Research article Special Issues

Enhanced general conformable controller based on Lyapunov technique for DC-DC static converters: Application to a solar system

  • Received: 20 November 2023 Revised: 20 February 2024 Accepted: 27 February 2024 Published: 18 March 2024
  • MSC : 34H05, 81T80, 93A30

  • To synthesize the proper control signal while guaranteeing the necessary performance indices (speed, resilience, accuracy, etc.), mathematical models were frequently used to represent physical systems. These descriptions were utilized for control, monitoring, and detection in these kinds of systems. Quality and performance of the process may suffer if the model is inaccurate or incomplete. As a result, conformable systems (CS) may be used to make these mathematical models more near to the real world. However, non-power-electronics experts who need to model and simulate complex systems may find the task of modeling static converters to be rather challenging. Researchers have just recently outlined the properties of the general conformable systems (GCS). This innovative approach built upon the principle of the classical integer order systems, employing the same mathematical foundations for its derivation. With the introduction of this novel description of systems, a fresh array of differential equations emerged, specifically tailored for the realm of direct current to direct current (DC-DC) static converters. GCS has been proved to be more flexible and profitable than the traditional integer-order one for representing DC-DC static converters. This advancement paved the way for more effective control techniques based on the Lyapunov method, with practical applications in photovoltaic (PV) systems and beyond.

    Citation: Omar kahouli, Mourad Elloumi, Omar Naifar, Abdellatif Ben Makhlouf, Yassine Bouteraa, Sarra Elgharbi. Enhanced general conformable controller based on Lyapunov technique for DC-DC static converters: Application to a solar system[J]. AIMS Mathematics, 2024, 9(5): 10698-10716. doi: 10.3934/math.2024522

    Related Papers:

  • To synthesize the proper control signal while guaranteeing the necessary performance indices (speed, resilience, accuracy, etc.), mathematical models were frequently used to represent physical systems. These descriptions were utilized for control, monitoring, and detection in these kinds of systems. Quality and performance of the process may suffer if the model is inaccurate or incomplete. As a result, conformable systems (CS) may be used to make these mathematical models more near to the real world. However, non-power-electronics experts who need to model and simulate complex systems may find the task of modeling static converters to be rather challenging. Researchers have just recently outlined the properties of the general conformable systems (GCS). This innovative approach built upon the principle of the classical integer order systems, employing the same mathematical foundations for its derivation. With the introduction of this novel description of systems, a fresh array of differential equations emerged, specifically tailored for the realm of direct current to direct current (DC-DC) static converters. GCS has been proved to be more flexible and profitable than the traditional integer-order one for representing DC-DC static converters. This advancement paved the way for more effective control techniques based on the Lyapunov method, with practical applications in photovoltaic (PV) systems and beyond.



    加载中


    [1] K. Amei, Y. Takayasu, T. Ohji, M. Sakui, A maximum power control of wind generator system using a permanent magnet synchronous generator and a boost chopper circuit, In: Proceedings of the power conversion conference-Osaka 2002, 3 (2002), 1447–1452. https://doi.org/10.1109/PCC.2002.9981866.
    [2] K. Ohyama, S. Arinaga, Y. Yamashita, Modelling and simulation of variable speed wind generator system using boost converter of permanent magnet synchronous generator, In: 2007 European conference on power electronics and applications, 2007, 1–9. https://doi.org/10.1109/EPE.2007.4417541
    [3] M. A. Zdiri, B. Bouzidi, O. Kahouli, H. H. Abdallah, Fault detection method for boost converters in solar PV systems, In: 2019 19th International conference on sciences and techniques of automatic control and computer engineering (STA), 2019,237–242. https://doi.org/10.1109/STA.2019.8717239
    [4] B. Dhouib, Z. Alaas, O. Kahouli, H. H. Abdallah, Determination of optimal location of FACTS device to improve integration rate of wind energy in presence of MBPSS regulator, IET Renew. Power Gen., 14 (2020), 3526–3540. https://doi.org/10.1049/iet-rpg.2020.0679 doi: 10.1049/iet-rpg.2020.0679
    [5] J. P. Ferrieux, F. Forest, Alimentations à découpage convertisseurs à resonance: Principes composants, modélisation, 3 Eds., Dunod, 2002.
    [6] V. Martynyuk, M. Ortigueira, Fractional model of an electrochemical capacitor, Signal Process., 107 (2015), 355–360. https://doi.org/10.1016/j.sigpro.2014.02.021 doi: 10.1016/j.sigpro.2014.02.021
    [7] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, J. Thermal Sci., 20 (2016), 763–769. http://dx.doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [8] Y. Wei, Lyapunov stability theory for nonlinear Nabla fractional order systems, IEEE Trans. Circuits Syst. II, 68 (2021), 3246–3250. http://doi.org/10.1109/TCSII.2021.3063914 doi: 10.1109/TCSII.2021.3063914
    [9] A. Razzaghian, A fuzzy neural network-based fractional-order Lyapunov-based robust control strategy for exoskeleton robots: Application in upper-limb rehabilitation, Math. Comput. Simul., 193 (2022), 567–583. https://doi.org/10.1016/j.matcom.2021.10.022 doi: 10.1016/j.matcom.2021.10.022
    [10] R. Peng, C. Jiang, R. Guo, Stabilization of a class of fractional order systems with both uncertainty and disturbance, IEEE Access, 9 (2021), 42697–42706. https://doi.org/10.1109/ACCESS.2021.3060093 doi: 10.1109/ACCESS.2021.3060093
    [11] F. Du, J. G. Lu, New results on finite-time stability of fractional-order Cohen-Grossberg neural networks with time delays, Asian J. Control, 24 (2022), 2328–2337. https://doi.org/10.1002/asjc.2641 doi: 10.1002/asjc.2641
    [12] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [13] S. M. Abo-Dahab, A. E. Abouelregal, M. Marin, Generalized thermoelastic functionally graded on a thin slim strip non-gaussian laser beam, Symmetry, 12 (2020), 1094. https://doi.org/10.3390/sym12071094 doi: 10.3390/sym12071094
    [14] M. I. A. Othman, M. Fekry, M. Marin, Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating, Struct. Eng. Mech., 73 (2020), 621–629.
    [15] N. Sene, G. Srivastava, Generalized Mittag-Leffler input stability of the fractional differential equations, Symmetry, 11 (2019), 608. https://doi.org/10.3390/sym11050608 doi: 10.3390/sym11050608
    [16] O. Naifar, A. Jmal, A. B. Makhlouf, Non-fragile H observer for Lipschitz conformable fractional-order systems, Asian J. Control, 24 (2021), 2202–2212. https://doi.org/10.1002/asjc.2626 doi: 10.1002/asjc.2626
    [17] M. Abu-Shady, M. K. A. Kaabar, A generalized definition of the fractional derivative with applications, Math. Probl. Eng., 2021 (2021), 9444803. https://doi.org/10.1155/2021/9444803 doi: 10.1155/2021/9444803
    [18] A. Jmal, M. Elloumi, O. Naifar, A. B. Makhlouf, M. A. Hammami, State estimation for nonlinear conformable fractional-order systems: A healthy operating case and a faulty operating case, Asian J. Control, 22 (2020), 1870–1879. https://doi.org/10.1002/asjc.2122 doi: 10.1002/asjc.2122
    [19] O. Naifar, A. B. Makhlouf, Fractional order systems-control theory and applications, Springer Cham, 2022. https://doi.org/10.1007/978-3-030-71446-8
    [20] F. Gomez, J. Rosales, M. Guia, RLC electrical circuit of non-integer order, Cent. Eur. J. Phys., 11 (2013), 1361–1365. https://doi.org/10.2478/s11534-013-0265-6 doi: 10.2478/s11534-013-0265-6
    [21] O. Kahouli, M. Elloumi, O. Naifar, H. Alsaif, B. Kahouli, Y. Bouteraa, Electrical circuits described by general fractional conformable derivative, Front. Energy Res., 10 (2022). https://doi.org/10.3389/fenrg.2022.851070 doi: 10.3389/fenrg.2022.851070
    [22] T. T. Hartley, R. J. Veillette, J. L. Adams, C. F. Lorenzo, Energy storage and loss in fractional-order circuit elements, IET Circ. Device. Syst., 9 (2015), 227–235. https://doi.org/10.1049/iet-cds.2014.0132 doi: 10.1049/iet-cds.2014.0132
    [23] V. Lazarov, D. Roye, Z. Zarkov, D. Spirov, Analysis of DC converters for wind generators, In: XVIth international symposium on electrical apparatus and technologies, 2 (2009), 157–164. https://dx.doi.org/10.2298/fuee0902235l
    [24] J. J. Rosales, J. F. Gomez, M. Guía, V. I. Tkach, Fractional electromagnetic waves (LFNM), In: 2011 11th International conference on laser and fiber-optical networks modeling (LFNM), Kharkov, 2011, 1–3. https://doi.org/10.1109/LFNM.2011.6144969
    [25] R. B. Salah, O. Kahouli, H. Hadjabdallah, A nonlinear Takagi-Sugeno fuzzy logic control for single machine power system, Int. J. Adv. Manuf. Technol., 90 (2017), 575–590. https://doi.org/10.1007/s00170-016-9351-4 doi: 10.1007/s00170-016-9351-4
    [26] D. Zhao, M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54 (2015), 903–917. https://doi.org/10.1007/s10092-017-0213-8 doi: 10.1007/s10092-017-0213-8
    [27] S. Li, S. Zhang, R. Liu, The existence of solution of diffusion equation with the general conformable derivative, J. Funct. Spaces, 2020 (2020), 3965269. https://doi.org/10.1155/2020/3965269 doi: 10.1155/2020/3965269
    [28] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, New York: Gordon and Breach Publishers, 1993.
    [29] I. Podlubny, Fractional differential equations, Elsevier, 198 (1999), 1–340.
    [30] R. Hermann, Fractional calculus, World Scientific Publishing Company, 2011.
    [31] Z. Lu, Y. Zhu, Q. Xu, Asymptotic stability of fractional neutral stochastic systems with variable delays, Eur. J. Control, 57 (2021), 119–124. https://doi.org/10.1016/j.ejcon.2020.05.005 doi: 10.1016/j.ejcon.2020.05.005
    [32] L. Martínez, J. J. Rosales, C. A. Carreño, J. M. Lozano, Electrical circuits described by fractional conformable derivative, Int. J. Circuit Theory Appl., 46 (2018), 1091–1100. https://doi.org/10.1002/cta.2475 doi: 10.1002/cta.2475
    [33] H. Gassara, O. Naifar, A. B. Makhlouf, L. Mchiri, Global practical conformable stabilization by output feedback for a class of nonlinear fractional-order systems, Math. Probl. Eng., 2022 (2022), 4920540. https://doi.org/10.1155/2022/4920540 doi: 10.1155/2022/4920540
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(738) PDF downloads(78) Cited by(1)

Article outline

Figures and Tables

Figures(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog