In this work, the global behavior of a discrete population model
$ \begin{equation*} \begin{cases} x_{n+1}& = \alpha x_n e^{-y_n}+\beta,\\ y_{n+1}& = \alpha x_n(1-e^{-y_n}), \end{cases}\quad n = 0,1,2,\dots, \end{equation*} $
is considered, where $ \alpha\in (0, 1) $, $ \beta\in (0, +\infty) $, and the initial value $ (x_{0}, y_0)\in [0, \infty)\times [0, \infty) $. To illustrate the dynamics behavior of this model, the boundedness, periodic character, local stability, bifurcation, and the global asymptotic stability of the solutions are investigated.
Citation: Linxia Hu, Yonghong Shen, Xiumei Jia. Global behavior of a discrete population model[J]. AIMS Mathematics, 2024, 9(5): 12128-12143. doi: 10.3934/math.2024592
In this work, the global behavior of a discrete population model
$ \begin{equation*} \begin{cases} x_{n+1}& = \alpha x_n e^{-y_n}+\beta,\\ y_{n+1}& = \alpha x_n(1-e^{-y_n}), \end{cases}\quad n = 0,1,2,\dots, \end{equation*} $
is considered, where $ \alpha\in (0, 1) $, $ \beta\in (0, +\infty) $, and the initial value $ (x_{0}, y_0)\in [0, \infty)\times [0, \infty) $. To illustrate the dynamics behavior of this model, the boundedness, periodic character, local stability, bifurcation, and the global asymptotic stability of the solutions are investigated.
[1] | J. R. Beddington, C. A. Free, J. H. Lawton, Dynamic complexity in predator-prey models framed in difference equations, Nature, 255 (1975), 58–60. http://dx.doi.org/10.1038/255058a0 doi: 10.1038/255058a0 |
[2] | E. Camouzis, G. Ladas, Dynamics of third-Order rational difference equations with open problems and conjectures, Boca Raton: Chapman & Hall/CRC, 2008. |
[3] | E. A. Grove, G. M. Kent, R. Levins, G. Ladas, S. Valicenti, Global stability in some population models, Poznan: Gordon and Breach, 2000,149–176. |
[4] | M. P. Hassell, R. M. May, Stability in insect host-parasite models, J. Anim. Ecol., 42 (1973), 693–726. http://dx.doi.org/10.2307/3133 doi: 10.2307/3133 |
[5] | M. P. Hassell, The dynamics of arthropod predator-prey systems, Princeton University Press, 1978. |
[6] | M. L. J. Hautus, A. Emerson, T. S. Bolis, Solution to problem E$2721$, Amer. Math. Monthly, 86 (1979), 865–866. |
[7] | S. B. Hsu, M. C. Li, W. S. Liu, M. Malkin, Heteroclinic foliation, global oscillations for the Nicholson-Bailey model and delay of stability loss, Discrete Cont. Dyn. S., 9 (2003), 1465–1492. http://dx.doi.org/10.3934/dcds.2003.9.1465 doi: 10.3934/dcds.2003.9.1465 |
[8] | W. T. Jamieson, J. Reis, Global behavior for the classical Nicholson-Bailey model, J. Math. Anal. Appl., 461 (2018), 492–499. https://doi.org/10.1016/j.jmaa.2017.12.071 doi: 10.1016/j.jmaa.2017.12.071 |
[9] | S. R. J. Jang, J. L. Yu, Discrete-time host-parasitoid models with pest control, J. Biol. Dynam., 6 (2012), 718–739. http://dx.doi.org/10.1080/17513758.2012.700074 doi: 10.1080/17513758.2012.700074 |
[10] | S. Kapçak, S. Elaydi, Ü. Ufuktepe, Stability of a predator-prey model with refuge effect, J. Differ. Equ. Appl., 22 (2016), 989–1004. http://dx.doi.org/10.1080/10236198.2016.1170823 doi: 10.1080/10236198.2016.1170823 |
[11] | V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with application, Kluwer Academic Publishers, 1993. |
[12] | M. R. S. Kulenović, G. Ladas, Dynamics of second order rational difference equations with open problems and conjectures, Boca Raton: Chapman & Hall/CRC, 2001. |
[13] | T. H. Li, X. T. Zhang, C. R. Zhang, Pattern dynamics analysis of a space-time discrete spruce budworm model, Chaos, Soliton. Fract., 179 (2024), 114423. http://dx.doi.org/10.1016/j.chaos.2023.114423 doi: 10.1016/j.chaos.2023.114423 |
[14] | W. T. Li, H. R. Sun, X. X. Yan, The asymptotic behavior of a higher order delay nonlinear-difference-equations, Indian J. Pure Appl. Math., 34 (2003), 1431–1441. |
[15] | W. T. Li, H. R. Sun, Dynamics of a rational difference equation, Appl. Math. Comput., 163 (2005), 577–591. http://dx.doi.org/10.1016/j.amc.2004.04.002 doi: 10.1016/j.amc.2004.04.002 |
[16] | X. Y. Li, Y. Q. Liu, Transcritical bifurcation and flip bifurcation of a new discrete ratio-dependent predator-prey system, Qual. Theory Dyn. Syst., 21 (2022). http://dx.doi.org/10.1007/s12346-022-00646-2 |
[17] | X. Y. Li, X. M. Shao, Flip bifurcation and Neimark-Sacker bifurcation in a discrete predator-prey model with Michaelis-Menten functional response, Electron. Res. Arch., 31 (2023), 37–57. http://dx.doi.org/10.3934/era.2023003 doi: 10.3934/era.2023003 |
[18] | H. I. McCallum, Effects of immigration on chaotic popution dynamics, J. Theor. Biol., 154 (1992), 277–284. http://dx.doi.org/10.1016/S0022-5193(05)80170-5 doi: 10.1016/S0022-5193(05)80170-5 |
[19] | J. D. Murray, Mathematical Biology II, New York: Springer-Verlag, 1989. https://doi.org/10.1007/b98869 |
[20] | A. J. Nicholson, An outline of the dynamics of animal populations, Aust. J. Zool., 2 (1954), 9–65. http://dx.doi.org/10.1071/ZO9540009 doi: 10.1071/ZO9540009 |
[21] | S. Sinha, S. Parthasarathy, Unusual dynamics of extinction in a simple ecological model, Proc. Natl. Acad. Sci. USA, 93 (1996), 1504–1508. http://dx.doi.org/10.1073/pnas.93.4.1504 doi: 10.1073/pnas.93.4.1504 |
[22] | S. Stević, Solvability and representations of the general solutions to some nonlinear difference equations of second order, AIMS Math., 8 (2023), 15148–15165. http://dx.doi.org/10.3934/math.2023773 doi: 10.3934/math.2023773 |
[23] | V. Weide, M. C. Varriale, F. M. Hilker, Hydra effect and paradox of enrichment in discrete-time predator-prey models, Math. Biosci., 310 (2019), 120–127. https://doi.org/10.1016/j.mbs.2018.12.010 doi: 10.1016/j.mbs.2018.12.010 |
[24] | S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, New York: Springer-Verlag, 1990. https://doi.org/10.1007/b97481 |
[25] | X. T. Zhang, C. R. Zhang, Y. Z. Zhou, Pattern dynamics analysis of a time-space discrete FitzHugh-Nagumo (FHN) model based on coupled map lattices, Comput. Math. Appl., 157 (2024), 92–123. http://dx.doi.org/10.1016/j.camwa.2023.12.030 doi: 10.1016/j.camwa.2023.12.030 |