal{K}_{i}\right) \rightarrow 0$.
We show that

$$
\tilde{v}_{n}:=u_{n}-\sum_{i=1}^{\ell} w_{i}\left(\cdot-z_{n, i}\right) \rightarrow 0 \text { in } L^{2 \sigma+2}\left(\mathbb{R}^{3}\right) .
$$

Otherwise, by Lions' lemma [17], there exists a sequence of points $\left\{z_{n}\right\} \subset \mathbb{R}^{3}$ such that

$$
\limsup _{n \rightarrow \infty}\left\|u_{n}-\sum_{i=1}^{\ell} w_{i}\left(\cdot-z_{n, i}\right)\right\|_{L^{2}\left(B_{1}\left(z_{n}\right)\right)}^{2}>0 .
$$

Noting that $\left|z_{n}-z_{n, i}\right| \rightarrow \infty i=1,2, \cdots, \ell$, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \int_{B_{1}(0)}\left|u_{n}\left(\cdot+z_{n}\right)\right|^{2}>0 \tag{3.11}
\end{equation*}
$$

By (3.8), $G_{\hbar_{n}}\left(u_{n}\right) \leq C$ holds for some $C>0$ that is independent of \hbar. Then, we have that $\operatorname{dist}\left(\hbar_{n} z_{n}, \cup_{i=1}^{\ell} \Omega_{i}\right) \rightarrow 0$. Up to a subsequence, we assume that $\tilde{v}_{n}\left(x+z_{n}\right) \rightharpoonup v_{0} \neq 0$ in $H^{1}\left(\mathbb{R}^{3}\right)$ and $K\left(\hbar_{n} z_{n}\right) \rightarrow k_{0} \in[\underline{k}, \bar{k}]$, where $k_{0}=k\left(y_{0}\right), y_{0} \in \cup_{i=1}^{\ell} \Omega_{i}$. Let $D:=\left\{x \in \mathbb{R}^{3} \mid x_{3} \geq-M\right\}$. For some i_{0}, if $\lim _{n \rightarrow \infty} \frac{\operatorname{dist}\left(\hbar_{n} z_{n}, \partial \Omega_{i_{0}}\right)}{\hbar_{n}}=M<\infty$, we get that $\hbar_{n} z_{n} \rightarrow z_{0}$ as $n \rightarrow \infty$, where $z_{0} \in \partial \Omega_{i_{0}}$. Next, without loss of generality we can assume that $v_{0} \in H_{0}^{1}(D)$. Testing (3.9) with $\varphi\left(\cdot-z_{n}\right)$ for any $\varphi \in C_{0}^{\infty}(D)$, we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left[a \int_{\mathbb{R}^{3}} \nabla u_{n} \nabla \varphi\left(x-z_{n}\right)+\hbar_{n}^{d} b \int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2} \int_{\mathbb{R}^{3}} \nabla u_{n} \nabla \varphi\left(x-z_{n}\right)\right. \\
& -\int_{\mathbb{R}^{3}} K\left(\hbar_{n} x\right)\left|u_{n}\right|^{2 \sigma} u_{n} \varphi\left(x-z_{n}\right)+\int_{\mathbb{R}^{3}} \mu_{n} u_{n} \varphi\left(x-z_{n}\right) \\
& \left.+Q_{\hbar_{n}} \int_{\mathbb{R}^{3}} \chi_{\hbar_{n}}\left(\nabla u_{n} \nabla \varphi\left(x-z_{n}\right)+u_{n} \varphi\left(x-z_{n}\right)\right)\right]=0 .
\end{aligned}
$$

Then by applying $\left\|u_{n}\right\|_{H^{1}\left(\mathbb{R}^{3} \backslash \frac{1}{n_{n}} \cup_{i=1}^{\ell} \Omega_{i}\right)} \leq C \hbar_{n}$ and

$$
\hbar_{n}^{d} b \int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2} \int_{\mathbb{R}^{3}} \nabla u_{n} \nabla \varphi\left(x-z_{n}\right)=o(1),
$$

we can obtain that v_{0} is a solution of $-a \Delta u+\tilde{\mu} u=k_{0}|u|^{2 \sigma} u$ in $H_{0}^{1}(D)$, which is impossible since this equation does not have a nontrivial solution on the half space according to [8]. Thus $\lim _{n \rightarrow \infty} \operatorname{dist}\left(\hbar_{n} z_{n}, \partial \Omega_{i_{0}}\right)=+\infty$ and $z_{n} \in \frac{1}{\hbar_{n}} \Omega_{i_{0}}$. Now we test (3.9) with $\varphi\left(\cdot-z_{n}\right)$ for any $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$ to get

$$
-a \Delta v_{0}+\tilde{\mu} v_{0}=k_{0}\left|v_{0}\right|^{2 \sigma} v_{0}
$$

where $\tilde{\mu}>0$, and $\left|v_{0}\right|_{2}^{2}>C_{1}$ for some $C_{1}>0$ that is independent of ρ.
If we have chosen ρ small enough, then by the Brézis-Lieb lemma,

$$
\begin{aligned}
1=\lim _{n \rightarrow \infty}\left|u_{n}\right|_{2}^{2} & =\lim _{n \rightarrow \infty}\left|u_{n}\left(\cdot+z_{n, 1}\right)-v_{0}\left(\cdot+z_{n, 1}\right)\right|_{2}^{2}+\left|v_{0}\right|_{2}^{2}+o(1) \\
& \geq \sum_{i=1}^{\ell}\left|w_{i}\right|_{2}^{2}+\left|v_{0}\right|_{2}^{2} \\
& \geq \sum_{i=1}^{\ell}\left|u_{i}\right|_{2}^{2}-2 \rho \sum_{i=1}^{\ell}\left|u_{i}\right|_{2}^{2}+\ell \rho^{2}+C_{1} \\
& >1,
\end{aligned}
$$

which is a contradiction.
Step 3. $\left\|u_{n}-\sum_{i=1}^{\ell} w_{i}\left(\cdot-z_{n, i}\right)\right\| \rightarrow 0$ and $\lim _{n \rightarrow \infty} I_{\hbar_{n}}\left(u_{n}\right)=b_{0}$.
Testing (3.9) with $u_{n}-\sum_{i=1}^{\ell} w_{i}\left(\cdot-z_{n, i}\right)$, given

$$
\hbar_{n}^{d} b \int_{\mathbb{R}^{3}}\left|\nabla u_{n}\right|^{2} \int_{\mathbb{R}^{3}} \nabla u_{n} \nabla\left(u_{n}-\sum_{i=1}^{\ell} w_{i}\left(x-z_{n, i}\right)\right)=o(1),
$$

we can get that

$$
a\left(\left|\nabla u_{n}\right|_{2}^{2}-\sum_{i=1}^{\ell}\left|\nabla w_{i}\right|_{2}^{2}\right)+\tilde{\mu}\left(\left|u_{n}\right|_{2}^{2}-\sum_{i=1}^{\ell}\left|w_{i}\right|_{2}^{2}\right) \leq o_{n}(1)
$$

Next, we have

$$
a\left|\nabla\left(u_{n}-\sum_{i=1}^{\ell} w_{i}\left(\cdot-z_{n, i}\right)\right)\right|_{2}^{2}+\tilde{\mu}\left|u_{n}-\sum_{i=1}^{\ell} w_{i}\left(\cdot-z_{n, i}\right)\right|_{2}^{2}=o_{n}(1),
$$

i.e., $u_{n}-\sum_{i=1}^{\ell} w_{i}\left(\cdot-z_{n, i}\right) \rightarrow 0$ in $H^{1}\left(\mathbb{R}^{3}\right)$.

On the other hand, by Lemma 2.2, we obviously get that $\lim _{n \rightarrow \infty} I_{\hbar_{n}}\left(u_{n}\right)=b_{0}$.

4. Existence of critical points

In this section, let ρ be fixed in Proposition 3.2. We present the result as follows.
Proposition 4.1. There exists $\hbar_{0}>0$ such that for $\hbar \in\left(0, \hbar_{0}\right),\left.I_{\hbar}\right|_{\mathcal{M}}$ has a critical point $u_{\hbar} \in Z(\rho)$. Moreover, $\lim _{\hbar \rightarrow 0} I\left(u_{\hbar}\right)=b_{0}$ and the Lagrange multiplier $\mu_{\hbar} \in \mathbb{R}$ satisfies

$$
\begin{equation*}
\lim _{\hbar \rightarrow 0} \mu_{\hbar}=\mu_{0}, \quad I_{\hbar}^{\prime}\left(u_{\hbar)}+\mu_{\hbar} J^{\prime}\left(u_{\hbar}\right)=0 .\right. \tag{4.1}
\end{equation*}
$$

Remark 4.2. By Proposition 3.2, it is easy to verify that (4.1) holds if u_{\hbar} is a critical point of $\left.I_{\hbar}\right|_{\mathcal{M}}$ such that limsup $\operatorname{pan}_{\hbar \rightarrow 0} I_{u_{h}} \leq b_{0}$.

The proof of Proposition 4.1 can be obtained as in [31] by considering the following contradiction: $\left\{\hbar_{n}\right\}$ with $\hbar_{n} \rightarrow 0$ such that for some sequence $b_{\hbar_{n}} \rightarrow b_{0}, I_{\hbar}$ admits no critical points in $\left\{u \in Z(\rho) \mid I_{\hbar_{n}}(u) \leq b_{\hbar_{n}}\right\}$. For brevity, we denote $\hbar=\hbar_{n}$. Then from Lemma 3.1 and Proposition 3.2, there respectively exist $\kappa_{0}>0$ and $v>0$ independent of \hbar and $v_{\hbar}>0$ such that

$$
\begin{align*}
& \left\|\left.I_{\hbar}\right|_{\mathcal{M}} ^{\prime}(u)\right\|_{T_{u}^{*} \mathcal{M}} \geq v_{\hbar}, \text { for } u \in Z(\rho) \cap\left[b_{0}-2 \kappa_{0} \leq I_{\hbar} \leq b_{\hbar}\right], \\
& \left\|\left.I_{\hbar}\right|_{\mathcal{M}} ^{\prime}(u)\right\|_{T_{u}^{*} \mathcal{M}} \geq v, \text { for } u \in(Z(\rho) \backslash Z(\rho / 4)) \cap\left[b_{0}-2 \kappa_{0} \leq I_{\hbar} \leq b_{\hbar}\right] \tag{4.2}
\end{align*}
$$

where

$$
\begin{aligned}
{\left[b_{1} \leq I_{\hbar}\right] } & =\left\{u \in H^{1}\left(\mathbb{R}^{3}\right) \mid b_{1} \leq I_{\hbar}(u)\right\}, \\
{\left[I_{\hbar} \leq b_{2}\right] } & =\left\{u \in H^{1}\left(\mathbb{R}^{3}\right) \mid I_{\hbar}(u) \leq b_{2}\right\}, \\
{\left[b_{1} \leq I_{\hbar} \leq b_{2}\right] } & =\left\{u \in H^{1}\left(\mathbb{R}^{3}\right) \mid b_{1} \leq I_{\hbar}(u) \leq b_{2}\right\},
\end{aligned}
$$

for any $b_{1}, b_{2} \in \mathbb{R}$.
Thanks to (4.2), one can get the following deformation lemma.
Lemma 4.3. Let v_{\hbar} and v be given as in (4.2). For any $\kappa \in\left(0, \min \left\{\kappa_{0}, \frac{\rho v}{16}\right\}\right)$, there exists $\hbar_{\kappa}>0$ such that for $\hbar \in\left(0, \hbar_{\kappa}\right)$ there is a deformation $\eta: \mathcal{M} \rightarrow \mathcal{M}$ that satisfied the following conditions:
(a) $\eta(u)=u$ if $u \in \mathcal{M} \backslash\left(Z(\rho) \cap\left[b_{0}-2 \kappa \leq I_{\hbar}\right]\right)$.
(b) $I_{\hbar}(\eta(u)) \leq I_{\hbar}(u)$ if $u \in \mathcal{M}$.
(c) $\eta(u) \in Z(\rho) \cap\left[I_{\hbar} \leq b_{0}-\kappa\right]$ if $u \in Z(\rho / 4) \cap\left[I_{\hbar} \leq b_{\hbar}\right]$.

To give the proof of Lemma 4.3, we borrow some ideas from $[5,6,31]$ in the L^{2}-subcritical case and L^{2}-supercritical case.
4.1. L^{2}-subcritical case $\sigma \in\left(0, \frac{2}{3}\right)$

For every $\delta>0$, we denote

$$
S_{\delta}:=\left\{s \in S_{+}^{\ell-1}| | s-s^{0} \mid \leq \delta\right\},
$$

where $s^{0}=\left(\left|u_{1}\right|_{2}, \cdots,\left|u_{\ell}\right|_{2}\right)$. Fix $q_{i} \in \mathcal{K}_{i}$ and $q_{i, \hbar}=\frac{1}{\hbar} q_{i}$ for $i=1,2, \cdots, \ell$ and define the $(\ell-1)$ dimensional initial path by

$$
\xi_{\hbar}(s)=B_{\hbar} \sum_{i=1}^{\ell} w_{s_{i}}\left(\cdot-q_{i, \hbar}\right),
$$

where $B_{\hbar}:=\left|\sum_{i=1}^{\ell} w_{s_{i}}\left(\cdot-q_{i, \hbar}\right)\right|_{2}^{-1}$. Note that we can fix $\delta>0$ small enough such that

$$
\xi_{\hbar}(s) \in Z(\rho / 4) \text { for } s \in S_{\delta}
$$

and

$$
B_{\hbar} \rightarrow 1 \text { as } \hbar \rightarrow 0 \text { uniformly in } S_{\delta}
$$

Define

$$
b_{\hbar}:=\max _{s \in S_{\delta}} I_{\hbar}\left(\xi_{\hbar}(s)\right)
$$

Lemma 4.4. $\lim _{\hbar \rightarrow 0} b_{\hbar}=b_{0}$ and fix any $\kappa \in\left(0, \min \left\{\kappa_{0}, \frac{\rho v}{16}\right\}\right)$ such that

$$
\begin{equation*}
\sup _{s \in \partial S_{\delta}} I_{\hbar}\left(\xi_{\hbar}(s)\right)<b_{0}-2 \kappa, \tag{4.3}
\end{equation*}
$$

where $\partial S_{\delta}:=\left\{s \in S_{+}^{\ell}| | s-s^{0} \mid=\delta\right\}$.
Proof. Since

$$
\hbar^{d} b\left(\int_{\mathbb{R}^{3}}\left|\nabla \xi_{\hbar}\right|^{2}\right)^{2} \rightarrow 0 \quad \text { as } \quad \hbar \rightarrow 0
$$

one can deduce that

$$
I_{\hbar}\left(\xi_{\hbar}(s)\right) \rightarrow \sum_{i=1}^{\ell} I_{i}\left(w_{s_{i}}\right) \text { as } \hbar \rightarrow 0 \text { uniformly for } s \in S_{\delta}
$$

By Lemma 2.3(a), we have

$$
\sup _{s \in \partial S_{\delta}} I_{\hbar}\left(\xi_{\hbar}(s)\right)<b_{0}-2 \kappa .
$$

Proof of Proposition 4.1 in the L^{2}-subcritical case. By Lemma 4.3 and (4.3), we have

$$
\begin{gather*}
\eta\left(\xi_{\hbar}(s)\right)=\xi_{\hbar}(s) \text { for } s \in \partial S_{\delta} \tag{4.4}\\
I_{\hbar}\left(\eta\left(\xi_{\hbar}(s)\right)\right) \leq b_{0}-\kappa \text { and } \eta\left(\xi_{\hbar}(s)\right) \in Z(\rho) \text { for } s \in S_{\delta} \tag{4.5}
\end{gather*}
$$

Define

$$
\Psi_{i, \hbar}=\left(\int_{\frac{1}{\hbar} \Omega_{i}}|u|^{2}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{\ell} \int_{\frac{1}{\hbar} \Omega_{i}}|u|^{2}\right)^{-\frac{1}{2}}, \text { for } u \in \mathcal{M} .
$$

Similar to the case in [31], there exists $s^{1} \in S_{\delta}$ such that $\Psi_{i, \hbar}\left(\eta\left(\xi_{\hbar}\left(s^{1}\right)\right)\right)=s_{i}^{0}=\left|u_{i}\right|_{2}$. Denote

$$
\begin{equation*}
u_{0, \hbar}:=\eta\left(\xi_{\hbar}\left(s^{1}\right)\right), u_{i, \hbar}:=\gamma_{i, \hbar} u_{0, \hbar}, \tag{4.6}
\end{equation*}
$$

where $\gamma_{i, \hbar} \in C_{0}^{\infty}\left(\frac{1}{\hbar}\left(\Omega_{i}^{\prime}\right),[0,1]\right)$ is a cut-off function such that $\gamma_{i, \hbar}=1$ on $\frac{1}{\hbar} \Omega_{i}$ and $\left|\nabla \gamma_{i, \hbar}\right| \leq C \hbar$ for each $i=1,2, \cdots, \ell$ and some $C>0 ; \Omega_{i}^{\prime}$ is an open neighborhood of $\bar{\Omega}_{i}$. By (4.5), we have that $G_{\hbar}\left(u_{0, \hbar}\right) \leq C$ for some $C>0$ that is independent of \hbar, which implies that

$$
\begin{equation*}
\left.\left\|u_{0, \hbar}\right\|_{H^{1}\left(\mathbb{R}^{3} \backslash \cup i=1\right.}^{\ell} \frac{1}{\hbar} \Omega_{i}\right) \leq C \hbar . \tag{4.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|u_{i, \hbar}\right|_{2}=\left|u_{i}\right|_{2}+o_{\hbar}(1) \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{i}\left(u_{i}\right) \leq I_{i}\left(u_{i, \hbar}\right)+o_{\hbar}(1) . \tag{4.9}
\end{equation*}
$$

Hence from (4.5)-(4.9), we have

$$
b_{0}-\kappa \geq I_{\hbar}\left(u_{0, \hbar}\right) \geq \sum_{i=1}^{\ell} I_{i}\left(u_{i, \hbar}\right)+o_{\hbar}(1) \geq \sum_{i=1}^{\ell} I_{i}\left(u_{i}\right)+o_{\hbar}(1)=b_{0}+o_{\hbar}(1),
$$

which is a contradiction. This completes the proof.
4.2. L^{2}-supercritical case $\sigma \in\left(\frac{2}{3}, 2\right)$

Fix $q_{i} \in \mathcal{K}_{i}$ and denote $q_{i, \hbar}=\frac{1}{\hbar} q_{i}$; we set

$$
\zeta_{\hbar}(s)=\bar{B}_{\hbar} \sum_{i=1}^{\ell} t_{i}^{3 / 2} u_{i}\left(t_{i}\left(\cdot-q_{i, \hbar}\right)\right) \text { for } t=\left(t_{1}, t_{2}, \cdots, t_{\ell}\right) \in(0,+\infty)^{\ell},
$$

where $\bar{B}_{\hbar}:=\left|\sum_{i=1}^{\ell} t_{i}^{3 / 2} u_{i}\left(t_{i}\left(\cdot-q_{i, \hbar}\right)\right)\right|_{2}^{-1}$.
Define

$$
b_{\hbar}:=\max _{t \in[1-\bar{\delta}, 1+\bar{\delta}]^{\circ}} I_{\hbar}\left(\zeta_{\hbar}(t)\right) .
$$

Note that we can fix $\bar{\delta}>0$ small enough such that

$$
\zeta_{\hbar}(t) \in Z(\rho / 4) \text { for } t \in[1-\bar{\delta}, 1+\bar{\delta}]^{\ell}
$$

and $\bar{B}_{\hbar} \rightarrow 1$ holds. Note also that

$$
I_{i}\left(u_{i}\right)>I_{i}\left(t_{i}^{3 / 2} u_{i}\left(t_{i}\right)\right) \text { for } t_{i} \in[1-\bar{\delta}, 1+\bar{\delta}] \backslash\{1\}
$$

Since

$$
\hbar^{d} b\left(\int_{\mathbb{R}^{3}}\left|\nabla \zeta_{\hbar}\right|^{2}\right)^{2} \rightarrow 0 \quad \text { as } \quad \hbar \rightarrow 0
$$

and

$$
I_{\hbar}\left(\zeta_{\hbar}(t)\right) \rightarrow \sum_{i=1}^{\ell} I_{i}\left(t_{i}^{3 / 2} u_{i}\left(t_{i} \cdot\right)\right) \text { as } \hbar \rightarrow 0 \text { uniformly for } t \in[1-\bar{\delta}, 1+\bar{\delta}]^{\ell},
$$

one can get the result as in [31].
Lemma 4.5. $\lim _{\hbar \rightarrow 0} b_{\hbar}=b_{0}$ and fix any $\kappa \in\left(0, \min \left\{\kappa_{0}, \frac{\rho v}{16}\right\}\right)$ such that

$$
\begin{equation*}
\sup _{t \in \partial[1-\bar{\delta}, 1+\bar{\delta}]]^{\hbar}} I_{\hbar}\left(\zeta_{\hbar}(t)\right)<b_{0}-2 \kappa . \tag{4.10}
\end{equation*}
$$

Proof of Proposition 4.1 in the L^{2}-supercritical case. By Lemma 4.3 and (4.10),

$$
\begin{gather*}
\eta\left(\zeta_{\hbar}(t)\right)=\zeta_{\varepsilon}(t) \text { if } t \in \partial[1-\bar{\delta}, 1+\bar{\delta}]^{\ell}, \tag{4.11}\\
I_{\hbar}\left(\eta\left(\zeta_{\hbar}(t)\right)\right) \leq b_{0}-\kappa \text { and } \eta\left(\zeta_{\hbar}(t)\right) \in Z(\rho) \text { for } t \in[1-\bar{\delta}, 1+\bar{\delta}]^{\ell} . \tag{4.12}
\end{gather*}
$$

Define

$$
\Phi_{i, \hbar}=\left(\int_{\frac{1}{\hbar} \Omega_{i}}|\nabla u|^{2}\right)^{\frac{1}{2-3 \sigma}}\left(\frac{3 \sigma k_{i}}{(2+2 \sigma) a} \int_{\frac{1}{\hbar} \Omega_{i}}|u|^{2 \sigma+2}\right)^{-\frac{1}{2-3 \sigma}}, \text { for } u \in \mathcal{M} .
$$

Similar to the case in [31], there exists $t^{1} \in[1-\bar{\delta}, 1+\bar{\delta}]^{\ell}$ such that

$$
\begin{equation*}
\Phi_{i, \hbar}\left(\eta\left(\zeta_{\hbar}\left(t^{1}\right)\right)\right)=1, i=1,2, \cdots, \ell . \tag{4.13}
\end{equation*}
$$

We denote

$$
\bar{u}_{0, \hbar}:=\eta\left(\zeta_{\hbar}\left(t^{1}\right)\right), \quad \bar{u}_{i, \hbar}:=\gamma_{i, \hbar} \bar{u}_{0, \hbar}\left(\sum_{i=1}^{\ell}\left|\gamma_{i, \hbar} \bar{u}_{0, \hbar}\right|_{2}^{2}\right)^{-\frac{1}{2}} .
$$

Similar to (4.7) and (4.8), we have

$$
\begin{equation*}
\left\|\bar{u}_{0, \hbar}\right\|_{H^{1}\left(\mathbb{R}^{3} \backslash \cup_{i=1}^{\ell} \frac{1}{\hbar} \Omega_{i}\right)}=o_{\hbar}(1) \tag{4.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{\ell}\left|\gamma_{i, \hbar} \bar{u}_{0, \hbar}\right|_{2}^{2}=1+o_{\hbar}(1) \tag{4.15}
\end{equation*}
$$

From (4.13)-(4.15), we have

$$
t_{i, \hbar}:=\left(\left|\nabla \bar{u}_{i, \hbar}\right|_{2}^{2}\right)^{\frac{1}{2-3 \sigma}}\left(\frac{3 \sigma k_{i}}{(2+2 \sigma) a}\left|\bar{u}_{i, \hbar}\right|_{2 \sigma+2}^{2 \sigma+2}\right)^{\frac{1}{3 \sigma-2}}=\Phi_{i, \hbar}\left(\bar{u}_{0, \hbar}\right)+o_{\hbar}(1)=1+o_{\hbar}(1) .
$$

A direct calculation shows that
and

$$
\left|\nabla\left(t_{i, \hbar}^{-\frac{3}{2}} \bar{u}_{i, \hbar}\left(t_{i, \hbar}^{-1} \cdot\right)\right)\right|_{2}^{2}=\frac{3 \sigma k_{i}}{(2+2 \sigma) a}\left|t_{i, \hbar}^{-\frac{3}{2}} \bar{u}_{i, \hbar}\left(t_{i, \hbar}^{-1}\right)\right|_{2 \sigma+2}^{2 \sigma+2} .
$$

Hence by the definition of $b_{s_{i}}$, we have

$$
\sum_{i=1}^{\ell} I_{i}\left(u_{i}\right)=b_{0} \leq \sum_{i=1}^{\ell} I_{i}\left(t_{i, \hbar}^{-\frac{3}{2}} \bar{u}_{i, \hbar}\left(t_{i, \hbar}^{-1}\right)\right)=\sum_{i=1}^{\ell} I_{i}\left(\bar{u}_{i, \hbar}\right)+o_{\hbar}(1) .
$$

Similarly, one can get a contradiction.

5. Completion of the proof

Let u_{\hbar} be the critical point of the modified function I_{\hbar} given in Proposition 4.1.

Completion of proof of Theorem 1.1.

Proof. We show that there exists $c>0$ independent of \hbar such that

$$
\begin{equation*}
\left\|u_{\hbar}\right\|_{\left.H^{1}\left(\mathbb{R}^{3}\right) \cup_{i=1}^{e} \frac{1}{\hbar}\left(\mathcal{K}_{i}\right)^{\tau}\right)}^{2} \leq e^{-\frac{c}{\hbar}} . \tag{5.1}
\end{equation*}
$$

We adopt some arguments from $[3,31]$. Set $\left\lfloor 2 \hbar^{-1} \tau\right\rfloor-1:=n_{\hbar}$. For $n=1,2, \cdots, n_{\hbar}$, we take $\phi_{n} \in$ $C^{1}\left(\mathbb{R}^{3},[0,1]\right)$ such that

$$
\left\{\begin{array}{cc}
\phi_{n}(x)=0, & \text { if } x \in \mathbb{R}^{3} \backslash E_{n}, \\
\phi_{n}(x)=1, & \text { if } x \in E_{n+1}, \\
\left|\nabla \phi_{n}(x)\right| \leq 2, & x \in \mathbb{R}^{3},
\end{array}\right.
$$

where $E_{n}:=\left\{x \in \mathbb{R}^{3} \left\lvert\, \operatorname{dist}\left(x, \cup_{i=1}^{\ell} \frac{1}{\hbar}\left(\mathcal{K}_{i}\right)^{\frac{\tau}{2}}\right)>n-1\right.\right\}$. Then by Proposition 3.2,

$$
\begin{equation*}
\lim _{\hbar \rightarrow 0}\left\|u_{\hbar}\right\|_{H^{1}\left(E_{1}\right)} \leq \lim _{\hbar \rightarrow 0} \sum_{i=1}^{\ell}\left\|u_{i}\right\|_{H^{1}\left(\mathbb{R}^{3} \backslash B_{\hbar \tau}(0)\right)}=0 \tag{5.2}
\end{equation*}
$$

Note that for each $n=1,2, \cdots, n_{\hbar}$,

$$
\operatorname{supp} \chi_{\hbar}=\mathbb{R}^{3} \backslash \cup_{i=1}^{\ell} \frac{1}{\hbar} \Omega_{i} \subset \mathbb{R}^{3} \backslash \cup_{i=1}^{\ell} \frac{1}{\hbar}\left(\mathcal{K}_{i}\right)^{\tau} \subset \phi_{n}^{-1}(1) .
$$

Since $\left\langle I_{\hbar}^{\prime}\left(u_{\hbar}\right)+\mu_{\hbar} J^{\prime}\left(u_{\hbar}\right), \phi_{n} u_{\hbar}\right\rangle=0$, we have

$$
\begin{align*}
& a \int_{\mathbb{R}^{3}} \nabla u_{\hbar} \nabla\left(\phi_{n} u_{\hbar}\right)+\hbar^{d} b \int_{\mathbb{R}^{3}}\left|\nabla u_{\hbar}\right|^{2} \int_{\mathbb{R}^{3}} \nabla u_{\hbar} \nabla\left(\phi_{n} u_{\hbar}\right) \\
& -\int_{\mathbb{R}^{3}} K(\hbar x)\left|u_{\hbar}\right|^{2 \sigma+2} \phi_{n}+\int_{\mathbb{R}^{3}} \mu_{\hbar} u_{\hbar}^{2} \phi_{n} \\
= & -4 \hbar^{-1} G_{\hbar}\left(u_{\hbar}\right)^{\frac{1}{2}} \int_{\mathbb{R}^{3}} x_{\hbar}\left(\nabla u_{\hbar} \nabla\left(\phi_{n} u_{\hbar}\right)+u_{\hbar}^{2} \phi_{n}\right) \tag{5.3}\\
= & -4 \hbar^{-1} G_{\hbar}\left(u_{\hbar}\right)^{\frac{1}{2}} \int_{\mathbb{R}^{3} \cup_{i=1}^{e} \frac{1}{\hbar} \Omega_{i}}\left(\nabla u_{\hbar} \nabla\left(\phi_{n} u_{\hbar}\right)+u_{\hbar}^{2} \phi_{n}\right) \\
= & -4 \hbar^{-1} G_{\hbar}\left(u_{\hbar}\right)^{\frac{1}{2}} \int_{\mathbb{R}^{3} \backslash \cup_{i=1}^{\ell} \frac{1}{\hbar} \Omega_{i}}\left(\left|\nabla u_{\hbar}\right|^{2}+u_{\hbar}^{2}\right) \leq 0 .
\end{align*}
$$

Therefore, by (5.3) and the Sobolev embedding,

$$
\begin{aligned}
& \min \left\{a, \frac{\mu_{0}}{2}\right\}\left\|u_{\hbar}\right\|_{H^{1}\left(E_{n+1}\right)}^{2} \\
& \leq \int_{\mathbb{R}^{3}} \phi_{n}\left(a\left|\nabla u_{\hbar}\right|^{2}+\mu_{\hbar} u_{\hbar}^{2}\right) \\
& \leq \int_{\mathbb{R}^{3}} K(\hbar x)\left|u_{\hbar}\right|^{2 \sigma+2} \phi_{n}-a \int_{\mathbb{R}^{3}} u_{\hbar} \nabla u_{\hbar} \nabla \phi_{n}-\hbar^{d} b \int_{\mathbb{R}^{3}}\left|\nabla u_{\hbar}\right|^{2} \int_{\mathbb{R}^{3}} \nabla u_{\hbar} \nabla\left(\phi_{n} u_{\hbar}\right) \\
& \leq C\left\|u_{\hbar}\right\|_{H^{1}\left(E_{n}\right)}^{2 \sigma+2}+a\left\|u_{\hbar}\right\|_{H^{1}\left(E_{n}\right)}^{2}-a\left\|u_{\hbar}\right\|_{H^{1}\left(E_{n+1}\right)}^{2}-\hbar^{d} b \int_{\mathbb{R}^{3}}\left|\nabla u_{\hbar}\right|^{2} \int_{\mathbb{R}^{3}} \nabla u_{\hbar} \nabla\left(\phi_{n} u_{\hbar}\right) \\
& \leq\left(a+C\left\|u_{\hbar}\right\|_{H^{1}\left(E_{1}\right)}^{2 \sigma}+o_{\hbar}(1)\right)\left\|u_{\hbar}\right\|_{H^{1}\left(E_{n}\right)}^{2}-\left(a+o_{\hbar}(1)\right)\left\|u_{\hbar}\right\|_{H^{1}\left(E_{n+1}\right)}^{2},
\end{aligned}
$$

where $-\hbar^{d} b \int_{\mathbb{R}^{3}}\left|\nabla u_{\hbar}\right|^{2} \int_{\mathbb{R}^{3}} \nabla u_{\hbar} \nabla\left(\phi_{n} u_{\hbar}\right) \leq o_{\hbar}(1)\left(2\left\|u_{\hbar}\right\|_{H^{1}\left(E_{n}\right)}^{2}-\left\|u_{\hbar}\right\|_{H^{1}\left(E_{n+1}\right)}^{2}\right)$ as $\hbar \rightarrow 0$. By (5.2), we have

$$
\left\|u_{\hbar}\right\|_{H^{1}\left(E_{n+1}\right)}^{2} \leq \theta_{\hbar}^{-1}\left\|u_{\hbar}\right\|_{H^{1}\left(E_{n}\right)}^{2},
$$

where

$$
\theta_{\hbar}:=\frac{a+\min \left\{a, \frac{\mu_{0}}{2}\right\}+o_{\hbar}(1)}{a+o_{\hbar}(1)} \rightarrow 1+\min \left\{1, \frac{\mu_{0}}{2 a}\right\} \text { as } \hbar \rightarrow 0 .
$$

Nothing that $n_{\hbar} \geq \frac{\tau}{\hbar}$ for small values of \hbar, one can take some $\theta_{0}>1$ and obtain

$$
\left\|u_{\hbar}\right\|_{H^{1}\left(\mathbb{R}^{3} \backslash \cup_{i=1}^{\ell} \frac{1}{\hbar}\left(\mathcal{K}_{i}\right)^{\tau}\right)} \leq\left\|u_{\hbar}\right\|_{H^{1}\left(E_{\left.n_{\hbar}+1\right)}\right.}^{2} \leq \theta_{0}^{-n_{\hbar}}\left\|u_{\hbar}\right\|_{H^{1}\left(E_{1}\right)}^{2} \leq e^{-\frac{\tau \ln \theta_{0}}{\hbar}} .
$$

It follows that for small values of $\hbar, G_{\hbar}\left(u_{\hbar}\right)=0$. So u_{\hbar} is a solution to the original problem (3.1) for small values of \hbar.

Author contributions

Zhidan Shu: Writing-original draft and Writing-review \& editing; Jianjun Zhang: Methodology and Supervision. All authors equally contributed to this manuscript and approved the final version.

Use of AI tools declaration

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors would like to express their sincere gratitude to the anonymous referee for his/her valuable suggestions and comments.

Conflict of interest

The authors declare no conflicts of interest.

References

1. A. Arosio, S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Am. Math. Soc., 348 (1996), 305-330. https://doi.org/10.1090/S0002-9947-96-01532-2
2. M. Cavalcanti, V. Cavalcanti, J. Soriano, Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation, Adv. Differ. Equ., 6 (2001), 701-730. https://doi.org/10.57262/ade/1357140586
3. S. Chen, Z. Q. Wang, Localized nodal solutions of higher topological type for semiclassical nonlinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 56 (2017), 1-26. https://doi.org/10.1007/s00526-016-1094-4
4. M. Chipot, B. Lovat, Some remarks on non local elliptic and parabolic problems, Nonlinear Anal., 30 (1997), 4619-4627. https://doi.org/10.1016/S0362-546X(97)00169-7
5. V. Coti Zelati, P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Am. Math. Soc., 4 (1991), 693-727. https://doi.org/10.1090/S0894-0347-1991-1119200-3
6. V. Coti Zelati, P. H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on \mathbb{R}^{N}, Commun. Pure Appl. Math., 45 (1992), 1217-1269. https://doi.org/10.1002/cpa. 3160451002
7. Y. Deng, S. Peng, W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in \mathbb{R}^{3}, J. Funct. Anal., 269 (2015), 3500-3527. https://doi.org/10.1016/J.JFA.2015.09.012
8. M. J. Esteban, P. L. Lions, Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A, 93 (1982), 1-14. https://doi.org/10.1017/S0308210500031607
9. X. He, W. Zou, Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal., 70 (2009), 1407-1414. https://doi.org/10.1016/j.na.2008.02.021
10. X. He, W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in \mathbb{R}^{3}, J. Differ. Equ., 252 (2012), 1813-1834. https://doi.org/10.1016/J.JDE.2011.08.035
11. Y. He, G. Li, S. Peng, Concentrating bound states for Kirchhoff type problems in \mathbb{R}^{3} involving critical Sobolev exponents, Adv. Nonlinear Stud., 14 (2014), 483-510. https://doi.org/10.1515/ans-2014-0214
12. L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28 (1997), 1633-1659. https://doi.org/10.1016/S0362-546X(96)00021-1
13. G. Kirchhoff, Mechanik, Leipzig: Teubner, 1883.
14. G. Kirchhoff, Vorlesungen über Mechanik, Leipzig: Teubner, 1897.
15. G. Li, P. Luo, S. Peng, C. Wang, C. Xiang, A singularly perturbed Kirchhoff problem revisited, J. Differ. Equ., 268 (2020), 541-589. https://doi.org/10.1016/j.jde.2019.08.016
16. G. Li, H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \mathbb{R}^{3}, J. Differ. Equ., 257 (2014), 566-600. https://doi.org/10.1016/j.jde.2014.04.011
17. P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case: II, Ann. Inst. Henri Poincaré C, 1 (1984), 223-283. https://doi.org/10.1016/S0294-1449(16)30422-X
18. P. Luo, S. Peng, C. Wang, C. Xiang, Multi-peak positive solutions to a class of Kirchhoff equations, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 1097-1122. https://doi.org/10.1017/prm.2018.108
19. Q. Li, V. D. Rădulescu, W. Zhang, Normalized ground states for the Sobolev critical Schrödinger equation with at least mass critical growth, Nonlinearity, 37 (2024), 025018. https://doi.org/10.1088/1361-6544/ad1b8b
20. Q. Li, J. Nie, W. Zhang, Existence and asymptotics of normalized ground states for a Sobolev critical Kirchhoff equation, J. Geom. Anal., 33 (2023), 126. https://doi.org/10.1007/s12220-022-01171-z
21. X. Luo, Q. Wang, Existence and asymptotic behavior of high energy normalized solutions for the Kirchhoff type equations in \mathbb{R}^{3}, Nonlinear Anal., 33 (2017), 19-32. https://doi.org/10.1016/j.nonrwa.2016.06.001
22. G. Li, X. Luo, T. Yang, Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent, Ann. Fenn. Math., 47 (2022), 895-925. https://doi.org/10.54330/afm. 120247
23. E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209 (1992), 27-42 . https://doi.org/10.1007/BF02570817
24. N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal., 279 (2020), 108610. https://doi.org/10.1016/j.jfa.2020.108610
25. C. A. Stuart, Bifurcation from the continuous spectrum in the L^{2}-theory of elliptic equations on \mathbb{R}^{N}, In: Recent Methods in Nonlinear Analysis and Applications, Naples: Liguori, 1981.
26. C. A. Stuart, Bifurcation from the essential spectrum for some non-compact nonlinearities, Math. Appl. Sci., 11 (1989), 525-542. https://doi.org/10.1002/mma. 1670110408
27. Z. Tang , C. Zhang, L. Zhang, L. Zhou, Normalized multibump solutions to nonlinear Schrödinger equations with steep potential well, Nonlinearity, 35 (2022), 4624-4658. https://doi.org/10.1088/1361-6544/ac7b61
28. J. Wang, L. Tian, J. Xu, F. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equ., 253 (2012), 2314-2351. https://doi.org/10.1016/j.jde.2012.05.023
29. H. Ye, The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations, Math. Methods Appl. Sci., 38 (2015), 2663-2679. https://doi.org/10.1002/mma. 3247
30. H. Ye, The existence of normalized solutions for L^{2}-critical constrained problems related to Kirchhoff equations, Z. Angew. Math. Phys., 66 (2015), 1483-1497. https://doi.org/10.1007/s00033-014-0474-x
31. C. Zhang, X. Zhang, Normalized multi-bump solutions of nonlinear Schrödinger equations via variational approach, Calc. Var. Partial Differ. Equ., 61 (2022), 57. https://doi.org/10.1007/s00526-021-02166-4
32. P. Zhang, Z. Han, Normalized ground states for Kirchhoff equations in \mathbb{R}^{3} with a critical nonlinearity, J. Math. Phys., 63 (2022), 021505. https://doi.org/10.1063/5.0067520

AIMS Press
© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

