Research article Special Issues

A Grammian matrix and controllability study of fractional delay integro-differential Langevin systems

  • Received: 17 February 2024 Revised: 13 April 2024 Accepted: 19 April 2024 Published: 28 April 2024
  • MSC : 26A33, 34A08, 34B15, 47H10

  • This study focused on introducing a fresh model of fractional operators incorporating multiple delays, termed fractional integro-differential Langevin equations with multiple delays. Additionally, the research evaluated the relative controllability of this model within finite-dimensional spaces. Employing fixed-point theory yields the desired outcomes, with the controllability assessment facilitated by Schauder's fixed point and the Grammian matrix defined through the Mittag-Leffler matrix function. Validation of the results was conducted through an application.

    Citation: Hasanen A. Hammad, Mohammed E. Dafaalla, Kottakkaran Sooppy Nisar. A Grammian matrix and controllability study of fractional delay integro-differential Langevin systems[J]. AIMS Mathematics, 2024, 9(6): 15469-15485. doi: 10.3934/math.2024748

    Related Papers:

  • This study focused on introducing a fresh model of fractional operators incorporating multiple delays, termed fractional integro-differential Langevin equations with multiple delays. Additionally, the research evaluated the relative controllability of this model within finite-dimensional spaces. Employing fixed-point theory yields the desired outcomes, with the controllability assessment facilitated by Schauder's fixed point and the Grammian matrix defined through the Mittag-Leffler matrix function. Validation of the results was conducted through an application.



    加载中


    [1] I. Podlubny, Fractional differential equations, Elsevier, 198 (1998).
    [2] F. Mainardi, Fractional calculus and waves in linear viscoelasticity, World Scientific, 2010. https://doi.org/10.1142/p614
    [3] R. L. Magin, Fractional calculus in bioengineering, Critic. Rev. Biomed. Eng., 32 (2004).
    [4] K. B. Oldham, J. Spanier, The fractional calculus: Theory and applications of differentiation and integration to arbitrary order, Elsevier, 111 (1974), 1–234.
    [5] K. Zhao, J. Liu, X. Lv, A unified approach to solvability and stability of multipoint BVPs for Langevin and Sturm-Liouville equations with CH-fractional derivatives and impulses via coincidence theory, Fractal Fract., 8 (2024), 111. https://doi.org/10.3390/fractalfract8020111 doi: 10.3390/fractalfract8020111
    [6] K. Zhao, Stability of a nonlinear Langevin system of ML-type fractional derivative affected by time-varying delays and differential feedback control, Fractal Fract., 6 (2022), 725. https://doi.org/10.3390/fractalfract6120725 doi: 10.3390/fractalfract6120725
    [7] Y. Kao, Y. Cao, Y. Chen, Projective synchronization for uncertain fractional reaction-diffusion systems via adaptive sliding mode control based on finite-time scheme, IEEE Trans. Neural Netw. Learn. Syst., 2023, 1–9. https://doi.org/10.1109/TNNLS.2023.3288849 doi: 10.1109/TNNLS.2023.3288849
    [8] Y. Kao, Y. Li, J. H. Park, X. Chen, Mittag-Leffler synchronization of delayed fractional memristor neural networks via adaptive control, IEEE Trans. Neural Netw. Learn. Syst., 32 (2021), 2279–2284. https://doi.org/10.1109/TNNLS.2020.2995718 doi: 10.1109/TNNLS.2020.2995718
    [9] Y. Cao, Y. Kao, J. H. Park, H. Bao, Global Mittag-Leffler stability of the delayed fractional-coupled reaction-diffusion system on networks without strong connectedness, IEEE Trans. Neural Netw. Learn. Syst., 33 (2022), 6473–6483. https://doi.org/10.1109/TNNLS.2021.3080830 doi: 10.1109/TNNLS.2021.3080830
    [10] H. A. Hammad, M. G. Alshehri, Application of the Mittag-Leffler kernel in stochastic differential systems for approximating the controllability of nonlocal fractional derivatives, Chaos Solitons Fract., 182 (2024), 114775. https://doi.org/10.1016/j.chaos.2024.114775 doi: 10.1016/j.chaos.2024.114775
    [11] H. A. Hammad, M. De la Sen, Stability and controllability study for mixed integral fractional delay dynamic systems endowed with impulsive effects on time scales, Fractal Fract., 7 (2023), 92. https://doi.org/10.3390/fractalfract7010092 doi: 10.3390/fractalfract7010092
    [12] Humaira, H. A. Hammad, M. Sarwar, M. De la Sen, Existence theorem for a unique solution to a coupled system of impulsive fractional differential equations in complex-valued fuzzy metric spaces, Adv. Differ. Equ., 2021 (2021), 242. https://doi.org/10.1186/s13662-021-03401-0 doi: 10.1186/s13662-021-03401-0
    [13] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 204 (2006), 1–523.
    [14] J. Klamka, Controllability of dynamical systems. A survey, Bull. Pol. Acad. Sci. Tech. Sci., 61 (2013), 335–342.
    [15] A. Shukla, R. Patel, Controllability results for fractional semilinear delay control systems, J. Appl. Math. Comput., 65 (2021), 861–75, https://doi.org/10.1007/s12190-020-01418-4 doi: 10.1007/s12190-020-01418-4
    [16] J. R. Wang, Z. Fan, Y. Zhou, Nonlocal controllability of semilinear dynamic systems with fractional derivative in banach spaces, J. Optim. Theory Appl., 154 (2012), 292–302. https://doi.org/10.1007/s10957-012-9999-3 doi: 10.1007/s10957-012-9999-3
    [17] M. M. Raja, V. Vijayakumar, A. Shukla, K. S. Nisar, S. Rezapour, New discussion on nonlocal controllability for fractional evolution system of order $1<\alpha <2$, Adv. Differ. Eqs., 2021 (2021), 481. https://doi.org/10.1186/s13662-021-03630-3 doi: 10.1186/s13662-021-03630-3
    [18] M. Muslim, A. Kumar, Controllability of fractional differential equation of order $\alpha \in (1, 2]$ with non-instantaneous impulses, Asian J. Control, 20 (2018), 935–942. https://doi.org/10.1002/asjc.1604 doi: 10.1002/asjc.1604
    [19] H. Ma, B. Liu, Exact controllability and continuous dependence of fractional neutral integrodifferential equations with state-dependent delay, Acta Math. Sci., 37 (2017), 235–258. https://doi.org/10.1016/S0252-9602(16)30128-X doi: 10.1016/S0252-9602(16)30128-X
    [20] Y. Cheng, R. P. Agarwal, D. O. Regan, Existence and controllability for nonlinear fractional differential inclusions with nonlocal boundary conditions and time-varying delay, Fract. Calc. Appl. Anal., 21 (2018), 960–980. https://doi.org/10.1515/fca-2018-0053 doi: 10.1515/fca-2018-0053
    [21] B. Sundaravadivoo, Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 2561–2573. https://doi.org/10.3934/dcdss.2020138 doi: 10.3934/dcdss.2020138
    [22] B. Ahmad, V. Otero-Espinar, Existence of solutions for fractional differential inclusions with antiperiodic boundary conditions, Bound. Value Probl., 2009 (2009), 625347. https://doi.org/10.1155/2009/625347 doi: 10.1155/2009/625347
    [23] H. A. Hammad, M. Zayed, Solving systems of coupled nonlinear Atangana-Baleanu-type fractional differential equations, Bound. Value Probl., 2022 (2022), 101. https://doi.org/10.1186/s13661-022-01684-0 doi: 10.1186/s13661-022-01684-0
    [24] H.A. Hammad, H. Aydi, M. Zayed, On the qualitative evaluation of the variable-order coupled boundary value problems with a fractional delay, J. Inequal. Appl., 2023 (2023), 105. https://doi.org/10.1186/s13660-023-03018-9 doi: 10.1186/s13660-023-03018-9
    [25] B. Ahmad, S. K. Ntouyas, A. Alsaedi, Coupled systems of fractional differential inclusions with coupled boundary conditions, Electron. J. Differ. Equ., 2019 (2019), 1–21.
    [26] K. Zhao, Study on the stability and its simulation algorithm of a nonlinear impulsive ABC-fractional coupled system with a Laplacian operator via $F$-contractive mapping, Adv. Cont. Discr. Mod., 2024 (2024), 5. https://doi.org/10.1186/s13662-024-03801-y doi: 10.1186/s13662-024-03801-y
    [27] K. Zhao, Solvability, approximation and stability of periodic boundary value problem for a nonlinear Hadamard fractional differential equation with $p$-Laplacian, Axioms, 12 (2023), 733. https://doi.org/10.3390/axioms12080733 doi: 10.3390/axioms12080733
    [28] K. Zhao, Generalized UH-stability of a nonlinear fractional coupling $(p_{1}, p_{2})-$Laplacian system concerned with nonsingular Atangana-Baleanu fractional calculus, J. Inequal. Appl., 2023 (2023), 96. https://doi.org/10.1186/s13660-023-03010-3 doi: 10.1186/s13660-023-03010-3
    [29] H. A. Hammad, R. A. Rashwan, A. Nafea, M. E. Samei, M. De la Sen, Stability and existence of solutions for a tripled problem of fractional hybrid delay differential euations, Symmetry, 14 (2022), 2579. https://doi.org/10.3390/sym14122579 doi: 10.3390/sym14122579
    [30] H. A. Hammad, R. A. Rashwan, A. Nafea, M. E. Samei, S. Noeiaghdam, Stability analysis for a tripled system of fractional pantograph differential equations with nonlocal conditions, J. Vib. Control, 30 (2024), 632–647. https://doi.org/10.1177/10775463221149232 doi: 10.1177/10775463221149232
    [31] H. A. Hammad, H. Aydi, H. Isik, M. De la Sen, Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives, AIMS Mathematics, 8 (2023), 6913–6941. https://doi.org/10.3934/math.2023350 doi: 10.3934/math.2023350
    [32] K. Balachandran, J. Kokila, J. J. Trujillo, Relative controllability of fractional dynamical systems with multiple delays in control, Comput. Math. Appl., 64 (2012), 3037–3045. https://doi.org/10.1016/j.camwa.2012.01.071 doi: 10.1016/j.camwa.2012.01.071
    [33] B. B. He, H. C. Zhou, C. H. Kou, The controllability of fractional damped dynamical systems with control delay, Commun. Nonlinear Sci. Numer. Simul., 32 (2016), 190–198. https://doi.org/10.1016/j.cnsns.2015.08.011 doi: 10.1016/j.cnsns.2015.08.011
    [34] L. Weiss, On the controllability of delay-differential systems, SIAM J. Control, 5 (1967), 575–587. https://doi.org/10.1137/030503 doi: 10.1137/030503
    [35] K. Balachandran, J. Y. Park, J. J. Trujillo, Controllability of nonlinear fractional dynamical systems, Nonlinear Anal., 75 (2012), 1919–1926. https://doi.org/10.1016/j.na.2011.09.042 doi: 10.1016/j.na.2011.09.042
    [36] T. Yu, K. Deng, M. Luo, Existence and uniqueness of solutions of initial value problems for nonlinear Langevin equation involving two fractional orders, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1661–1668. https://doi.org/10.1016/j.cnsns.2013.09.035 doi: 10.1016/j.cnsns.2013.09.035
    [37] J. Klamka, Relative controllability of nonlinear systems with delays in control, Automatica, 12 (1976), 633–634. https://doi.org/10.1016/0005-1098(76)90046-7 doi: 10.1016/0005-1098(76)90046-7
    [38] J. Klamka, Controllability of semilinear systems with multiple variable delays in control, Mathematics, 8 (2020), 1955. https://doi.org/10.3390/math8111955 doi: 10.3390/math8111955
    [39] R. A. Umana, Relative controllability of nonlinear neutral systems with distributed and multiple lumped delays in control, J. Niger. Assoc. Math. Phys., 10 (2006), 565–570. https://doi.org/10.4314/jonamp.v10i1.40178 doi: 10.4314/jonamp.v10i1.40178
    [40] J. P. Dauer, Nonlinear perturbations of quasi-linear control systems, J. Math. Anal. Appl., 54 (1976), 717–725. https://doi.org/10.1016/0022-247X(76)90191-8 doi: 10.1016/0022-247X(76)90191-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(557) PDF downloads(29) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog