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Abstract: To synthesize the proper control signal while guaranteeing the necessary performance 

indices (speed, resilience, accuracy, etc.), mathematical models were frequently used to represent 

physical systems. These descriptions were utilized for control, monitoring, and detection in these kinds 

of systems. Quality and performance of the process may suffer if the model is inaccurate or incomplete. 

As a result, conformable systems (CS) may be used to make these mathematical models more near to 

the real world. However, non-power-electronics experts who need to model and simulate complex 

systems may find the task of modeling static converters to be rather challenging. Researchers have just 

recently outlined the properties of the general conformable systems (GCS). This innovative approach 

built upon the principle of the classical integer order systems, employing the same mathematical 

foundations for its derivation. With the introduction of this novel description of systems, a fresh array 

of differential equations emerged, specifically tailored for the realm of direct current to direct current 

(DC-DC) static converters. GCS has been proved to be more flexible and profitable than the traditional 

integer-order one for representing DC-DC static converters. This advancement paved the way for more 
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effective control techniques based on the Lyapunov method, with practical applications in photovoltaic 

(PV) systems and beyond. 

Keywords: general conformable systems; Lyapunov technique; DC-DC static converters; modelling 

and control 

Mathematics Subject Classification: 34H05, 81T80, 93A30 

 

1. Introduction 

In recent years, clean energy has become increasingly popular. Given its boundless potential and 

benign impact on the environment, green energy is a legitimate and effective means of stimulating the 

economy. Improving the efficiency of “green” energy production requires research into the entire 

conversion chain, from power generation extraction to structural conversion, to electrical conversion, 

to battery storage, to transformation, to grid integration. In this case, DC-DC converters are a crucial 

part of the conversion process. They are often used in photovoltaics (PVs), wind turbines, and fuel 

cells, among other power generation and storage devices [1–4]. 

For instance, they are used in grid-connected fixed-speed wind turbines [4], fault detection 

methods for boost converters [5], and power regulation of wind generators [1]. These inverters are 

frequently used to match the input voltage of a system to the required output voltage [5]. 

Conversely, it’s worth noting that ordinal computations aren’t enough for exploring a wide variety 

of systems whose behavior is better described by fractional order. Particularly, the simulation of battery 

systems [6] and thermal performance systems [7] have found fruitful use of the fractional-order 

calculus. Stability analysis employing fractional-order systems has also seen a dramatic uptick in 

popularity over the past decade [8–10]. In fact, while the Lyapunov technique is a powerful method 

for investigating the robustness of dynamical systems, much recent research has concentrated on the 

asymptotic stability of such systems and has paid far less attention to their boundedness. Considering 

this, the topic of the boundedness of nonlinear nabla fractional-order systems has been addressed in 

work [8]. Using the nabla Laplace transform, two stability conditions in the form of the Lyapunov 

theorem are constructed. The theoretical conclusions are then used in two numerical examples to show 

how practical they are. In addition, a fractional-order Lyapunov-based robust controller with a fuzzy 

neural network compensator has been studied in work [9]. First, a procedure for building a finite-time 

fractional-order nonsingular fast terminal sliding mode control is described. Second, a fuzzy neural 

network technique is created to evaluate model uncertainty and external disturbances. Different ideas 

associated with the fractional differential equation are starting to emerge in research. Numerous re-

cent articles in the field of dynamic systems make use of multiple fractional derivative (FD) concepts, 

most notably the Caputo derivative [11] and/or the Caputo-Katugampola derivative [12]. 

Recent advancements in applied physics and engineering have led to significant progress in 

understanding complex phenomena. Abo-Dahab, Abouelregal, and Marin explored thermoelastic 

behavior in functionally graded materials, focusing on the effects of non-Gaussian laser beams on thin, 

slim strips [13]. Othman, Fekry, and Marin investigated plane wave propagation in a generalized 

magneto-thermo-viscoelastic medium with voids, revealing insights into material dynamics under 

mechanical and thermal loads [14]. Meanwhile, Sene and Srivastava's study delved into the generalized 

Mittag-Leffler input stability, contributing to the theoretical framework for dynamic systems described 
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by fractional calculus [15]. These studies represent significant strides in understanding complex 

physical phenomena with wide-ranging applications in science and engineering. 

The “conformable derivative,” as it is named in Khalil et al. [12], is a unique and elegant that has 

been the subject of extensive research used on the general conformable differential equation (GCDE). 

In the context of studying nonlinear systems, it’s important to remember that the conformable 

derivative can be used to address some technical problems. With a few exceptions, all fractional 

derivatives, with the exception of the conformable one, have shortcomings. One such example is the 

product and chain rule of two functions. The monotonicity of a function f cannot be inferred from the 

sign of its fractional derivative either in the Riemann-Liouville or Caputo approaches [9]. The 

following references [16–19] are used as examples of when one may use the conformable derivative. 

As a matter of fact, a method of estimating for a non-integer order derivative was proposed in [19]. 

There is discussion of both a situation when everything is working, as it should and one where 

something goes wrong. This study demonstrates the convergence of estimate errors by using a 

version of Barbalat’s lemma that fails when using the widely known Caputo derivative. In [17], a 

robust 𝐻∞ observer is introduced. In addition, the integrated power system is studied in [18]. Also, 

the authors of [20–22] characterize the resistor (R), inductor (L), and capacitor (C) components that 

form the RLC, RC, and LC circuits using the conformable derivative (CD). Furthermore, the general 

conformable derivative (GCS) and its features have recently been characterized by academics. 

These systems are extensions of the conformable systems and are calculated the same. Authors 

in [23–25] use this novel approach to develop a new family of differential equations applicable to 

electrical circuits like RLC, RC, and LC. It has been demonstrated that the GCSs of electrical circuits 

is more flexible and advantageous than the more popular conformable representation.  

Mathematical models are used to represent electrical circuits. This talk is being given in response 

to this inquiry. In mathematical terms, what best represents reality? We note that GCS are superior to 

classical integer-order systems, as previously demonstrated in the literature. We conclude that the GCS 

is a viable method for characterizing DC-DC converters and present this approach in our research. We 

have shown that this option is more flexible, and our modeling problem can now be solved with just a 

few equations. 

Considering the foregoing, it should come as no surprise that simulations of various kinds 

involving renewable energy systems require great precision and accuracy in DC-DC converter models. 

It is a well-accepted fact that mathematical models can serve as adequate descriptions of physical 

systems. Such mathematical models are employed in the management of these systems for the purposes 

of control, monitoring, and sensing. Inaccuracies in the models used to create the system can have a 

negative effect on its overall effectiveness. This means that GCS can be used to bring mathematical 

models closer to the real world. Therefore, the purpose of this work is to investigate and suggest a 

simple modeling approach based on general conformable (GC) representation. To the best of our 

knowledge, no GCS-based power converters have been described in the literature. It has been 

demonstrated that GCS is a more flexible and lucrative representation of DC-DC converters than the 

traditional integer-order representation. 

The essence of our efforts can be encapsulated in the following highlights: 

• The utilization of the GC representation for modeling DC-DC converters represents a 

groundbreaking approach that has hitherto remained unexplored in the existing body of literature. 

• Employing the GC representation for DC-DC converter modeling offers superior suitability 

and widens the spectrum of available model choices. This matter has profound implications for the 
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controlled system, exerting a direct influence on both performance and the precision of the sought-

after outcomes. 

• The paper presents a novel control approach based on the Lyapunov technique for DC-DC 

static converters using the GC representation. 

• The paper demonstrates the practical application of the proposed control technique to PV 

systems. By incorporating the GCS-based control approach, the performance of PV systems can be 

enhanced, leading to improved energy conversion efficiency and better utilization of renewable energy 

sources. 

The subsequent sections of the paper are structured as follows: 

(1) Section 2 introduces the fundamental principles of GC calculus. 

(2) Following that, in the third section, we provide a mathematical formulation and simulation of 

the GC model for the boost converter. 

(3) Section 4 delves into the GC mathematical model and simulation of the buck-boost converter. 

(4) In Section 5, we explore the GC mathematical model of the non-inverting buck-boost 

converter. 

(5) Section 7 outlines the model-based reference control design. 

(6) Section 8 contains the results and discussion, showcasing its application to a DC-DC converter 

connected to a PV panel. 

(7) Finally, Section 9 offers a conclusion and a succinct summary of the work. 

2. Basis and preliminaries 

Some basis and preliminaries are given at the outset of this section [26,27]. 

Definition 2.1. Suppose 𝛼 ∈ (0,1]. Let 𝜙 be a function defined on [0 𝑏), then the GC derivative of 

𝜙 is given by: 

𝑇𝛼,𝜓𝜙(𝑡) = lim
𝜀⟶0

𝜙(𝑡+𝜀𝜓(𝑡,𝛼))−𝜙(𝑡)

𝜀
, ∀𝑡 > 0, 

with 𝜓(𝑡, 𝛼) as a continuous positive function verifying: 

𝜓(𝑡, 1) = 1, 

𝜓(. , 𝛼1) ≠ 𝜓(. , 𝛼2), 𝑤ℎ𝑒𝑟𝑒 𝛼1 ≠ 𝛼2 𝑎𝑛𝑑 𝛼1, 𝛼2 ∈ (0,1]. 

Remark 2.1. If 𝑇𝛼,𝜓𝜙(𝑡), ∀𝑡 ∈ (0, 𝑐) exists, and for a certain 𝑐 > 0, lim
𝑡⟶0+

𝑇𝛼,𝜓𝜙(𝑡) exists, then: 

𝑇𝛼,𝜓𝜙(0): = lim
𝑡⟶0+

𝑇𝛼,𝜓𝜙(𝑡). 

Remark 2.2. The integer order derivative (𝛼 = 1) and the CD 𝜓(𝑡) = 𝑡1−𝛼 are generalized by the 

general conformable derivative [28]. 

Remark 2.3. In order to learn more about the characteristics of the GC derivative, we assume that 

𝜓(𝑡, 𝛼) > 0 ∀𝑡 > 0 and 
1

𝜓
(. , 𝛼) is locally integrable. 
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3. General conformable mathematical model of the boost converter 

In this section, we consider a boost converter, which can be represented by the following electrical 

circuit (Figure 1): 

 

Figure 1. Electrical circuit of the boost converter. 

By applying the Kirchhoff's rules to the previous electrical circuit, as shown in Figure 1, and 

based on the operating mode and the condition of the switch 𝑆 , we can express the considered 

dynamical system by the following mathematical model that describes its dynamic behavior [3]: 

𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
= 𝐸 − 𝑉𝑑𝑐(𝑡)(1 − 𝑢),       (1a) 

𝐶
𝑑𝑉𝑑𝑐(𝑡)

𝑑𝑡
= 𝑖𝐿(1 − 𝑢) −

𝑉𝑑𝑐

𝑅
,        (1b) 

where 𝑖𝐿 is the current in the coil 𝐿, 𝐸 is the input voltage, 𝑉𝑑𝑐 is the output voltage and 𝑢 is the 

control. The system parameters are coil inductance 𝐿 presented in 𝐻, the capacitance of the capacitor 

𝐶 in F and the resistance of the load 𝑅 in Ω. 

The voltage across the capacitor and the current flowing through the coil serve as the state variables. 

The control signal u specifies the status of the switch S, which is open for 0 and closed for 1, and is part 

of the discrete domain of 0 and 1. It can be replaced by its average value over a chopping period which 

represents the duty cycle 𝛾 =
𝑇𝑜𝑛

𝑇𝑠
 where 𝑇𝑜𝑛 is the conduction time and 𝑇𝑠 is the chopping period. 

The purpose of this section is to show how to transform an ordinary differential equation to a GCDE. 

This will be accomplished through the application of the chopper's dynamic ordinary equations (1). 

Rosales et al. [29] developed differential equations using a comprehensive technique, as they had 

previously done [30,31]. It entails the following presentation of an item in an appropriately sized 

format [29]. Now, inspired by the method used in [24], the transformation to the GC derivative is: 

𝑑

𝑑𝑡
⟶

1

𝜓(𝜏,𝛼)

𝑑𝛼

𝑑𝑡
,          (2) 

where 𝛼 ∈ (0, 1] is the derivative order and 𝜏 is a component that describes the system's temporal 

elements; its measurement is the second (s). In our case, 𝜏 in (1a) does indeed have a sequence as 𝐿 

and it has a sequence as 𝑅𝐶 in (1b). Thus, we might extract it and formulate the following expression: 
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𝑑

𝑑𝑡
→

1

𝜓(𝐿,𝛼)

𝑑𝛼

𝑑𝑡
,          (3a) 

𝑑

𝑑𝑡
→

1

𝜓(𝑅𝐶,𝛼)

𝑑𝛼

𝑑𝑡
.          (3b) 

Given the connection (3) and employing the general conformable derivative, we have: 

𝑑𝛼𝑓(𝑡)

𝑑𝑡
= 𝜓(𝑡, 𝛼)

𝑑

𝑑𝑡
𝑓(𝑡),         (4) 

Inspired by [32], we get: 

𝑑

𝑑𝑡
⟶

1

𝜓(𝐿,𝛼)

𝑑𝛼

𝑑𝑡
=

𝜓(𝑡,𝛼)

𝜓(𝐿,𝛼)

𝑑

𝑑𝑡
,         (5a) 

𝑑

𝑑𝑡
⟶

1

𝜓(𝑅𝐶,𝛼)

𝑑𝛼

𝑑𝑡
=

𝜓(𝑡,𝛼)

𝜓(𝑅𝐶,𝛼)

𝑑

𝑑𝑡
.        (5b) 

The formula (5) can be described as a time conformable transform. We have (6) by substituting (5) 

into (1). 

𝑑𝑖𝐿(𝑡)

𝑑𝑡
= 𝐸

 𝜓(𝐿,𝛼) 

𝐿 𝜓(𝑡,𝛼)
−

𝜓(𝐿,𝛼)

𝐿 𝜓(𝑡,𝛼)
 (1 − 𝑢) 𝑉𝑑𝑐(𝑡),      (6a) 

𝑑𝑉𝑑𝑐(𝑡)

𝑑𝑡
=

 𝜓(𝑅𝐶,𝛼)

𝐶 𝜓(𝑡,𝛼) 
 𝑖𝐿(1 − 𝑢) −

 𝜓(𝑅𝐶,𝛼)

𝑅𝐶 𝜓(𝑡,𝛼)
𝑉𝑑𝑐 .      (6b) 

For the boost converter, Eqs (6a) and (6b) present the GCDE. 

Remark 3.1. If one takes 𝛼 = 1, we get the classical model of the DC-DC converter described by Eq (1). 

Remark 3.2. If one takes 𝜓(𝑡, 𝛼) = 𝑡1−𝛼, we get the mathematical model of the DC-DC converter 

described by the classical conformable derivative. 

For the simulation, one chooses the following parameters: 𝑅 = 3Ω, 𝐶 = 47𝑛𝐹 , 𝐿 = 0.01𝐻 , 

𝐸 = 10𝑉, 𝑢 = 0.5, and 𝑓 = 60𝐻𝑧. One chooses 𝜓(𝑡, 𝛼) = 𝑡1−𝛼. In that case, one gets the curves of 

the classical conformable derivative. We obtain the following responses for various values of 𝛼.When 

𝛼 equals to 1, the GCD acts identically to the conventional case, as illustrated in Figure 2. When 𝛼 

drops, it is observed that the conformable derivative reaches the steady state more rapidly. As can be 

seen, the amplitude at startup is also dropping. 

Figure 2. Evolution curves of 𝑉𝑑𝑐 for some values of 𝛼. 
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For various expressions of 𝜓, the generated curves results of the GCDE are plotted. One chooses, 

for example, 𝜓(𝑡, 𝛼) = 𝑡1−𝛼((1 − 𝛼)𝑔2(𝑡) + 1),  in which one supposes two expressions of 

𝑔(𝑡);  the fist one is 𝑔(𝑡) = 𝑔1(𝑡) = √30sin (t)  and the second one is 𝑔(𝑡) = 𝑔2(𝑡) = √10𝑒−𝑡 . 

Figure 3 illustrates the following responses for the derivative order 𝛼 = 0.8. 

 

Figure 3. Evolution curves of 𝑉𝑑𝑐 for the two cases: 𝑔1(𝑡) = √30sin (t) and 𝑔2(𝑡) =

√10𝑒−𝑡. 

4. General conformable mathematical model of the buck-boost converter 

The presentation of this sort of converter operation using mathematical equations must consider 

the state of the interrupter 𝑆 in Figure 4. When the switch is closed, then 𝑇𝑜𝑛 = 𝛾𝑇𝑠. As a result, the 

energy stored in the inductance increases. However, in the opposite case, 𝑇𝑜𝑓𝑓 = (1 − 𝛾)𝑇𝑠 and the 

energy accumulated in the inductance transfers to the capacitance and the load. 

 

Figure 4. Electrical circuit of the buck/boost converter. 

We have the following equations [3]: 
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𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
= 𝑢𝐸 − 𝑉𝑑𝑐(𝑡)(1 − 𝑢),       (7a) 

𝐶
𝑑𝑉𝑑𝑐(𝑡)

𝑑𝑡
= −𝑖𝐿(1 − 𝑢) −

𝑉𝑑𝑐

𝑅
.        (7b) 

The approach used to get the dynamic equations in a continuous conduction regime is identical 

to that used in the boost converter scenario. When 𝑆 is equal to 1, the diode is blocked, and the 

following equations apply: 

𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
= 𝑢𝐸,          (8a) 

𝐶
𝑑𝑉𝑑𝑐(𝑡)

𝑑𝑡
= −

𝑉𝑑𝑐

𝑅
.         (8b) 

When the switch is blocked, 𝑆 is equal to 0 and the diode is on. The equations are: 

𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
= 𝑉𝑑𝑐 ,          (9a) 

𝐶
𝑑𝑉𝑑𝑐(𝑡)

𝑑𝑡
= −𝑖𝐿 −

𝑉𝑑𝑐

𝑅
.        (9b) 

Following the preceding arguments, the GCDE (7), (8), and (9) are represented by Eqs (10)–(12), 

respectively: 

𝑑𝑖𝐿(𝑡)

𝑑𝑡
=

𝜓(𝐿,𝛼)

𝐿 𝜓(𝑡,𝛼)
 𝑢 −

𝜓(𝐿,𝛼)

𝐿 𝜓(𝑡,𝛼)
 𝑉𝑑𝑐(𝑡) (1 − 𝑢),      (10a) 

𝑑𝑉𝑑𝑐(𝑡)

𝑑𝑡
= −

𝜓(𝑅𝐶,𝛼)

𝐶 𝜓(𝑡,𝛼)
𝑖𝐿(1 − 𝑢) −

𝜓(𝑅𝐶,𝛼)

𝑅 𝐶 𝜓(𝑡,𝛼)
𝑉𝑑𝑐 .      (10b) 

𝑑𝑖𝐿(𝑡)

𝑑𝑡
=

𝜓(𝐿,𝛼)

𝐿 𝜓(𝑡,𝛼)
𝑢 𝐸,         (11a) 

𝑑𝑉𝑑𝑐(𝑡)

𝑑𝑡
= −

𝜓(𝑅𝐶,𝛼)

𝑅 𝐶 𝜓(𝑡,𝛼)
𝑉𝑑𝑐 .        (11b) 

𝑑𝑖𝐿(𝑡)

𝑑𝑡
=

𝜓(𝐿,𝛼)

𝐿 𝜓(𝑡,𝛼)
𝑉𝑑𝑐 ,         (12a) 

𝑑𝑉𝑑𝑐(𝑡)

𝑑𝑡
= −

𝜓(𝑅𝐶,𝛼)

 𝐶 𝜓(𝑡,𝛼)
𝑖𝐿 −

𝜓(𝑅𝐶,𝛼)

𝑅 𝐶 𝜓(𝑡,𝛼)
𝑉𝑑𝑐 .     (12b) 

 

For the simulation, one chose the same parameters as previous. We get the following results for 

different values of 𝛼. 

When 𝛼 =1, the GCD behaves identically to the normal case, as illustrated in Figure 5. When 𝛼 

decreases, the conformable derivative approaches the steady state more rapidly. We can also see that 

the amplitude in the start is decreasing. 

For various expressions of ψ, the generated curves results of the GCDE are plotted. One chooses 

𝜓(𝑡, 𝛼) = 𝑡1−𝛼((1 − 𝛼)𝑔2(𝑡) + 1) . One supposes two equations of  𝑔(𝑡), 𝑔(𝑡) = 𝑔1(𝑡) =

√30sin (t)  and 𝑔(𝑡) = 𝑔2(𝑡) = √10𝑒−𝑡 . Figure 6 illustrates the following responses for the 

derivative order 𝛼 = 0.8. 
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Figure 5. Evolution curves of 𝑉𝑑𝑐 for some values of 𝛼. 

 

Figure 6. Evolution curves of 𝑉𝑑𝑐 for the two cases: 𝑔1(𝑡) = √30sin (t) and 𝑔2(𝑡) = √10𝑒−𝑡. 

5. General conformable mathematical model of the non-inverting buck-boost converter 

If the output voltage cannot be reversed, a cascade configuration of the buck converter and the 

boost converter with a complementary switch can be employed, as illustrated in Figure 7. The model 

for this converter can be produced quickly by following the same procedure as for the buck-boost 

converter, but just by changing the ratio of the input and output voltages. 

 

Figure 7. Electrical circuit of the non-inverting buck/boost converter. 

Based on [3], we have: 



10707 

AIMS Mathematics  Volume 9, Issue 5, 10698–10716. 

𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
= 𝑢𝐸 − 𝑉𝑑𝑐(𝑡)(1 − 𝑢),       (13a) 

𝐶
𝑑𝑉𝑑𝑐(𝑡)

𝑑𝑡
= −𝑖𝐿(1 − 𝑢) −

𝑉𝑑𝑐

𝑅
.        (13b) 

According to the previous reasoning, the GCDE of Eq (13) is provided by Eq (14), which is as 

follows: 

𝑑𝑖𝐿(𝑡)

𝑑𝑡
=

𝜓(𝐿,𝛼)

𝐿 𝜓(𝑡,𝛼)
𝑢 𝐸 −

𝜓(𝐿,𝛼)

𝐿 𝜓(𝑡,𝛼)
(1 − 𝑢) 𝑉𝑑𝑐(𝑡),     (14a) 

𝑑𝑉𝑑𝑐(𝑡)

𝑑𝑡
= −

𝜓(𝑅𝐶,𝛼)

𝐶 𝜓(𝑡,𝛼)
(1 − 𝑢) 𝑖𝐿 −

𝜓(𝑅𝐶,𝛼)

𝑅 𝐶 𝜓(𝑡,𝛼)
𝑉𝑑𝑐 .     (14b) 

For the simulation, one uses the identical settings as before. For various values of 𝛼, Figure 8 

shows the evolution of 𝑉𝑑𝑐. 

Figure 8. Evolution curves of 𝑉𝑑𝑐 for some values of 𝛼. 

When 𝛼 = 1, the GCD behaves exactly as in the usual case, as shown in Figure 6. It is shown 

that as 𝛼 goes down, the CD approaches the steady state quicker. We can see that the amplitude at the 

start is likewise decreasing. 

For various expressions of ψ, the generated curves results of the GCDE are plotted. One chooses 

𝜓(𝑡, 𝛼) = 𝑡1−𝛼((1 − 𝛼)𝑔2(𝑡) + 1) . One supposes two expressions of 𝑔(𝑡), 𝑔(𝑡) = 𝑔1(𝑡) =

√30sin (t)  and 𝑔(𝑡) = 𝑔2(𝑡) = √10𝑒−𝑡 . Figure 9 illustrates the following responses for the 

derivative order 𝛼 = 0.8. 

Figure 9. Evolution curves of 𝑉𝑑𝑐 for the two cases: 𝑔1(𝑡) = √30sin (t) and 𝑔2(𝑡) = √10𝑒−𝑡. 
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6. Control system strategy 

One supposes 𝑥 =  [𝑖𝐿 𝑉𝑑𝑐]𝑇 𝑣0  =  𝑉𝑑𝑐 is the output voltage and 𝑣𝑖𝑛 = 𝐸 is the input voltage. 

The state space form during the “ON” mode can be written as follows: 

𝑇𝛼,𝜓 (
𝑖𝐿

𝑉𝑑𝑐
) = (

0 0

0 −
1

𝑅𝐶

) (
𝑖𝐿

𝑉𝑑𝑐
) + (

1

𝐿

0
) 𝑣𝑖𝑛,      (15) 

𝑣0 = (0 1) (
𝑖𝐿

𝑉𝑑𝑐
). 

In the “OFF” mode of the boost converter circuit, the energy stored in the inductor is transferred 

to the output RC circuit through the diode. By applying Kirchhoff's Voltage Law (KVL) and 

Kirchhoff's Current Law (KCL) to the circuit shown in Figure 1 when the switch is off, we can obtain 

the following set of state equations. 

𝑇𝛼,𝜓 (
𝑖𝐿

𝑉𝑑𝑐
) = (

0 −
1

𝐿
1

𝐶
−

1

𝑅𝐶

) (
𝑖𝐿

𝑉𝑑𝑐
) + (

1

𝐿

0
) 𝑣𝑖𝑛,     (16) 

𝑣0 = (0 1) (
𝑖𝐿

𝑉𝑑𝑐
) = 0. 

The utilization of the state-space averaging technique enables the derivation of a converter model 

that effectively characterizes the behavior of the circuit across a full switching period. Rather than 

relying on distinct state-space descriptions for individual modes, a consolidated state-space description 

is attained to effectively approximate the circuit's behavior throughout the entire temporal span denoted 

as T. Using Eqs (15) and (16), This averaged modified model is obtained through the application of 

the state-space averaging technique, yielding the following representation: 

𝐴 = 𝐴1𝑑 + 𝐴2(1 − ℎ),           

𝐵 = 𝐵1𝑑 + 𝐵2(1 − ℎ),         (17) 

where ℎ is the Duty cycle and 𝐴1 = (
0 0

0 −
1

𝑅𝐶

), 𝐴2 = (
0 −

1

𝐿
1

𝐶
−

1

𝑅𝐶

) , 𝐵1 = 𝐵2 = (
1

𝐿

0
). 

Using Eq (17), we have: 

𝑇𝛼,𝜓 (
𝑖𝐿

𝑉𝑑𝑐
) = (

0 −
(1−ℎ)

𝐿
(1−ℎ)

𝐶
−

1

𝑅𝐶

) (
𝑖𝐿

𝑉𝑑𝑐
) + (

1

𝐿

0
) 𝑣𝑖𝑛,    (18) 

𝑣0 = (0 1) (
𝑖𝐿

𝑉𝑑𝑐
). 

By substituting the appropriate values and simplifying Eq (18), it is possible to derive the steady-

state model of the boost converter: 𝑇𝛼,𝜓 (
𝑖𝐿

𝑉𝑑𝑐
) = 0 and ℎ = 𝐻  where 𝐻  is the steady-state duty 

cycle. In this case, Eq (18) becomes: 

(
0
0

) = (
0 −

(1−𝐻)

𝐿
(1−𝐻)

𝐶
−

1

𝑅𝐶

) (
𝑖𝐿

𝑉𝑑𝑐
) + (

1

𝐿

0
) 𝑣𝑖𝑛,     (19) 
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𝑣0 = (0 1) (
𝑖𝐿

𝑉𝑑𝑐
). 

Equation (19) can be used to express the steady-state relationship between the output voltage 

𝑣0 and the input voltage 𝐸. 

𝑣0

𝐸
=

1

1−𝐻
.          (20) 

To attain the transfer function of the boost converter, we embark on a process of linearizing the 

model defined in Eq (19) with respect to a designated operational state. This state, we hypothesize, 

hinges on the steady values of inductor current (𝐼𝐿), capacitor voltage (𝑉𝐷𝐶), duty cycle (𝐻), and input 

voltage (𝑉𝑖𝑛 ). By accounting for slight deviations from this operational point, we can express the 

variables related to the average model in the following manner: 

𝑖𝐿 = 𝐼𝐿 + 𝑖�̃� ,            

𝑉𝑑𝑐 = 𝑉𝐷𝐶 + 𝑉𝑑�̃� ,           

𝑣𝑖𝑛 = 𝑉𝑖𝑛 + 𝑣𝑖�̃�,            

ℎ = 𝐻 + ℎ̃.            

Within this equation, we represent the minor deviations in inductor current, capacitor voltage, and 

input voltage as 𝑖�̃� , 𝑉𝑑�̃�  , and 𝑣𝑖�̃�. Accordingly, we can reframe Eq (18) as follows: 

𝑇𝛼,𝜓 (
𝐼𝐿 + 𝑖�̃�

𝑉𝐷𝐶 + 𝑉𝑑�̃�
) = (

0 −
(1−𝐻)

𝐿
(1−𝐻)

𝐶
−

1

𝑅𝐶

) (
𝐼𝐿

𝑉𝐷𝐶
) + (

0 −
(1−𝐻)

𝐿
(1−𝐻)

𝐶
−

1

𝑅𝐶

) (
𝑖�̃�

𝑉𝑑�̃�
)      

+ (
0

ℎ̃

𝐿

−
ℎ̃

𝐶
0

) (
𝐼𝐿

𝑉𝐷𝐶
) + (

1

𝐿

0
) (𝑉𝑖𝑛 + 𝑣𝑖�̃�).       (21) 

It is important to highlight that the steady-state component of Eq (21) can be expressed as: 

(
0 −

(1−𝐻)

𝐿
(1−𝐻)

𝐶
−

1

𝑅𝐶

) (
𝐼𝐿

𝑉𝐷𝐶
) + (

1

𝐿

0
) 𝑉𝑖𝑛 = 0 and (

0
ℎ̃

𝐿

−
ℎ̃

𝐶
0

) (
𝐼𝐿

𝑉𝐷𝐶
) = (

𝑉𝐷𝐶

𝐿

−
𝐼𝐿

𝐶

) ℎ̃. 

Therefore, Eq (21) is simplified to: 

𝑇𝛼,𝜓 (
𝑖�̃�

𝑉𝑑�̃�
) = (

0 −
(1−𝐻)

𝐿
(1−𝐻)

𝐶
−

1

𝑅𝐶

) (
𝑖�̃�

𝑉𝑑�̃�
) + (

1

𝐿

𝑉𝐷𝐶

𝐿

0 −
𝐼𝐿

𝐶

) (
𝑣𝑖�̃�

ℎ̃
).    (22) 

In the end, we can directly express the disturbance in the output voltage as follows: 

𝑣0̃ = (0 1) (
𝑖�̃�

𝑉𝑑�̃�
).         (23) 

The state-space depiction of Eqs (22) and (23) is presented as follows: 

𝑇𝛼,𝜓𝑥 = 𝐴𝑥 + 𝐵𝑢,         (24) 

𝑦 = 𝐶𝑥, 
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where = (
𝑖�̃�

𝑉𝑑�̃�
), 𝐴 = (

0 −
(1−𝐻)

𝐿
(1−𝐻)

𝐶
−

1

𝑅𝐶

), 𝐵 = (

1

𝐿

𝑉𝐷𝐶

𝐿

0 −
𝐼𝐿

𝐶

) and 𝐶 = (0 1). 

7. Model based reference control design and stability analysis 

Consider the system: 

𝑇𝛼,𝜓𝑥(𝑡) = 𝐹(𝑡, 𝑥),         (25) 

where 𝐹: ℝ+ × ℝ𝑛 → ℝ𝑛 is a continuous function. 

Definition 7.1. [33] System (23) is said to be uniformly practically exponentially stable if ∃ 𝜎 > 0, 

𝜆 > 0, 𝜌 > 0 such that: 

‖𝑥(𝑡)‖ ≤ 𝜎 ‖𝑥0‖𝐸𝛼
𝜓

(−𝜆, 𝑡, 0) + 𝜌, ∀𝑡 ≥ 0. 

Remark 7.1. When 𝜌 = 0 , system (23) is said to be exponentially stable. 
In this paper, we focus on the following linear plant, applicable ∀𝑡 ≥ 𝑡0. 

𝑇𝛼,𝜓𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),        (26) 

𝑦(𝑡) = 𝐶𝑥(𝑡). 

Here, 𝑥(𝑡) represents the state of the system in 𝑛-dimensional real space, while 𝑢(𝑡) denotes 

the control input under design in 𝑚-dimensional real space, and 𝑦(𝑡) signifies the output of the 

system in 𝑞-dimensional real space. 

The model to be adhered to is delineated and applies for all instances where 𝑡 ≥ 𝑡0 as follows: 

𝑇𝛼,𝜓𝑥𝑚(𝑡) = 𝐴𝑚𝑥𝑚(𝑡),        (27) 

𝑦𝑚(𝑡) = 𝐶𝑚𝑥𝑚(𝑡).          

In Eqs (26) and (27), we have 𝑥𝑚(𝑡) in 𝑛1-dimensional real space, representing the model state, 

and 𝑦𝑚(𝑡) in 𝑞1-dimensional real space, signifying the model output. The matrices 𝐴, 𝐵, and 𝐶 are 

established in 𝑛-dimensional real space, whereas 𝐴𝑚 is in 𝑛1 × 𝑛1-dimensional real space and 𝐶𝑚 

is in 𝑞1 × 𝑛1-dimensional real space, all being familiar components. 

Within this section, our aim is to devise a model reference control strategy that relies on an 

observer and empowers the plant (Eq (25)) to faithfully follow the model (Eq (26)) with a diminishing 

tracking error that ultimately reaches zero. To accomplish this, we introduce the ensuing assumptions. 

Assumption 7.1. Matrix 𝐴𝑚 exhibits stability. The duo (𝐴, 𝐵) possesses controllability. The pair (𝐴, 𝐶) 

showcases observability. 

Assumption 7.2. There is a matrix 𝐹  in 𝑛 × 𝑛1-dimensional real space and another matrix G in 

𝑚 × 𝑛1-dimensional real space such that the following condition is satisfied: 

[
𝐴 𝐵
𝐶 0

] [
𝐹
𝐺

] = [
𝐹𝐴𝑚

𝐶𝑚
].        (28) 

To estimate the unmeasured states of the plant, including those that are not directly measurable, 

we employ a Luenberger-like observer as follows: 

𝑇𝛼,𝜓𝑥𝑧(𝑡) = 𝐴𝑥𝑧(𝑡) + 𝐵𝑢(𝑡) + 𝐿𝐶 (𝑥𝑝(𝑡) − 𝑥𝑧(𝑡)).    (29) 



10711 

AIMS Mathematics  Volume 9, Issue 5, 10698–10716. 

Here, 𝑥𝑧(𝑡) belongs to 𝑛-dimensional real space, representing the estimated state vector, and 𝐿 

in ℝ𝑛×𝑞 stands for a gain matrix to be appropriately determined at a later stage. Let's define the error 

between the model states and the plant states as follows: 

𝑒(𝑡) = 𝐹𝑥𝑚(𝑡) − 𝑥𝑝(𝑡).        (30) 

The dynamics of the derivative of the observer, based on Eqs (26) and (27), can be described by: 

𝑇𝛼,𝜓𝑒(𝑡) = 𝐴𝑒(𝑡) − 𝐵𝑢(𝑡) + (𝐹𝐴𝑚 − 𝐴𝐹)𝑥𝑚(𝑡).     (31) 

Denote the error in state estimation as: 

𝑇𝛼,𝜓𝑒(𝑡) = 𝐴𝑒(𝑡) − 𝐵𝑢(𝑡) + (𝐹𝐴𝑚 − 𝐴𝐹)𝑥𝑚(𝑡).     (32) 

Allow the error in estimating the state to be defined as follows: 

𝑒𝑧(𝑡) = 𝑥𝑧(𝑡) − 𝑥𝑝(𝑡).        (33) 

Subsequently, the derivative can be expressed as follows: 

𝑇𝛼,𝜓𝑒𝑧(𝑡) = (𝐴 − 𝐿𝐶)𝑒𝑧(𝑡).       (34) 

Establish the subsequent linear control law as follows: 

𝑢(𝑡) = 𝛾𝐵𝑇𝑃𝑥𝑧(𝑡) − (𝛾𝐵𝑇𝑃𝐹 − 𝐺)𝑥𝑚(𝑡).      (35) 

In this context, we introduce a design scalar, 𝛾, and a design symmetric positive definite matrix, 𝑃, 

in ℝ𝑛×𝑛. According to the following theorem, it is proclaimed that the proposed control law (Eq (35)) is 

adept at achieving exponential stability of tracking errors, ensuring that the plant output accurately traces 

the model output. 

Theorem 7.1. Contemplating the linear plant (Eq (26)) and the linear model (Eq (27)) within the 

framework of Assumptions 7.1 and 7.2, the observer-based control law (Eq (35)) assures the 

exponential stability of the error origin, denoted as (𝑒𝑝, 𝑒𝑧) = (0,0), which consequently leads to 𝑦(𝑡) 

converging to 𝑦𝑚(𝑡) as 𝑡 approaches infinity. This guarantee holds true when there are symmetric 

positive definite matrices 𝑃 and 𝑄, along with a positive scalar 𝜀, meeting the following conditions: 

[
𝑃𝐴 + 𝐴𝑇𝑃 + 2𝛾𝑃𝐵𝐵𝑇𝑃 + 𝜀𝐼 −𝛾𝑃𝐵𝐵𝑇𝑃

−𝛾𝑃𝐵𝐵𝑇𝑃 𝑄𝑋 + 𝑋𝑇𝑄 + 𝜀 𝐼
] < 0,     (36) 

where 𝑋  is the matrix such that 𝑋 = 𝐴 − 𝐿𝐶 , with 𝐿  representing the observer gain matrix to be 

determined prior to solving Eq (35). Additionally, 𝐼 stands for the identity matrix, and 𝛾 is a design 

scalar. 

Proof. When employing control law (34), the rate of change of the error, 𝑒(𝑡), is diminished to: 

𝑇𝛼,𝜓𝑒(𝑡) = 𝐴𝑒(𝑡) + 𝛾𝐵𝐵𝑇𝑃(𝑒(𝑡) − 𝑒𝑧(𝑡)).     (37) 

Let's introduce the Lyapunov function candidate as 𝑉 = 𝑒𝑝
𝑇𝑃𝑒𝑝 + 𝑒𝑧

𝑇𝑄𝑒𝑧. At any time 𝑡 greater 

than or equal to 𝑡0, the evolution of the Lyapunov function's derivative is determined by: 
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𝑇𝛼,𝜓𝑉(𝑡) = 2𝑒𝑇𝑃𝑇𝛼,𝜓𝑒 + 2𝑒𝑧
𝑇𝑄𝑇𝛼,𝜓𝑒𝑧            

= 𝑒𝑇𝑃 𝐷𝑡0,𝑡
𝛼𝐶 𝑒 + 𝑇𝛼,𝜓𝑒𝑇𝑃𝑒 + 𝑒𝑧

𝑇𝑄𝑇𝛼,𝜓𝑒𝑧 + 𝑇𝛼,𝜓𝑒𝑧
𝑇𝑄𝑒𝑧      

≤ 𝑒𝑇𝑃[𝐴𝑒 + 𝛾𝐵𝐵𝑇𝑃(𝑒 − 𝑒𝑧)] + [𝐴𝑒 + 𝛾𝐵𝐵𝑇𝑃(𝑒 − 𝑒𝑧)]𝑇𝑃𝑒     

+𝑒𝑧
𝑇𝑄(𝐴 − 𝐿𝐶)𝑒𝑧 + 𝑒𝑧

𝑇(𝐴 − 𝐿𝐶)𝑇𝑄𝑒𝑧,         

𝑇𝛼,𝜓𝑉(𝑡) ≤ 𝑒𝑇[𝑃𝐴 + 𝐴𝑇𝑃 + 2𝛾𝑃𝐵𝐵𝑇𝑃]𝑒 + 𝑒𝑧
𝑇(𝑄𝑋 + 𝑋𝑇𝑄)𝑒𝑧 − 2𝛾𝑒𝑇𝑃𝐵𝐵𝑇𝑃𝑒𝑧,  

≤ [
𝑒
𝑒𝑧

]
𝑇

[
𝑃𝐴 + 𝐴𝑇𝑃 + 2𝛾𝑃𝐵𝐵𝑇𝑃 −𝛾𝑃𝐵𝐵𝑇𝑃

−𝛾𝑃𝐵𝐵𝑇𝑃 𝑄𝑋 + 𝑋𝑇𝑄
] [

𝑒
𝑒𝑧

]       

≤ [
𝑒
𝑒𝑧

]
𝑇

𝛺 [
𝑒𝑝

𝑒𝑧
] − 𝜀 ‖(

𝑒
𝑒𝑧

)‖
2

,             

where 

𝛺 = [
𝑃𝐴 + 𝐴𝑇𝑃 + 2𝛾𝑃𝐵𝐵𝑇𝑃 + 𝜀𝐼 −𝛾𝑃𝐵𝐵𝑇𝑃

−𝛾𝑃𝐵𝐵𝑇𝑃 𝑄𝑋 + 𝑋𝑇𝑄 + 𝜀 𝐼
]. 

Drawing from Eq (10), we deduce that 𝑇𝛼,𝜓𝑉(𝑡) exhibits the property of being less than or equal 

to - 𝜀  multiplied by the norm of the vector formed by the elements of e and 𝑒𝑧 , squared (≤

−𝜀 ‖(
𝑒
𝑒𝑧

)‖
2

). Consequently, it is established that the error origin, represented as (𝑒𝑝, 𝑒𝑧) = (0,0), is 

exponentially stable. Moving forward, based on Eq (28), we can affirm that 𝑥(𝑡) − 𝐹𝑥𝑚(𝑡) 

converges to zero as 𝑡  approaches infinity. Furthermore, 𝐶𝑥(𝑡) − 𝐶𝐹𝑥𝑚(𝑡)  follows the same 

trajectory and tends to zero as 𝑡 heads toward infinity. Notably, it's worth mentioning that 𝐶𝐹 equals 

𝐶𝑚, as indicated by the relationship in Eq (28). In conclusion, we ascertain that 𝑦(𝑡) converges to 

𝑦𝑚(𝑡) as time extends to infinity. With this, we have successfully completed the proof. 

Remark 7.2. When α takes on a value of 1, corresponding to classical integer-order systems, the 

theorem we've established retains its validity. In this scenario, the derived result reverts to the classical 

notion of exponential stability. It's important to highlight that when dealing with the Caputo fractional 

order derivative, similar findings have been established in previous work. 

8. Results and discussion: Application to a DC-DC converter connected to a PV panel 

In this subsection, we considered a renewable energy system in order to evaluate the developed 

control strategy based on the Lyapunov technique, which corresponds to a DC-DC converter connected 

to a PV panel. The purpose of this simulation study is to assess the effectiveness and the efficiency of 

the proposed control strategy in achieving desired performance objectives and to appraise its 

robustness under different operating conditions. In this discussion section, we will discuss the 

simulation setup, compare the simulation results for two cases, and provide insights into the advantages 

and limitations. 

The following figure (Figure 10) represents the block diagram of the considered renewable energy 

process in a closed-loop. 
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Figure 10. Block diagram of a closed-loop system. 

Some simulation results are introduced hereafter. The following figure (Figure 11) illustrates the 

evolution curves of the outputs voltage signals for two scenarios: The first case corresponds to the 

ordinary case where the order derivative is α=1 or the second one is relative to α=0,5. 

 

Figure 11. Evolution curves of the voltages signals. 

It can be remarked that the evolution curves of the output voltage for the two scenarios converge 

to the reference signal within a fraction of seconds. We add that the output voltage signal of the second 

case, as compared to the first one, is a faster response with a smaller overshoot, and this is due to the 

decrease of the order derivative of the controller based on the Lyapunov technique. 

In conclusion, the simulation findings of the controller, which is applied to a DC-DC converter 

connected to a PV panel, provides valuable insights into the performance and robustness of the control 

strategy under various operating conditions. The comparative analysis enables the selection of the most 

suitable controller based on specific control objectives, performance metrics, and operating conditions. 

It helps in refining the appropriate controller, optimizing its parameters, and assessing its suitability 

for real-world implementation. 
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9. Conclusions 

Modeling and simulation of complex systems can be challenging for non-power electronics 

specialists who need to model and simulate static converters. Models of DC-DC converters must be 

precise and accurate for use in simulations of renewable energy systems. This paper provides a 

straightforward and accurate method for modeling a boost type converter and a Buck/Boost type 

converter using GCD. In fact, researchers have recently described GCD and its properties. Compared 

to fractional derivative definitions, this derivative generalizes the conformable derivative definition 

and uses the same derivation formulas. Using this unique derivative, we obtain a new class of 

differential equations for DC-DC static converters. The use of GCD to represent DC-DC static 

converters has been shown to be more flexible and profitable than the conventional conformable 

derivative. This progress opens up opportunities for the development of more efficient control methods 

using the Lyapunov technique, with practical implementations not only in PV systems but also in 

various other domains. As a perspective, we will compare the developed theoretical results with 

experimental ones in order to determine the adequate value of the derivative order that should be closer 

to physical reality. 
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