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1. Introduction

Fractional differential equations (FDEs) have gained popularity over the last three decades as they
are an extremely helpful and beneficial tool for modeling the dynamics of processes via complicated
media and simulating a wide range of applications, like interdisciplinary approaches. FDEs and
integrals provide more accurate characterizations of the systems being researched.

A FDE is a mathematical representative that explains the hereditary properties and memory of
many procedures and materials. The fractional derivative is widely used in research and engineering
to represent real-world difficulties; see [1–12] for more information. Further, reference [13] contains
an early monograph on fractional calculus (FC).

Recently, it is worth emphasizing that the controllability of FDEs has received great attention from
various studies. Control theory is an important modeling technique with a qualitative component. The
controllability problem is especially important for dynamical systems with control delays, which are
described by several mathematical models. To find a solution for FDEs in dynamical control systems,
controllability is a crucial qualitative quality. Fractional and classical control theories both rely on
controllability, which is a fundamental concept in mathematical control theory (MCT).

Controllability has played an important role in recent MCT. In dynamical systems, controllability
is used to adjust an object’s behavior to achieve a certain purpose. Understanding control challenges,
such as FDEs, can help solve many application problems. For more information, check [14]. In theory,
a system is considered controllable if and only if it can be brought from any initial state to any other
state using the input in a finite time.

For fractional semilinear dynamical systems, the controllability results are addressed in [15, 16].
Papers [17, 18] addressed the controllability of FDEs with order 1 < α ≤ 2, respectively. Heping
et al. [19] found that neutral integro FDEs with state-dependent delay can be precisely and continuously
controlled. The study [20] investigated the qualitative features of fractional differential inclusions
with nonlinearity, time-varying delays, and nonlocal boundary conditions. Sundaravadivoo et al. [21]
investigated the controllability of nonlinear FDEs with state delay and delayed impulsive effects. Refer
to [22–31] for further examples of fractional operators.

The controllability of fractional ordered nonlinear Langevin systems is determined by FP
theorems [32]. The study [33] discussed the controllability of fractional dynamical systems (FDSs)
with damping and delay. The authors in [34, 35] established the controllability for delay differentials
and FDSs. The study in [36] focused on the existence of solutions to the nonlinear fractional Langevin
equation with initial value problems (IVPs). Many writers have studied the relative controllability of
nonlinear systems with dispersed and numerous control delays; see [37–39].

After the examination, we expect that there is currently no research on the relative controllability
of nonlinear FIDLEs with various delays. This study aims to address research gaps by examining the
relative controllability of nonlinear FIDLEs with numerous delays.

Studying fractional integro-differential Langevin equations with multiple delays is crucial due to
their ability to model complex dynamic systems exhibiting memory effects and intricate interactions.
These equations find applications in various fields such as physics, biology, and finance, offering
insights into systems with delayed responses and fractional order dynamics. Understanding and
analyzing these equations are essential for advancing control strategies, predicting system behavior
accurately, and exploring the impact of different types of delays on system dynamics. This research
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area opens avenues for developing advanced numerical methods, investigating stability analyses, and
enhancing our comprehension of intricate systems in diverse disciplines.

The remaining structure of this article is as follows: Section 2 covers commonly used FD operators
and their special functions, including their characteristics. Section 3 provides the controllability
requirement using the Grammian matrix. The controllability study is conducted with the assumption
that the linear fractional ordered system is generally controllable while also taking into account the
fractional nonlinear system. An application is provided in Section 4, and a conclusion is added in
Section 5.

2. Basic facts

To help the reader understand our manuscript, in this section, we present the definitions, facts, and
theories used to complete our task.

Definition 2.1. [1] Assume that ϑ (`) is a continuous function and ρ > 0. The Riemann-Liouville
fractional (RLF) integral of order ρ can be represented as

Iρϑ (`) =
1

Γ (ρ)

∫ `

0
(` − ν)ρ−1 ϑ (ν) dν,

provided that the integral exists.

Definition 2.2. [1] Assume that the continuous function ϑ : (0,∞) → R is integrable and ρ > 0. The
RLF derivative of order ρ can be stated as

Dρϑ (`) =
1

Γ (u − ρ)

(
d
d`

)u ∫ `

0
(` − ν)u−ρ−1 ϑ (ν) dν, u = [ρ] + 1,

where [ρ] represents the greatest-integer that does not exceed ρ.

Definition 2.3. [1] Assume that the function ϑ is an u−time continuous and differentiable, the Caputo
fractional derivative (CFD) with order ρ > 0 is defined by

CDρϑ (`) =
1

Γ (u − ρ)

∫ `

0
(` − ν)u−ρ−1 ϑ(u) (ν) dν, u = [ρ] + 1, ρ ∈ (u − 1, u) .

The Laplace transformation (LTF) of CFD is stated as

L
{
CDρθ (κ)

}
($) = $ρΘ ($) −

u−1∑
κ=0

$ρ−κ−1θ(κ)(0), ρ ∈ (u − 1, u],

L {Iρ} = $−ρ.

Definition 2.4. [1] The corresponding ML functions for chosen = ∈ C are expressed as

<ρ

(
=
)

=

∞∑
κ=0

=κ

Γ (ρκ + 1)
, ρ > 0,

<ρ,λ

(
=
)

=

∞∑
κ=0

=κ

Γ (ρκ + λ)
, ρ, λ > 0.
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Let Υ be a u × u matrix. The matrix extensions of the previously described ML functions are

<ρ,λ (Υ) =

∞∑
κ=0

Υκ

Γ (ρκ + λ)
, ρ, λ > 0,

<ρ,1 (Υ) = <ρ (Υ) , λ = 1.

The LTF of ML function are given by

L
{
κρ+λ−1<ρ,ρ+λ (+δκρ)

}
($) =

$−λ

($ρ − δ)
, Re (ρ) > 0, Re (λ) > 0, where δ ∈ R.

3. Supposed system and hypotheses

In this part, we will build the model under study and give hypotheses that will help in obtaining the
mild solution (the controllability). Consider the following FIDLE with multiple delays:

CDλ
(

CDρ + Υ
)
= (κ) =

∑U
κ=0 Gκz(pκ (κ))

+ψ
(
κ,= (κ) ,

∫ κ
0

P
(
κ, $,= ($)

)
d$,

∫ %

0
Q

(
κ, $,= ($)

)
d$

)
,

= (0) = =0,
CDρ= (κ) |κ=0= q0,

(3.1)

where ρ, λ ∈ (0, 1] with ρ + λ > 1, κ ∈ V = [0, %], % > 0 = ∈ Ru is the state vector, Υ is a u × u real
matrix, z ∈ Rv is the control vector, Gκ are u × v real matrices for κ = 1, 2, ...,U, and the nonlinear
functions ψ : V × Ru × Ru × Ru → Ru, P,Q : V × V × Ru → Ru are continuous.

Next, we suppose the following hypotheses:

(H1) For all κ ∈ V, the functions pκ : V → R, (κ = 1, 2, ...,U) are continuous, strictly increasing, and
differentiable. Moreover, pκ (κ) ≤ κ, for κ = 1, 2, ...,U.

(H2) For κ ∈ V, there exists time lead functions sκ(κ) :
[
pκ (0) , pκ (%)

]
→ V, (κ = 1, 2, ...,U) such that

sκ(pκ (κ)) = κ. Furthermore, if p0 (κ) = κ and for κ = %, the inequality below is true

pU (%) ≤ pU−1 (%) ≤ · · · ≤ pUv+1 (%) ≤ 0 = pv (%) < pv−1 (%) = · · · = p1 (%) = p0 (%) = %.

(H3) For arbitrary p > 0, consider zκ refer to the functions on [−p, 0] described as z : [−p, %] → Rv

and κ ∈ V.
(H4) The function ψ : V × Ru × Ru × Ru → Ru is continuous and for all κ, $ ∈ V, = ∈ Cu(V), there

exists a positive constant α such that∣∣∣∣∣∣ψ
(
κ,= (κ) ,

∫ κ

0
P

(
κ, $,= ($)

)
d$,

∫ %

0
Q

(
κ, $,= ($)

)
d$

)∣∣∣∣∣∣ ≤ α.
(H5) The functions P,Q : V × V × Ru → Ru are continuous and fulfill the axioms∣∣∣∣∣∫ κ

0
P

(
κ, $,= ($)

)
d$

∣∣∣∣∣ ≤ sup
(∫ κ

0
|~ (κ, $)| d$

)
‖$‖ ,

and ∣∣∣∣∣∫ %

0
Q

(
κ, $,= ($)

)
d$

∣∣∣∣∣ ≤ sup
(∫ %

0

∣∣∣∣̃~ (κ, $)
∣∣∣∣ d$)

‖$‖ ,

such that

sup
(∫ κ

0
|~ (κ, $)| d$

)
< 1, and sup

(∫ %

0

∣∣∣∣̃~ (κ, $)
∣∣∣∣ d$)

< 1.
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Definition 3.1. A complete state of the problem (3.1) at time κ is represented by the set Ω(κ) =

{= (κ) , zκ}.

Definition 3.2. The model (3.1) on V is described as relatively controllability if for every =1 ∈

Ru and any complete state Ω(0), there exist a control z (κ) defined on V such that the equation
= (%) = =1.

Now, the linear system  CDλ
(

CDρ + Υ
)
= (κ) =

∑U
κ=0 Gκz(pκ (κ)),

= (0) = =0,
CDρ= (κ) |κ=0= q0,

(3.2)

has the solution

= (κ) = <ρ (−Υκρ)=0 + κρΥ<ρ,ρ+1 (−Υκρ)=0 + κρ<ρ,ρ+1 (−Υκρ) q0

+

∫ κ

0
(κ −$)ρ+λ−1

<ρ,ρ+λ (−Υ (κ −$)ρ)
U∑
κ=0

Gκz(pκ ($))d$.

By using the time lead functions sκ(κ) and (H2), the above solution can be written as

= (κ) = <ρ (−Υκρ)=0 + κρΥ<ρ,ρ+1 (−Υκρ)=0 + κρ<ρ,ρ+1 (−Υκρ) q0

+

v∑
κ=0

0∫
pκ(0)

(κ − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (κ − sκ($))ρ) Gκ

.
sκ ($) z0 ($) d$

+

v∑
κ=0

κ∫
0

(κ − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (κ − sκ($))ρ) Gκ

.
sκ ($) z ($) d$

+

U∑
κ=v+1

pκ(κ)∫
pκ(0)

(κ − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (κ − sκ($))ρ) Gκ

.
sκ ($) z0 ($) d$.

Assume that Cu (V) is a Banach space (BS), which is the set of all continuous functions on the interval
V. Clearly, f = Cu (V)×Cv (V)×Cw (V) is a BS of continuous Ru ×Rv ×Rw valued functions endowed
with the norm ∥∥∥(=, z, y)∥∥∥

V
=

∥∥∥=∥∥∥
V

+ ‖z‖V + ‖y‖V ,

where
∥∥∥=∥∥∥ = sup

{∣∣∣= (κ)
∣∣∣ : κ ∈ V

}
, ‖z‖ = sup {|z (κ)| : κ ∈ V} , and ‖y‖ = sup {|y (κ)| : κ ∈ V} .

For each
(
=̃, β, β̃

)
∈ f, the fractional dynamical system CDλ

(
CDρ + Υ

)
= (κ) =

∑U
κ=0 Gκz(pκ (κ)) + ψ

(
κ, =̃, β, β̃

)
, κ ∈ V,

= (0) = =0,
CDρ= (κ) |κ=0= q0,

(3.3)

has the solution

= (κ) = <ρ (−Υκρ)=0 + κρΥ<ρ,ρ+1 (−Υκρ)=0 + κρ<ρ,ρ+1 (−Υκρ) q0
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+

∫ κ

0
(κ −$)ρ+λ−1

<ρ,ρ+λ (−Υ (κ −$)ρ)
U∑
κ=0

Gκz(pκ ($))d$

+

∫ κ

0
(κ −$)ρ+λ−1

<ρ,ρ+λ (−Υ (κ −$)ρ)ψ
(
$, =̃ ($) , β ($) , β̃ ($)

)
d$.

Using the time lead functions sκ(κ) and Assumption (H2), the solution of the above equation for κ = %

can be written as

= (%) = <ρ (−Υκρ)=0 + κρΥ<ρ,ρ+1 (−Υκρ)=0 + κρ<ρ,ρ+1 (−Υκρ) q0

+

v∑
κ=0

0∫
pκ(κ)

(% − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (% − sκ($))ρ) Gκ

.
sκ ($) z0 ($) d$

+

v∑
κ=0

%∫
0

(% − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (% − sκ($))ρ) Gκ

.
sκ ($) z ($) d$

+

U∑
κ=v+1

pκ(%)∫
pκ(0)

(% − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (κ − sκ($))ρ) Gκ

.
sκ ($) z0 ($) d$

+

∫ %

0
(% −$)ρ+λ−1

<ρ,ρ+λ (−Υ (% −$)ρ)ψ
(
$, =̃ ($) , β ($) , β̃ ($)

)
d$.

Now, for =̃ ∈ Cu (V), our linear model (3.1) can be solved using Iλ on both sides of the equation,
followed by the Laplace and inverse LTF and the convolution property:

= (κ) = <ρ (−Υκρ)=0 + κρΥ<ρ,ρ+1 (−Υκρ)=0 + κρ<ρ,ρ+1 (−Υκρ) q0

+

∫ κ

0
(κ −$)ρ+λ−1

<ρ,ρ+λ (−Υ (κ −$)ρ)
U∑
κ=0

Gκz(pκ ($))d$

+

∫ κ

0
(κ −$)ρ+λ−1

<ρ,ρ+λ (−Υ (κ −$)ρ)

×ψ

(
$,= ($) ,

∫ $

0
P

(
$, ξ, =̃ (ξ)

)
dξ,

∫ %

0
Q

(
$, ξ, =̃ (ξ)

)
dξ

)
d$.

For the sake of convenience, let

=
(
$;=, q0

)
= <ρ (−Υκρ)=0 + κρΥ<ρ,ρ+1 (−Υκρ)=0 + κρ<ρ,ρ+1 (−Υκρ) q0.

Thus, = (κ) reduces to

= (κ) = =
(
$;=, q0

)
+

∫ κ

0
(κ −$)ρ+λ−1

<ρ,ρ+λ (−Υ (κ −$)ρ)
U∑
κ=0

Gκz(pκ ($))d$

+

∫ κ

0
(κ −$)ρ+λ−1

<ρ,ρ+λ (−Υ (κ −$)ρ)

×ψ

(
$, =̃ ($) ,

∫ $

0
P

(
$, ξ, =̃ (ξ)

)
dξ,

∫ %

0
Q

(
$, ξ, =̃ (ξ)

)
dξ

)
d$.

Using the time lead functions sκ(κ) and Assumption (H2), the equation above has a solution, for κ = %,
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= (%) = <ρ (−Υκρ)=0 + κρΥ<ρ,ρ+1 (−Υκρ)=0 + κρ<ρ,ρ+1 (−Υκρ) q0

+

v∑
κ=0

0∫
pκ(0)

(% − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (% − sκ($))ρ) Gκ

.
sκ ($) z0 ($) d$

+

v∑
κ=0

%∫
0

(% − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (% − sκ($))ρ) Gκ

.
sκ ($) z ($) d$

+

U∑
κ=v+1

pκ(%)∫
pκ(0)

(% − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (% − sκ($))ρ) Gκ

.
sκ ($) z0 ($) d$

+

∫ %

0
(% −$)ρ+λ−1

<ρ,ρ+λ (−Υ (% −$)ρ)ψ
(
$, =̃ ($) , β ($) , β̃ ($)

)
d$.

To keep things simple, assume that

Ψ (κ) =

v∑
κ=0

0∫
pκ(0)

(κ − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (κ − sκ($))ρ) Gκ

.
sκ ($) z0 ($) d$

+

U∑
κ=v+1

pκ(κ)∫
pκ(0)

(κ − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (κ − sκ($))ρ) Gκ

.
sκ ($) z0 ($) d$.

To be brief, consider

φ
(
Ω (0) ,=1; =̃, β, β̃

)
= =1 − =

(
%;=0, q0

)
− Ψ (%)

−

∫ %

0
(% −$)ρ+λ−1

<ρ,ρ+λ (−Υ (% −$)ρ)ψ
(
$, =̃ ($) , β ($) , β̃ ($)

)
d$,

for an arbitrary complete state Ω (0) , where =1 ∈ R
u.

Furthermore, the Grammian controllability matrix is supplied by

K =

v∑
κ=0

%∫
0

(% − sκ($))2(ρ+λ−1)
[
<ρ,ρ+λ (−Υ (% − sκ($))ρ)

]
×

[
<ρ,ρ+λ (−Υ) (% − sκ($))ρ)

]∗
d$,

where
[
<ρ,ρ+λ (−Υ) (% − sκ($))ρ)

]∗
represents the matrix transpose. Similar to [40], the linear system

is relatively controllability on V = [0, %] iff the controllability Grammian matrix is positive definite for
some % > 0.

Now, we can present our first main theorem in this section.

Theorem 3.3. The linear model (3.1) is controllability on V, provided that the linear form (3.2) is
controllability and the hypothesis (H2) is true.
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Proof. Describe the operator Φ : Cu(V)→ Cu(V) as

Φ=̃ (κ) = <ρ (−Υκρ)=0 + κρΥ<ρ,ρ+1 (−Υκρ)=0 + κρ<ρ,ρ+1 (−Υκρ) q0

+

∫ κ

0
(κ −$)ρ+λ−1

<ρ,ρ+λ (−Υ (κ −$)ρ)
U∑
κ=0

Gκz(pκ ($))d$

+

∫ κ

0
(κ −$)ρ+λ−1

<ρ,ρ+λ (−Υ (κ −$)ρ)

×ψ

(
$,= ($) ,

∫ $

0
P

(
$, ξ, =̃ (ξ)

)
dξ,

∫ %

0
Q

(
$, ξ, =̃ (ξ)

)
dξ

)
d$,

where the control z (κ) is given by

z (κ) =
(
(% − sκ(κ))ρ+λ−1

<ρ,ρ+λ (−Υ (% − κ)ρ) Gκ
.
sκ ($)

)∗
K−1[

=1 − =
(
%;=0, q0

)
− Ψ (%) −

∫ %

0
(% −$)ρ+λ−1

<ρ,ρ+λ (−Υ (% −$)ρ)−

× ψ

(
$, =̃ ($) ,

∫ $

0
P

(
$, ξ, =̃ (ξ)

)
dξ,

∫ $

0
Q

(
$, ξ, =̃ (ξ)

)
dξ

)
d$

]
.

Let f (s) =

{
=̃ ∈ Cu(V) :

∥∥∥∥=̃∥∥∥∥ ≤ s
}

be a closed convex subset such that

s = u1 +
u0%

λ+ρ ‖G‖ K̃
λ + ρ

+
u0%

λ+ρ%

λ + ρ
,

and

K̃ = u0 (% − κ)λ+ρ
‖G‖∗

∥∥∥K−1
∥∥∥ (∣∣∣=1

∣∣∣ + u1 +
~1%

λ+ρU
λ + ρ

)
.

The operator Φ maps f (s) into itself and is completely continuous, making it easy to illustrate.
According to Schauder’s FP theorem, there exists a FP =̃ ∈ f (s) such that

Φ=̃ = =̃ = =.

Adding the value of p (κ) to the foregoing equation, yields = (%) = =1. Thus, the integro-differential
system on V is controllability. �

Now, consider the following FIDLE:
CDλ

(
CDρ + Υ

)
= (κ) =

∑U
κ=0 Gκz(pκ (κ))

+ψ
(
κ,= (κ) ,

∫ κ
0

P
(
κ, $,= ($)

)
d$,

∫ %

0
Q

(
κ, $,= ($)

)
d$, z (κ)

)
,

= (0) = =0,
CDρ= (κ) |κ=0= q0,

(3.4)

where λ, ρ,= (κ) ,Υ,Gκ, z, p (κ) , P, and Q are defined after model (3.1) in the previous section and
ψ : V × Ru × Ru × Ru × Ru → Ru is continuous function.

The solution of the nonlinear model (3.4) takes the form
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= (κ) = <ρ (−Υκρ)=0 + κρΥ<ρ,ρ+1 (−Υκρ)=0 + κρ<ρ,ρ+1 (−Υκρ) q0

+

v∑
κ=0

0∫
pκ(0)

(κ − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (κ − sκ($))ρ) Gκ

.
sκ ($) z0 ($) d$

+

v∑
κ=0

κ∫
0

(κ − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (κ − sκ($))ρ) Gκ

.
sκ ($) z ($) d$

+

U∑
κ=v+1

pκ(κ)∫
pκ(0)

(κ − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (κ − sκ($))ρ) Gκ

.
sκ ($) z0 ($) d$

+

∫ κ

0
(κ −$)ρ+λ−1

<ρ,ρ+λ (−Υ (κ −$)ρ)

×ψ

(
$,= ($) ,

∫ $

0
P

(
$, ξ,= (ξ)

)
dξ,

∫ $

0
Q

(
$, ξ,= (ξ)

)
dξ, z (κ)

)
d$.

Now, we present our results on the controllability of the FIDLE. To accomplish this, we employ, for
κ ∈ [0, %]

g (κ) =

∫ κ

0
P

(
κ, $,= ($)

)
d$ and g̃ (κ) =

∫ %

0
Q

(
κ, $,= ($)

)
d$.

For ease of presenting and summarizing the results, we, consider the following notations:

~κ = sup
∥∥∥<ρ,ρ+λ (−Υ (% − sκ($))ρ)

∥∥∥ , ~̃κ = sup
∥∥∥ .sκ ($)

∥∥∥ , κ = 0, 1, · · · ,U,

~̂ = sup ‖z0 ($)‖ , u0 = sup
∥∥∥<ρ,ρ+λ (−Υ (% −$)ρ)

∥∥∥ , u1 = sup
∥∥∥= (

%;=0, q0
)∥∥∥ ,

~ = max
{̃
~%λ+ρ ‖Gκ‖ (λ + ρ)−1 , 1

}
, ~̃ =

v∑
κ=0

~κ~̃κMκ,

ϕ =

v∑
κ=0

~κ~̃κ ‖Gκ‖ M̃κ +

U∑
κ=v+1

~κ~̃κ ‖Gκ‖ M̂κ,

M̃κ =

0∫
pκ(0)

(% − sκ($))ρ+λ−1 d$, κ = 0, 1, · · · , v, Mκ =

%∫
0

(% − sκ($))ρ+λ−1 d$,

M̂κ =

pκ(%)∫
gκ(0)

(% − sκ($))ρ+λ−1 d$ +

pκ(%)∫
g̃κ(0)

(% − sκ($))ρ+λ−1 d$, κ = v + 1, v + 2, · · · ,U,

ĉκ = 8~κ~̃κu0%
λ+ρ

∥∥∥G∗κ
∥∥∥ ∥∥∥K−1

∥∥∥ (λ + ρ)−1 , c1 = 8u0%
λ+ρ (λ + ρ)−1 ,

d̂κ = 8~κ~̃κ
∥∥∥G∗κ

∥∥∥ ∥∥∥K−1
∥∥∥ (∣∣∣=1 + u1 + ϕ

∣∣∣) , c1 = 8
(
=1 + ϕ̂~

)
,

c = max
{̂
cκ, c1

}
, d = max

{
d̂κ, d1

}
, κ = 0, 1, · · · , v,

sup |ψ| = sup
$∈V

{
ψ

(
$, =̃ ($) , g (κ) , g̃ ($) , β̃ ($)

)}
.
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The second main theorem here is as follows:

Theorem 3.4. Let the assertion (H2) holds and the linear system (3.2) be a controllability on V. Then,
the FIDLE (3.1) is a controllability on V, provided that the continuous function ψ satisfies the below
condition

lim
|=,g,̃g,p|→∞

∣∣∣ψ (
=, g, g̃, p

)∣∣∣∣∣∣=, g, g̃, p
∣∣∣ = 0, uniformly in κ ∈ V.

Proof. Describe the operator Ξ : f→ f as Ξ
(
=̃, β̃

)
= Ξ

(
=, p

)
, where

z (κ) =
(
(% − sκ(κ))ρ+λ−1

<ρ,ρ+λ (−Υ (% − κ)ρ) Gκ
.
sκ ($)

)∗
K−1[

=1 − =
(
%;=0, q0

)
− Ψ (%) −

∫ %

0
(% −$)ρ+λ−1

<ρ,ρ+λ (−Υ (% −$)ρ)

× ψ
(
$, =̃ ($) , g ($) , g̃ ($) , β̃ ($)

)
d$

]
,

and

= (κ) = <ρ (−Υκρ)=0 + κρΥ<ρ,ρ+1 (−Υκρ)=0 + κρ<ρ,ρ+1 (−Υκρ) q0

+

v∑
κ=0

0∫
pκ(0)

(κ − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (κ − sκ($))ρ) Gκ

.
sκ ($) z0 ($) d$

+

v∑
κ=0

κ∫
0

(κ − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (κ − sκ($))ρ) Gκ

.
sκ ($) z ($) d$

+

U∑
κ=v+1

pκ(κ)∫
pκ(0)

(κ − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (κ − sκ($))ρ) Gκ

.
sκ ($) z0 ($) d$

+

∫ κ

0
(κ −$)ρ+λ−1

<ρ,ρ+λ (−Υ (κ −$)ρ)ψ
(
$, =̃ ($) , g ($) , g̃ ($) , β̃ (κ)

)
d$,

that is,

= (κ) = =
(
$;=, q0

)
+

v∑
κ=0

0∫
pκ(0)

(κ − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (κ − sκ($))ρ) Gκ

.
sκ ($) z0 ($) d$

+

v∑
κ=0

κ∫
0

(κ − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (κ − sκ($))ρ) Gκ

.
sκ ($)

×
(
(% − sκ(κ))ρ+λ−1

) (
G∗κ<ρ,ρ+λ (−Υ∗ (% − sκ(κ))ρ)

) .
sκ ($)∗ K−1φ

(
Ω (0) ,=1; =̃, β̃

)
d$

+

U∑
κ=v+1

pκ(κ)∫
pκ(0)

(κ − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (κ − sκ($))ρ) Gκ

.
sκ ($) z0 ($) d$

+

∫ κ

0
(κ −$)ρ+λ−1

<ρ,ρ+λ (−Υ (κ −$)ρ)ψ
(
$, =̃ ($) , g ($) , g̃ ($) , β̃ (κ)

)
d$.
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So, it is straightforward to establish that

|p (κ)| ≤
∥∥∥G∗κ

∥∥∥ ~κ~̃κ ∥∥∥K−1
∥∥∥ [∥∥∥=1

∥∥∥ + u1 + ϕ
]

+ ~κ~̃κ
∥∥∥K−1

∥∥∥ u0 (λ + ρ)−1 %λ+ρ sup |ψ| ,

≤

 d̂κ
8~

+
ĉκ
8~

sup |ψ|
 ≤ 1

8~
(
d + c sup |ψ|

)
,

and ∣∣∣= (κ)
∣∣∣ ≤ u1 + ϕ̂~ +

1
8~

 v∑
κ=0

~κ~̃κ ‖Gκ‖Mκ (λ + ρ)−1 %λ+ρ

 (d + c sup |ψ|
)

+u0 (λ + ρ)−1 %λ+ρ sup |ψ|

≤
d
8

+
1
8

(
d + c sup |ψ|

)
+

c
8

sup |ψ|

=
1
4

d +
1
4

c sup |ψ| .

Hypothetically, the function ψ meets the conditions outlined in [40]. Thus, for every c, d > 0, there is
a positive constant r̃ such that

c
∣∣∣ψ (
κ,=, g, g̃, p

)∣∣∣ + d ≤ r̃, for all κ ∈ V, (3.5)

provided that
∣∣∣(=, p

)∣∣∣ ≤ r̃. Further, for any r̃1 > 0 such that r̃1 < r̃ fulfills also Eq (3.5). Hence, under

the same assumptions of c, d and r̃, if
∥∥∥∥=̃∥∥∥∥ ≤ r̃

4 and
∥∥∥β̃∥∥∥ ≤ r̃

4 , then∣∣∣∣=̃ ($)
∣∣∣∣ + |g ($)| + |̃g ($)| +

∣∣∣̃β ($)
∣∣∣ ≤ r̃.

Hence, one has
d + c sup |ψ| ≤ r.

Accordingly, for each $ ∈ V, |z ($)| ≤ r̃
8~ . Hence, ‖z‖ ≤ r̃

8~ . Thus,
∥∥∥=∥∥∥ ≤ ˜̃r

4 . This proves that if

f(̃r) =

{(
=̃, β, β̃

)
∈ f :

∥∥∥∥=̃∥∥∥∥ ≤ r̃
4
, ‖β‖ ≤

r̃
4
, and

∥∥∥β̃∥∥∥ ≤ r̃
4

}
,

then Ξ maps f(̃r) into itself. The continuity of ψ implies to the continuity of Ξ, and hence completely
continuous based on Arzela-Ascoli theorem. Since f(̃r) is closed, bounded, and convex, then by
Schauder FP, the operator Ξ has a FP

(
=̃, β, β̃

)
∈ f(̃r) such that Ξ

(
=̃, β, β̃

)
=

(
=̃, β, β̃

)
=

(
=, β, β̃

)
. As a

result,

= (κ) = =
(
$;=, q0

)
+

v∑
κ=0

0∫
pκ(0)

(κ − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (κ − sκ($))ρ) Gκ

.
sκ ($) z0 ($) d$

+

v∑
κ=0

κ∫
0

(κ − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (κ − sκ($))ρ) Gκ

.
sκ ($)
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+

U∑
κ=v+1

pκ(κ)∫
pκ(0)

(κ − sκ($))ρ+λ−1
<ρ,ρ+λ (−Υ (κ − sκ($))ρ) Gκ

.
sκ ($) z0 ($) d$

+

∫ κ

0
(κ −$)ρ+λ−1

<ρ,ρ+λ (−Υ (κ −$)ρ)ψ
(
$, =̃ ($) , g ($) , g̃ ($) , β̃ (κ)

)
d$.

Thus, it is easy to show that = (%) = =1, and the solution of the FIDLE (3.1) is = (κ). Therefore, the
model is CA on V . �

4. An application

Consider the following model:
CDλ

(
CDρ + Υ

)
= (κ) = G1z(κ) + G2z(κ − 1)

+ψ
(
κ,= (κ) ,

∫ κ
0

P
(
κ, $,= ($)

)
d$,

∫ %

0
Q

(
κ, $,= ($)

)
d$

)
,

= (0) = =0,
CDρ= (κ) |κ=0= q0,

(4.1)

where ρ, λ ∈ (0, 1], % = 6, κ ∈ [0, 6], ρ = 3
4 , λ = 1

3 , ρ + λ > 1, =0 =
[

0 1
]
, =1 =

[
1 0

]
,

q0 =
[

0 0
]
, G1 =

[
1 0

]
, G2 =

[
0 1

]
, Υ =

[
0 1 −1 0

]
, = (κ) =

[
=2 (κ) =1 (κ)

]
, and

the nonlinear function ψ is suggested as

ψ

(
κ,= (κ) ,

∫ κ

0
P

(
κ, $,= ($)

)
d$,

∫ %

0
Q

(
κ, $,= ($)

)
d$, z ($)

)
=

[
1

∫ κ
0 exp(−=1(κ))d$

1+=2(κ)+z2(κ)

]
.

The solution of the model (4.1) is

= (κ) = < 3
4

(
−Υκ

3
4
)
=0 + κ

3
4 Υ< 3

4 ,
7
4

(
−Υκ

3
4
)
=0 + κ

3
4< 3

4 ,
7
4

(
−Υκ

3
4
)

q0

+

κ∫
0

(κ −$)
1
12 < 3

4 ,
13
12

(
−Υ (κ −$)

3
4
)
G1z ($) d$

+

κ∫
0

(κ −$ + 1)
1

12 < 3
4 ,

13
12

(
−Υ (κ −$ + 1)

3
4
)
G2z ($) d$

+

∫ κ

0
(κ −$)

1
12 < 3

4 ,
13
12

(
−Υ (κ −$)

3
4
)

×ψ

(
$, =̃ ($) ,

∫ $

0
P

(
$, ξ,= (ξ)

)
dξ,

∫ %

0
Q

(
$, ξ,= (ξ)

)
dξ, z (κ)

)
d$.

By performing a simple calculation on the matrix, we have K > 0, that is, K is a positive definite.
Consequently, the linear model is AC on [0, 6]. Further, the continuous function ψ fulfills the hypothesis
(H2), hence the fractional model is relatively controllability. Thus, the nonlinear model guidance from
initial state =0 =

[
0 1

]
to the desirable state =1 =

[
1 0

]
on the interval [0, 6]. It can be estimated

as follows:
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zu (κ) =
[
(6 − κ)

1
12 < 3

4 ,
13
12

(
−Υ (6 − κ)

3
4 G1

)∗
+ (6 − κ + 1)

1
12 < 3

4 ,
13
12

(
−Υ (6 − κ + 1)

3
4 G2

)∗]
×K−1

[
=1 − =

(
6;=0, q0

)
− Ψ (6) −

∫ 6

0
(6 −$)

1
12 < 3

4 ,
13
12

(−Υ (6 −$)ρ)

× ψ

(
κ,= (κ) ,

∫ κ

0
P

(
κ, $,= ($)

)
d$,

∫ %

0
Q

(
κ, $,= ($)

)
d$, zu ($)

)
d$

]
,

and

=u+1 (κ) = < 3
4

(
−Υκ

3
4
)
=0 + κ

3
4 Υ< 3

4 ,
7
4

(
−Υκ

3
4
)
=0 + κ

3
4< 3

4 ,
7
4

(
−Υκ

3
4
)

q0

+

κ∫
0

(κ −$)
1

12 < 3
4 ,

13
12

(
−Υ (κ −$)

3
4
)
G1zu ($) d$

+

κ∫
0

(κ −$ + 1)
1
12 < 3

4 ,
13
12

(
−Υ (κ −$ + 1)

3
4
)
G2zu ($) d$

+

∫ κ

0
(κ −$)

1
12 < 3

4 ,
13
12

(
−Υ (κ −$)

3
4
)

×ψ

(
$,=u ($) ,

∫ $

0
P

(
$, ξ,= (ξ)

)
dξ,

∫ %

0
Q

(
$, ξ,= (ξ)

)
dξ, zu (κ)

)
d$,

for all κ ∈ [0, 6], where u = 0, 1, 2, · · · with =(0) (κ) = =0. Hence, all requirements of Theorem 3.4 are
satisfied. Therefore, the nonlinear model (4.1) is controllability on [0, 6].

5. Conclusions and future work

The study of fractional differential equations stands out as a captivating research domain. This work
primarily introduces a novel model of fractional operators featuring multiple delays, termed fractional
integro-differential Langevin equations with multiple delays. The research also delves into estimating
the relative controllability of this model within finite-dimensional spaces. By employing fixed-point
theory, the study achieves its objectives effectively. The controllability assessment utilizes Schauder’s
FP, and the Grammian matrix is defined by the ML matrix function. Validation of the findings is
conducted through an application. Future research directions regarding fractional integro-differential
Langevin equations with multiple delays could entail exploring advanced numerical techniques tailored
to these intricate equations, analyzing stability under various conditions, and investigating applications
spanning physics, biology, and finance. Furthermore, investigating the impact of different delay types
on system behavior, developing control strategies, and considering stochastic elements within the
equation framework could offer promising avenues for further exploration.
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