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Abstract: In this work, the global behavior of a discrete population modelxn+1 = αxne−yn + β,
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n = 0, 1, 2, . . . ,
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1. Introduction

The model xn+1 = λxne−ayn ,

yn+1 = cxn(1 − e−ayn),
n = 0, 1, 2, . . . , (1.1)

is used to describe the Nicholson-Bailey host-parasitoid system, where xn and yn represent the densities
of host and parasitoid at the nth generation, respectively, a is the searching efficiency of the parasitoid, λ
is the host reproductive rate, and c is the average number of viable eggs laid by a parasitoid on a single
host. System (1.1) is simple and its positive equilibrium is unstable [4, 5, 19], which indicates that
the parasitoid populations, or both the parasitoid and host populations, will go extinct. Therefore this
simple model is unrealistic for any practical applications. Up to now, the model has been developed to
describe the population dynamic behavior of a coupled host-parasitoid (or predator-prey) system. The
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improved models display more various dynamic behaviors such as stability, bifurcation, and chaotic
phenomenon, see [1, 7–10, 16, 17, 20, 21, 23]. For more detailed information, refer to [13–15, 22, 25].

As mentioned in [18], in many populations it is reasonable to believe that either a refuge exists
which isolates some small fraction of the population from density-dependent effects, or that there is
a small amount of immigration from outside the system each generation. Therefore, in this paper we
consider the system xn+1 = αxne−yn + β,

yn+1 = αxn(1 − e−yn),
n = 0, 1, 2, . . . , (1.2)

where
α ∈ (0, 1), β ∈ (0,+∞), (1.3)

and the initial value (x0, y0) ∈ [0,+∞) × [0,+∞). The parameter α is the host reproductive rate at per
generation (in the absence of a parasitoid), and the term β represents a refuge or a constant amount of
immigration of hosts from outside the system per generation.

In [12], Kulenović and Ladas proposed an open problem (Open Problem 6.10.16) asking for
investigating the global character of all solutions of system (1.2) with parameters α ∈ (0, 1) and
β ∈ (1,+∞).

Inspired by the aforementioned open problem, in this paper the boundedness, periodic character,
transcritical bifurcation, local asymptotic stability, and global asymptotic stability of system (1.2) are
discussed under condition (1.3). Our result partially solves the above open problem.

The paper is organized as follows:
Section 1 is the introduction, and Section 2 involves the preliminaries, where some necessary

lemmas are presented. Section 3 deals with the boundedness and periodic character of system (1.2).
The linearized stability and bifurcation analysis are discussed in Section 4. Section 5 focuses on the
global asymptotic stability of the equilibria of system (1.2). Section 6 is the conclusion.

2. Preliminaries

Prior to commencing the discussion, we present some essential lemmas.

Lemma 2.1. (A Comparison Result [11]) Assume that α ∈ (0,+∞) and β ∈ R. Let {xn}
∞
n=0 and {zn}

∞
n=0

be sequences of real numbers such that x0 ≤ z0 andxn+1 ≤ αxn + β,

zn+1 = αzn + β,
n = 0, 1, 2, . . . .

Then xn ≤ zn for n ≥ 0.

The following lemma is proved in [6], which will be applied in analyzing the global attractivity of
Eq (2.1). Additionally, one can refer to [3, 11, 12] for further information.

Lemma 2.2. Consider the difference equation

un+1 = g(un), n = 0, 1, 2, . . . . (2.1)

Let I ⊆ [0,+∞) be some interval and assume that g ∈ C[I, (0,+∞)] satisfies the following conditions:
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(i) g(u) is non-decreasing in u.

(ii) Equation (2.1) has a unique positive equilibrium ū ∈ I and the function g(u) satisfies the negative
feedback condition: (

u − ū
)
(g(u) − u) < 0 for every u ∈ I \ {ū}.

Then, every positive solution of Eq (2.1) with initial conditions in I converges to ū.

Consider the difference equation

yn+1 = G(yn, yn−1), n = 0, 1, 2, . . . . (2.2)

The following strategy for obtaining global attractivity results of Eq (2.2) is derived from [12], which
is also referenced in [2].

Lemma 2.3. Let [a, b] be an interval of real numbers and assume that G : [a, b] × [a, b] → [a, b] is a
continuous function satisfying the following properties:

(i) G(x, y) is non-decreasing in x ∈ [a, b] for each y ∈ [a, b], and G(x, y) is non-increasing in y ∈ [a, b]
for each x ∈ [a, b].

(ii) If (m,M) ∈ [a, b] × [a, b] is a solution of the system

G(m,M) = m, and G(M,m) = M,

then m = M.

Then, Eq (2.2) has a unique equilibrium x̄, and every solution of Eq (2.2) converges to x̄.

3. Boundedness and periodic character

Theorem 3.1. Assume that (1.3) holds. Then every nonnegative solution of system (1.2) is bounded
and eventually enters an invariant rectangle [β, β

1−α ] × [0, αβ

1−α ].

Proof. Using (1.2) and noting that 0 < e−yn ≤ 1 for yn ≥ 0, we get

β < xn+1 = αxne−yn + β < αxn + β, n = 0, 1, 2, . . . .

Consider the initial value problem

zn+1 = αzn + β, n = 0, 1, 2, . . . , (3.1)

with initial value z0 = x0. It follows by Lemma 2.1 that

xn ≤ zn, for n = 0, 1, 2, . . . .

The solution of Eq (3.1) is given by

zn = αn(z0 −
β

1 − α
) +

β

1 − α
, n ≥ 1,
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and for n > 1,

zn+1 − zn = αn(1 − α)(
β

1 − α
− z0).

Therefore, the sequence {zn} is decreasing and bounded below by β

1−α with the initial value z0 >
β

1−α ,
and it is increasing and bounded above by β

1−α with the initial value z0 <
β

1−α , and zn =
β

1−α for n ≥ 1
with the initial value z0 =

β

1−α . Thus, lim
n→∞

zn =
β

1−α . Hence, for every ε > 0, there is an integer N such
that, for n > N,

xn ≤ zn <
β

1 − α
+ ε,

and so xn ≤
β

1−α for n > N. Furthermore, when n > N,

0 ≤ yn+1 = αxn(1 − e−yn) ≤ αxn ≤
αβ

1 − α
,

holds.
Set

M = max{x0, x1, . . . , xN ,
β

1 − α
}, L = max{y0, y1, . . . , yN+1,

αβ

1 − α
}.

Then
β ≤ xn ≤ M, 0 ≤ yn ≤ L, for n ≥ 0.

Moreover, if (x0, y0) ∈ [β, β

1−α ] × [0, αβ

1−α ], then

β ≤ x1 = αx0e−y0 + β ≤ αx0 + β ≤
αβ

1 − α
+ β =

β

1 − α
,

0 ≤ y1 = αx0(1 − e−y0) ≤ αx0 ≤
αβ

1 − α
,

and by using induction, we obtain

(xn, yn) ∈ [β,
β

1 − α
] × [0,

αβ

1 − α
] for n ≥ 0.

So, the rectangle [β, β

1−α ] × [0, αβ

1−α ] is invariant, which completes the proof. �

Theorem 3.2. Assume that (1.3) holds. Then system (1.2) has no positive prime period-two solution.

Proof. Assume for the sake of contradiction that

· · · , (ξ1, η1), (ξ2, η2), (ξ1, η1), (ξ2, η2), · · ·

is a positive prime period-two solution of system (1.2). Then it should satisfy

ξ2 = αξ1e−η1 + β, η2 = αξ1(1 − e−η1), (3.2)

and
ξ1 = αξ2e−η2 + β, η1 = αξ2(1 − e−η2). (3.3)

Clearly, ξ1, ξ2 ≥ β.
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From (3.2) and (3.3), we derive

ξ2 − β = αξ1 − η2, ξ1 − β = αξ2 − η1,

which are equivalent to
η2 − η1 = (1 + α)(ξ1 − ξ2). (3.4)

Thus, ξ1 = ξ2 ⇐⇒ η2 = η1.
Moreover, (3.2) and (3.3) imply that ξ1, ξ2 > β. This is because, if ξ1 = β, then ξ2 = 0 and

η1 = η2 = 0, which is a contradiction. Similarly, if ξ2 = β, then ξ1 = 0 and η2 = η1 = 0, which leads to
a contradiction as well.

Additionally, combining (3.2), (3.3), and (3.4), we can obtain

ξ2 − β

ξ1 − β
=
ξ1e−η1

ξ2e−η2
=
ξ1

ξ2
eη2−η1 =

ξ1

ξ2
e(1+α)(ξ1−ξ2),

and thus
e(1+α)(ξ1−ξ2) =

ξ2(ξ2 − β)
ξ1(ξ1 − β)

,

which means that
ξ1(ξ1 − β)e(1+α)ξ1 = ξ2(ξ2 − β)e(1+α)ξ2 . (3.5)

Set
A(t) = t(t − β)e(1+α)t.

Then
A′(t) = e(1+α)t[(t − β)(t + αt + 1) + t],

from which it follows that A′(t) > 0 for t ≥ β > 0, and thus A(t) is strictly increasing in t for t ≥ β > 0.
So, (3.5) implies that ξ1 = ξ2. Therefore, η1 = η2, a contradiction.

The proof is complete. �

4. Linearized stability and bifurcation analysis

4.1. Linearized stability

Theorem 4.1. (i) Assume that (1.3) holds and β ≤ 1−α
α

. Then system (1.2) possesses a unique
nonnegative equilibrium Ēx = ( β

1−α , 0).

(ii) Assume that (1.3) holds and β > 1−α
α

. Then system (1.2) possesses two equilibria: Ēx = ( β

1−α , 0)
and Ē = (x̄, ȳ) ∈ [β, β

1−α ] × [0, αβ

1−α ].

Proof. The equilibria of system (1.2) can be obtained by solving the following equations:x = αxe−y + β,

y = αx(1 − e−y).
(4.1)

Clearly, y = 0 is always the solution of the second equation of (4.1), and thus Ēx = ( β

1−α , 0) is always
the equilibrium of system (1.2).
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From the first equation of (4.1), we get

x =
β

1 − αe−y ,

and thus
y =

αβ(1 − e−y)
1 − αe−y ,

or, equivalently,
y − αye−y − αβ(1 − e−y) = 0. (4.2)

Let
φ(y) = y − αye−y − αβ(1 − e−y). (4.3)

Then, φ(0) = 0, and φ(y) ∼ y as y→ +∞. Moreover, we have

φ′(y) = 1 − αe−y + αye−y − αβe−y =
1
ey (ey + αy − α − αβ).

Let
ψ(y) = ey + αy − α − αβ. (4.4)

Then, ψ′(y) = ey + α > 0, from which it follows that the function ψ(y) is strictly increasing in [0,+∞).
(i) When β ≤ 1−α

α
, ψ(y) > ψ(0) = 1 − α − αβ ≥ 0 with y > 0. Consequently, φ′(y) = 1

eyψ(y) > 0 for
y > 0, and system (1.2) has no other equilibrium, which implies that conclusion (i) is valid.

(ii) When β > 1−α
α

, ψ(0) = 1 − α − αβ < 0, and ψ(+∞) = +∞. By the continuity of the function
ψ(y), there exists a unique root y∗ ∈ (0,+∞) such that

ψ(y∗) = 0. (4.5)

Hence, ψ(y) < 0 with 0 < y < y∗, and ψ(y) > 0 with y > y∗. Moreover, φ′(y) < 0 with 0 < y < y∗, and
φ′(y) > 0 with y > y∗. It follows that φ(y) is decreasing in (0, y∗), and φ(y) is increasing in (y∗,+∞).
Thus, the function φ(y) attains its minimum at y∗, φ(y∗) < φ(0) = 0, and by the continuity of the
function φ(y), equation φ(y) = 0 has a unique positive root ȳ such that ȳ > y∗.

Adding the two equations of system (4.1) yields

x̄ + ȳ = αx̄ + β, (4.6)

hence
x̄ = (β − ȳ)/(1 − α). (4.7)

By (4.1) and (4.7), it is easy to obtain that x̄ ∈ [β, β

1−α ] and ȳ ∈ [0, αβ

1−α ]. Thus, in this case, system (1.2)
possesses an additional equilibrium Ē = (x̄, ȳ), and conclusion (ii) follows.

The proof is complete. �

Theorem 4.2. (i) Assume that (1.3) holds. Then the equilibrium Ēx = ( β

1−α , 0) is locally asymptotically
stable when β < 1−α

α
, is nonhyperbolic when β = 1−α

α
, and is unstable (a saddle point) when

β > 1−α
α

.

(ii) Assume that (1.3) holds and β > 1−α
α

. Then the unique positive equilibrium Ē is locally
asymptotically stable (a sink).
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Proof. Let

F(x, y) =

(
f (x, y)
g(x, y)

)
=

(
αxe−y + β

αx(1 − e−y)

)
.

By simple calculation, we have

∂ f
∂x

= αe−y,
∂ f
∂y

= −αxe−y,

∂g
∂x

= α(1 − e−y),
∂g
∂y

= αxe−y.

(i) The Jacobian matrix of F evaluated at Ēx is given by

JF(Ēx) =

(
α −

αβ

1−α
0 αβ

1−α

)
,

and its eigenvalues are

λ1 = α, λ2 =
αβ

1 − α
.

Notice that α ∈ (0, 1), so 0 < λ1 < 1, and 0 < λ2 < 1 with β < 1−α
α

, λ2 = 1 with β = 1−α
α

, and λ2 > 1
with β > 1−α

α
, which means that result (i) follows.

(ii) The Jacobian matrix of F evaluated at Ē is given by

JF(Ē) =

(
αe−ȳ −αx̄e−ȳ

α(1 − e−ȳ) αx̄e−ȳ

)
,

and its characteristic equation is
λ2 − pλ + q = 0,

where p = αe−ȳ(1 + x̄), q = α2 x̄e−ȳ.

Since the second equation of (4.1) implies that x̄ = ȳ/(α(1 − e−ȳ)), it can be concluded that

0 < q = α2 x̄e−ȳ = αx̄ · αe−ȳ =
ȳ

1 − e−ȳ · αe−ȳ =
αȳ

eȳ − 1
<
αȳ
ȳ

= α < 1.

Moreover, noticing that the function ψ(y) defined by (4.4) is strictly increasing in (0,+∞) and that
ȳ > y∗, we can utilize (4.5) to derive

ψ(ȳ) = eȳ + αȳ − α − αβ > ψ(y∗) = 0,

where y∗ is the minimum point of φ(y). Thus,

1 + αȳe−ȳ − αe−ȳ − αβe−ȳ > 0. (4.8)

In addition, the fact that ȳ is the root of the function φ(y) given by (4.3) implies that φ(ȳ) = 0, namely,

ȳ − αȳe−ȳ + αβe−ȳ − αβ = 0. (4.9)

Adding (4.8) and (4.9) yields
1 + ȳ − αe−ȳ − αβ > 0. (4.10)
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From (4.6), we have
ȳ = β − (1 − α)x̄, (4.11)

and from the first equation of system (4.1), we have

e−ȳ =
x̄ − β
αx̄

. (4.12)

Substituting (4.11) and (4.12) into (4.10) yields

1 + β − (1 − α)x̄ −
x̄ − β

x̄
− αβ > 0,

from which it follows that
α(x̄ − β) > x̄ − β −

β

x̄
.

Applying (4.12), we have q = α2 x̄e−ȳ = α(x̄ − β) and

|p| = αe−ȳ(1 + x̄) =
x̄ − β

x̄
(1 + x̄) = 1 + x̄ − β −

β

x̄
< 1 + α(x̄ − β) = 1 + q < 2.

By the Schur-Cohn criterion, we obtain that Ē = (x̄, ȳ) is locally asymptotically stable.
The proof is complete. �

4.2. Bifurcation analysis

When parameters α and β satisfy the condition β = 1−α
α

, the equilibrium Ēx = ( β

1−α , 0) is non-
hyperbolic with eigenvalue λ2 = 1. This indicates a bifurcation probably occurs as the parameter β
varies and goes through the critical value 1−α

α
. In fact, in this case, a transcritical bifurcation takes

place at Ēx.

Theorem 4.3. Assume that (1.3) holds and let β∗ = 1−α
α

. Then system (1.2) undergoes a transcritical
bifurcation at Ēx when the parameter β passes through the critical value β∗.

Proof. Letting un = xn −
β

1−α , vn = yn shifts the equilibrium Ēx to the origin, and tranforms the
system (1.2) into un+1 = αune−vn +

αβ

1−αe−vn −
αβ

1−α ,

vn+1 = αun(1 − e−vn) − αβ

1−αe−vn +
αβ

1−α ,
n = 0, 1, 2, . . . . (4.13)

Define τ = β−β∗ as a small perturbation around β∗ with 0 < |τ| � 1. Then, the map of system (4.13)
can be expressed as: 

u
v
τ

 7→


αue−v + e−v + ατ
1−αe−v − ατ

1−α − 1
αu(1 − e−v) − e−v − ατ

1−αe−v + ατ
1−α + 1

τ

 . (4.14)

Expanding (4.14) in a Taylor series at (u, v, τ) = (0, 0, 0) gives
u
v
τ

 7→

α −1 0
0 1 0
0 0 1



u
v
τ

 +


F1(u, v, τ)
G1(u, v, τ)

0

 , (4.15)
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where
F1(u, v, τ) =

1
2

v2 − αuv −
α

1 − α
vτ −

1
6

v3 +
1
2
αuv2 +

α

2(1 − α)
v2τ + O(3),

G1(u, v, τ) = −
1
2

v2 + αuv +
α

1 − α
vτ +

1
6

v3 −
1
2
αuv2 −

α

2(1 − α)
v2τ + O(3),

and O(3) is the sum of all remainder terms with a frequency greater than 3.
Let

T =


1 1 0
0 α − 1 0
0 0 1


be an invertible matrix. Through the variable transformation

u
v
τ

 = T


X
Y
ω

 ,
the map (4.15) is transformed into the form

X
Y
ω

 7→

α 0 0
0 1 0
0 0 1



X
Y
ω

 +


F2(X,Y, ω)
G2(X,Y, ω)

0

 , (4.16)

where

F2(X,Y, ω) =
1
2

(1 − α2)Y2 − α(α − 1)XY + αYω +
1
6

(α − 1)2(2α + 1)Y3

+
1
2
α(α − 1)2XY2 −

1
2
α(α − 1)Y2ω + O(3),

G2(X,Y, ω) =
1
2

(α2 − 1)Y2 + α(α − 1)XY − αYω −
1
6

(α − 1)2(2α + 1)Y3

−
1
2
α(α − 1)2XY2 +

1
2
α(α − 1)Y2ω + O(3).

By the center manifold Theorem 2.1.4 in [24], for the map (4.16), there exists a center manifold that
can be locally represented in the form:

Wc(0, 0) = {(X,Y, ω) ∈ R3|X = h(Y, ω), |Y | < δ, |ω| < δ, h(0, 0) = 0, Dh(0, 0) = 0},

for δ sufficiently small. Suppose that the center manifold has the representation

X = h(Y, ω) = m1Y2 + m2Yω + m3ω
2 + O(2).

Then, it satisfies

N(h(Y, ω)) = h(Y + G2(h(Y, ω),Y, ω), ω) − [αh(Y, ω) + F2(h(Y, ω),Y, ω)] = 0,

where O(2) represents the sum of all remainder terms with a frequency greater than 2. Hence,

m1Y2 + m2Yω + m3ω
2 = αm1Y2 + αm2Yω + αm3ω

2 + O(2). (4.17)
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Comparing the corresponding coefficients of terms in Eq (4.17), we have

m1 = 0, m2 = 0, m3 = 0,

so the map (4.16) on the center manifold can be written as

F∗ : Y 7→ Y +
1
2

(α2 − 1)Y2 − αYω + O(2).

Since
F∗(0, 0) = 0,

∂F∗

∂Y
|(0,0) = 1,

∂F∗

∂ω
|(0,0) = 0,

∂2F∗

∂Y∂ω
|(0,0) = −α , 0,

∂2F∗

∂Y2 |(0,0) = α2 − 1 , 0,

therefore a transcritical bifurcation takes place at the equilibrium (Y, ω) = (0, 0) of the map (4.16),
implying that, as the parameter β changes and passes through the critical value β∗, system (1.2)
undergoes a transcritical bifurcation at Ēx.

The proof is complete. �

5. Global asymptotic stability

In view of Lemma 4.2, to deal with the global asymptotic stability of Ex and Ē, it is sufficient to
solve its global attractivity.

Consider the difference equation

un+1 = A(1 − e−un), n = 0, 1, 2, . . . , (5.1)

with A ∈ (0,+∞) and the initial value u0 ∈ [0,+∞).

Lemma 5.1. When A ≤ 1, Eq (5.1) possesses a unique equilibrium zero, and when A > 1, an additional
positive equilibrium ū emerges satisfying ū > ln A.

Proof. Clearly, zero is always an equilibrium of Eq (5.1). The positive equilibrium can be obtained by
solving the equation

u = A(1 − e−u) u ∈ (0,+∞).

Let
h(u) = A(1 − e−u) − u. (5.2)

Then, h(0) = 0, h(+∞) = −∞, and h′(u) = Ae−u − 1, h′′(u) = −Ae−u < 0.
When A ≤ 1, h′(u) < h′(0) = A − 1 ≤ 0 for u > 0, and thus Eq (5.1) has a unique equilibrium,

namely zero.
When A > 1, the function h(u) attains its maximum at u = ln A. Hence, by the continuity of h(u),

there exists a unique ū such that h(ū) = 0, namely Eq (5.1) has a unique positive equilibrium ū which
satisfies ū > ln A and h(u) > 0 for 0 < u < ū, and h(u) < 0 for u > ū. �

Lemma 5.2. (i) Assume that A ≤ 1. Then every nonnegative solution of Eq (5.1) converges to the
zero equilibrium.
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(ii) Assume that A > 1. Then every positive solution of Eq (5.1) converges to the unique
positive equilibrium ū.

Proof. (i) Clearly, un = 0 with u0 = 0 for n ≥ 0, and the result follows. Given u0 > 0, then un > 0 for
n ≥ 1, and

un+1 = A(1 − e−un) < Aun ≤ un,

from which it follows by induction that the sequence {un} is strictly decreasing and bounded below by
zero, so it is convergent. Since, in this case Eq (5.1) has a unique equilibrium zero, hence lim

n→∞
un = 0.

(ii) Let g(u) = A(1 − e−u). Observing that the function g(u) is increasing for u > 0, and using the
properties of the function h(u) defined by (5.2), we obtain

g(u) = h(u) + u > u with 0 < u < ū

and
g(u) = h(u) + u < u with u > ū.

Hence,
(u − ū)

(
g(u) − u

)
< 0 for u ∈ (0,∞) \ {ū},

and condition (ii) in Lemma 2.2 is satisfied. It follows that lim
n→∞

un = ū with u0 > 0. �

We now start the discussion of our main results.

Theorem 5.3. Every solution {(xn, yn)} of system (1.2) with x0y0 = 0 converges to Ēx.

Proof. Notice that y1 = 0 with x0 = 0, so it is sufficient to discuss the case that y0 = 0. Obviously, in
this case, yn = 0 for n ≥ 1, and thus system (1.2) becomes

xn+1 = αxn + β, n = 1, 2, . . . ,

and
xn = αnx0 +

β

1 − α
(1 − αn)→

β

1 − α
, as n→ ∞,

since α ∈ (0, 1), finishing the proof. �

Theorem 5.4. Assume that (1.3) holds and β ≤ 1−α
α

. Then the unique equilibrium Ēx of system (1.2) is
a global attractor of all nonnegative solutions.

Proof. Let {(xn, yn)} be a nonnegative solution of system (1.2). Then, from Theorem 3.1, the
subsequence {xn} is eventually bounded and thus there exists an integer N such that xn ≤

β

1−α for
n > N. Using the second equation of system (1.2), we get

yn+1 = αxn(1 − e−yn) ≤
αβ

1 − α
(1 − e−yn). (5.3)

Noticing that, in this case αβ

1−α ≤ 1 and applying 5.2 (i), we obtain that every nonnegative solution of
the difference equation

ỹn+1 =
αβ

1 − α
(1 − e−ỹn), n = 0, 1, 2, . . . ,
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converges to zero. Using the boundedness of the subsequence {yn}, (5.3) yields

0 ≤ lim inf
n→∞

yn+1 ≤ lim sup
n→∞

yn+1 ≤ lim
n→∞

ỹn+1 = 0,

from which it follows that lim
n→∞

yn = 0 and lim
n→∞

xn =
β

1−α . Thus, lim
n→∞

(xn, yn) = Ēx.
The proof is complete. �

In view of Theorems 5.4 and 4.2 (i), we have the following result:

Theorem 5.5. Assume that (1.3) holds and β < 1−α
α

. Then the unique equilibrium Ēx of system (1.2) is
globally asymptotically stable.

Next, we deal with the global asymptotic stability of the unique positive equilibrium Ē. We will
provide a sufficient condition for Ē to be globally asymptotically stable with respect to all positive
solutions {(xn, yn)} of system (1.2). The positive solution we talk about here means a solution of
system (1.2) satisfying xn, yn > 0 for n ≥ 0.

Theorem 5.6. Assume that (1.3) holds and β ≥ 1+α
α

. Then the unique positive equilibrium Ē of
system (1.2) is a global attractor of all positive solutions.

Proof. Let {(xn, yn)} be a solution of system (1.2) with x0y0 , 0, then yn > 0 for n ≥ 1.
From the second equation of system (1.2), we get

xn =
yn+1

α(1 − e−yn)
, n = 0, 1, 2, . . . ,

then
yn+2

α(1 − e−yn+1)
=

yn+1

1 − e−yn
e−yn + β,

or, equivalently,

yn+2 = αyn+1(1 − e−yn+1)
e−yn

1 − e−yn
+ αβ(1 − e−yn+1), n = 0, 1, 2, . . . , (5.4)

which is a second-order difference equation with initial values y1 = αx0(1 − e−y0), y0 > 0.
Clearly, the equilibrium of Eq (5.4) is not equal to zero and it must satisfy the equation

y − αye−y − αβ(1 − e−y) = 0,

which is the equation defined by (4.2). Hence, Eq (5.4) has a unique positive equilibrium, namely ȳ.
Equation (5.4) implies that

yn+1 ≥ αβ(1 − e−yn), n = 1, 2, . . . . (5.5)

If β ≥ 1+α
α

, then αβ > 1. By utilizing Lemma 5.2 (ii), it can be concluded that every positive solution
of the difference equation

ỹn+1 = αβ(1 − e−ỹn), n = 1, 2, . . . ,
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converges to its positive equilibrium, denoted by ỹ, and by Lemma 5.1, ỹ > lnαβ. Hence, for ε = ỹ −
lnαβ > 0, there exists an integer N such that ỹn > ỹ− ε = lnαβ for n > N. Further, yn ≥ ỹn > lnαβ > 0
for n > N. Therefore,

lim inf
n→∞

yn+1 ≥ lnαβ > 0.

In view of Theorem 3.1, it follows that every positive solution of Eq (5.4) eventually enters an invariant
interval [lnαβ, αβ

1−α ] ⊂ [0, αβ

1−α ], and ȳ ∈ [lnαβ, αβ

1−α ] is unique.
Set

G(u, v) = αu(1 − e−u)
e−v

1 − e−v + αβ(1 − e−u),

then G is increasing in u for v > 0, and is decreasing in v for u > 0.
Let (m,M) ∈ [lnαβ, αβ

1−α ] × [lnαβ, αβ

1−α ] be a solution of the following system:m = αm(1 − e−m) e−M

1−e−M + αβ(1 − e−m),
M = αM(1 − e−M) e−m

1−e−m + αβ(1 − e−M).

Then we have
1

1 − e−m −
αβ

m
=

αe−M

1 − e−M , (5.6)

1
1 − e−M −

αβ

M
=

αe−m

1 − e−m . (5.7)

Adding (5.6) and (5.7) yields

1
1 − e−m −

αβ

m
+

αe−m

1 − e−m =
1

1 − e−M −
αβ

M
+

αe−M

1 − e−M ,

which is equivalent to
em + α

em − 1
−
αβ

m
=

eM + α

eM − 1
−
αβ

M
. (5.8)

Consider the function

I(t) =
et + α

et − 1
−
αβ

t
, t ∈ [lnαβ,

αβ

1 − α
].

To prove that m = M, it is sufficient to show that the function I(t) is injective on the interval [lnαβ, αβ

1−α ]
under the condition that β ≥ 1+α

α
. Simple computation shows that

I′(t) = −
(1 + α)et

(et − 1)2 +
αβ

t2 =
1

t2(et − 1)2 [αβ(et − 1)2 − (1 + α)t2et]

≥
1 + α

t2(et − 1)2 [(et − 1)2 − t2et].

Let
J(t) = (et − 1)2 − t2et,

then
J′(t) = 2et(et − 1 − t −

1
2

t2) > 0 for t > 0,
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and so, for t > 0,
J(t) > J(0) = 0.

Therefore, I′(t) > 0 for t > 0, which implies that the function I(t) is strictly increasing on the interval
[lnαβ, αβ

1−α ]. Thus, equality (5.8) yields m = M. By applying Lemma 2.3, we get that every positive
solution of Eq (5.4) converges to ȳ.

Consequently, every positive solution of system (1.2) satisfies lim
n→∞

yn = ȳ and lim
n→∞

xn = x̄, and so

lim
n→∞

(xn, yn) = Ē.
The proof is complete. �

In view of Theorems 5.6 and 4.2 (ii), we have the following result:

Theorem 5.7. Assume that (1.3) holds and β ≥ 1+α
α

. Then the unique positive equilibrium Ē of
system (1.2) is globally asymptotically stable.

6. Conclusions

In this work, the global behavior of a discrete population model (1.2) is considered with the
conditions α ∈ (0, 1), β ∈ (0,+∞). It is shown that, for all α ∈ (0, 1) and β ∈ (0,+∞), every nonnegative
solution of this system is bounded and there is no positive prime period-two solution. However, the
existence of equilibria, the local stability, bifurcation, and the global asymptotic stability depend upon
the parameters α, β. Specifically, if β ≤ 1−α

α
, then this system possesses a unique equilibrium Ēx.

It is globally asymptotically stable for β < 1−α
α

, and as parameter β varies and passes through the
critical value 1−α

α
, this system experiences a transcritical bifurcation at Ēx. If β > 1−α

α
, then this system

possesses two equilibria, Ēx and Ē, where Ēx is unstable and Ē is locally asymptotically stable. Finally,
a sufficient condition β ≥ 1+α

α
is established, under which Ē is globally asymptotically stable.

The research result indicates that the use of refuge or external immigration of hosts can contribute to
stabilizing the system. If the level of the use of refuge or external immigration of hosts per generation
remains at or below the threshold 1−α

α
, the parasitoids will go extinction for all initial populations. Once

this threshold is surpassed, the extinct equilibrium Ēx loses its stability and the stable coexistence
equilibrium Ē = (x̄, ȳ) emerges. Specifically, maintaining the level at or above 1+α

α
guarantees the

hosts and the parasitoids will eventually coexist at a steady density (x̄, ȳ) for all initial populations.
Therefore, it is essential to keep enough of a level of refuge or external immigration of hosts for the
long-term survival and stability of this system.
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