Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

An enhanced tunicate swarm algorithm with deep-learning based rice seedling classification for sustainable computing based smart agriculture

  • Smart agricultural techniques employ current information and communication technologies, leveraging artificial intelligence (AI) for effectually managing the crop. Recognizing rice seedlings, which is crucial for harvest estimation, traditionally depends on human supervision but can be expedited and enhanced via computer vision (CV). Unmanned aerial vehicles (UAVs) equipped with high-resolution cameras bestow a swift and precise option for crop condition surveillance, specifically in cloudy states, giving valuable insights into crop management and breeding programs. Therefore, we improved an enhanced tunicate swarm algorithm with deep learning-based rice seedling classification (ETSADL-RSC). The presented ETSADL-RSC technique examined the UAV images to classify them into two classes: Rice seedlings and arable land. Initially, the quality of the pictures could be enhanced by a contrast limited adaptive histogram equalization (CLAHE) approach. Next, the ETSADL-RSC technique used the neural architectural search network (NASNet) method for the feature extraction process and its hyperparameters could be tuned by the ETSA model. For rice seedling classification, the ETSADL-RSC technique used a sparse autoencoder (SAE) model. The experimental outcome study of the ETSADL-RSC system was verified for the UAV Rice Seedling Classification dataset. Wide simulation analysis of the ETSADL-RSC model stated the greater accuracy performance of 97.79% over other DL classifiers.

    Citation: Manal Abdullah Alohali, Fuad Al-Mutiri, Kamal M. Othman, Ayman Yafoz, Raed Alsini, Ahmed S. Salama. An enhanced tunicate swarm algorithm with deep-learning based rice seedling classification for sustainable computing based smart agriculture[J]. AIMS Mathematics, 2024, 9(4): 10185-10207. doi: 10.3934/math.2024498

    Related Papers:

    [1] Xinyu Lu, Lifang Wang, Zejun Jiang, Shizhong Liu, Jiashi Lin . PEJL: A path-enhanced joint learning approach for knowledge graph completion. AIMS Mathematics, 2023, 8(9): 20966-20988. doi: 10.3934/math.20231067
    [2] Wenhui Feng, Xingfa Zhang, Yanshan Chen, Zefang Song . Linear regression estimation using intraday high frequency data. AIMS Mathematics, 2023, 8(6): 13123-13133. doi: 10.3934/math.2023662
    [3] Yan Wang, Ying Cao, Ziling Heng, Weiqiong Wang . Linear complexity and 2-adic complexity of binary interleaved sequences with optimal autocorrelation magnitude. AIMS Mathematics, 2022, 7(8): 13790-13802. doi: 10.3934/math.2022760
    [4] Rinko Miyazaki, Dohan Kim, Jong Son Shin . Uniform boundedness of solutions to linear difference equations with periodic forcing functions. AIMS Mathematics, 2023, 8(10): 24116-24131. doi: 10.3934/math.20231229
    [5] Gideon Simpson, Daniel Watkins . Relative entropy minimization over Hilbert spaces via Robbins-Monro. AIMS Mathematics, 2019, 4(3): 359-383. doi: 10.3934/math.2019.3.359
    [6] C. T. J. Dodson . Information distance estimation between mixtures of multivariate Gaussians. AIMS Mathematics, 2018, 3(4): 439-447. doi: 10.3934/Math.2018.4.439
    [7] Rashad M. Asharabi, Somaia M. Alhazmi . Accelerating the convergence of a two-dimensional periodic nonuniform sampling series through the incorporation of a bivariate Gaussian multiplier. AIMS Mathematics, 2024, 9(11): 30898-30921. doi: 10.3934/math.20241491
    [8] Zhengyan Luo, Lintao Ma, Yinghui Zhang . Optimal decay rates of higher–order derivatives of solutions for the compressible nematic liquid crystal flows in R3. AIMS Mathematics, 2022, 7(4): 6234-6258. doi: 10.3934/math.2022347
    [9] Xinyu Guan, Nan Kang . Stability for Cauchy problem of first order linear PDEs on Tm with forced frequency possessing finite uniform Diophantine exponent. AIMS Mathematics, 2024, 9(7): 17795-17826. doi: 10.3934/math.2024866
    [10] Myeongmin Kang, Miyoun Jung . Nonconvex fractional order total variation based image denoising model under mixed stripe and Gaussian noise. AIMS Mathematics, 2024, 9(8): 21094-21124. doi: 10.3934/math.20241025
  • Smart agricultural techniques employ current information and communication technologies, leveraging artificial intelligence (AI) for effectually managing the crop. Recognizing rice seedlings, which is crucial for harvest estimation, traditionally depends on human supervision but can be expedited and enhanced via computer vision (CV). Unmanned aerial vehicles (UAVs) equipped with high-resolution cameras bestow a swift and precise option for crop condition surveillance, specifically in cloudy states, giving valuable insights into crop management and breeding programs. Therefore, we improved an enhanced tunicate swarm algorithm with deep learning-based rice seedling classification (ETSADL-RSC). The presented ETSADL-RSC technique examined the UAV images to classify them into two classes: Rice seedlings and arable land. Initially, the quality of the pictures could be enhanced by a contrast limited adaptive histogram equalization (CLAHE) approach. Next, the ETSADL-RSC technique used the neural architectural search network (NASNet) method for the feature extraction process and its hyperparameters could be tuned by the ETSA model. For rice seedling classification, the ETSADL-RSC technique used a sparse autoencoder (SAE) model. The experimental outcome study of the ETSADL-RSC system was verified for the UAV Rice Seedling Classification dataset. Wide simulation analysis of the ETSADL-RSC model stated the greater accuracy performance of 97.79% over other DL classifiers.



    Fractional differential equations (FDEs) have a profound physical background and rich theoretical connotations and have been particularly eye-catching in recent years. Fractional order differential equations refer to equations that contain fractional derivatives or integrals. Currently, fractional derivatives and integrals have a wide range of applications in many disciplines such as physics, biology, and chemistry, etc. For more information see [1,2,3,45].

    Langevin equation is an important tool of many areas such as mathematical physics, protein dynamics [6], deuteron-cluster dynamics, and described anomalous diffusion [7]. In 1908, Langevin established first the Langevin equation with a view to describe the advancement of physical phenomena in fluctuating conditions [8]. Some evolution processes are characterized by the fact that they change of state abruptly at certain moments of time. These perturbations are short-term in comparison with the duration of the processes. So, the Langevin equations are a suitable tool to describe such problems. Besides the intensive improvement of fractional derivatives, the Langevin (FDEs) have been presented in 1990 by Mainardi and Pironi [9], which was trailed by numerous works interested in some properties of solutions like existence and uniqueness for Langevin FDEs [10,11,12,13,14,15,16,17,18,19]. We also refer here to some recent works that deal with a qualitative analysis of such problems, including the generalized Hilfer operator, see [20,21,22,23,24]. Recent works related to our work were done by [25,26,27,28,29,30]. The monotone iterative technique is one of the important techniques used to obtain explicit solutions for some differential equations. For more details about the monotone iterative technique, we refer the reader to the classical monographs [31,32].

    Lakshmikantham and Vatsala [25] studied the general existence and uniqueness results for the following FDE

    {Dμ0+(υ(ϰ)υ(0))=f(ϰ,υ(ϰ)),ϰ[0,b],υ(0)=υ0,

    by the monotone iterative technique and comparison principle. Fazli et al. [26] investigated the existence of extremal solutions of a nonlinear Langevin FDE described as follows

    {Dμ10+(Dμ20++λ)υ(ϰ)=f(ϰ,υ(ϰ)),ϰ[0,b],g(υ(0),υ(b))=0,Dμ20+υ(0)=υμ2,

    via a constructive technique that produces monotone sequences that converge to the extremal solutions. Wang et al. [27], used the monotone iterative method to prove the existence of extremal solutions for the following nonlinear Langevin FDE

    {βDμ0+(γDμ0++λ)υ(ϰ)=f(ϰ,υ(ϰ),(γDμ0++λ)),ϰ(0,b],ϰμ(1γ)υ(0)=τ1η0υ(s)ds+mi=1μiυ(σi),ϰμ(1β)(γDμ0++λ)υ(0)=τ2η0 γDμ0+υ(s)ds+mi=1ργiDμ0+υ(σi),

    Motivated by the novel advancements of the Langevin equation and its applications, also by the above argumentations, in this work, we apply the monotone iterative method to investigate the lower and upper explicit monotone iterative sequences that converge to the extremal solution of a fractional Langevin equation (FLE) with multi-point sub-strip boundary conditions described by

    {(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)υ(ϰ)=f(ϰ,υ(ϰ)),ϰ(0,b],HDμ2,β2;ϕ0+υ(ϰ)|ϰ=0=0,υ(0)=0,υ(b)=mi=1δiIσi,ϕ0+υ(ζi),  (1.1)

    where HDμ1,β1;ϕ0+  and HDμ2,β2;ϕ0+ are the ϕ-Hilfer fractional derivatives of order  μ1(0,1]  and μ2(1,2] respectively, and type β1,β2[0,1],σi>0,λ1,λ2R+, δi>0, m1, 0<ζ1<ζ2<......<1, f:(0,b]×RR is a given continuous function and ϕ is an increasing function, having a continuous derivative ϕ on (0,b) such that ϕ(ϰ)0, for all ϰ(0,b]. Our main contributions to this work are as follows:

    By adopting the same techniques used in [26,27], we derive the formula of explicit solutions for ϕ-Hilfer-FLEs (1.1) involving two parameters Mittag-Leffler functions.

    We use the monotone iterative method to study the extremal of solutions of ϕ-Hilfer-FLE (1.1).

    We investigate the lower and upper explicit monotone iterative sequences that converge to the extremal solution.

    The proposed problem (1.1) covers some problems involving many classical fractional derivative operators, for different values of function ϕ and parameter μi,i=1,2. For instance:

    If ϕ(ϰ)=ϰ and μi=1, then the FLE (1.1) reduces to Caputo-type FLE.

    If ϕ(ϰ)=ϰ and μi=0, then the FLE (1.1) reduces to Riemann-Liouville-type FLE.

    If μi=0, then the FLE (1.1) reduces to FLE with the ϕ-Riemann-Liouville fractional derivative.

    If ϕ(ϰ)=ϰ, then the FLE (1.1) reduces to classical Hilfer-type FLE.

    If ϕ(ϰ)=logϰ, then the FLE (1.1) reduces to Hilfer-Hadamard-type FLE.

    If ϕ(ϰ)=ϰρ, then the FLE (1.1) reduces to Katugampola-type FLE.

    The results obtained in this work includes the results of Fazli et al. [26], Wang et al. [27] and cover many problems which do not study yet.

    The structure of our paper is as follows: In the second section, we present some notations, auxiliary lemmas and some basic definitions which are used throughout the paper. Moreover, we derive the formula of the explicit solution for FLE (1.1) in the term of Mittag-Leffler with two parameters. In the third section, we discuss the existence of extremal solutions to our FLE (1.1) and prove lower and upper explicit monotone iterative sequences which converge to the extremal solution. In the fourth section, we provide a numerical example to illustrate the validity of our results. The concluding remarks will be given in the last section.

    To achieve our main purpose, we present here some definitions and basic auxiliary results that are required throughout our paper. Let J:=[0,b], and C(J) be the Banach space of continuous functions  υ:JR equipped with the norm υ=sup{|υ(ϰ)|:ϰJ}.

    Definition 2.1. [2] Let f  be an integrable function and μ>0. Also, let ϕ be an increasing and positive monotone function on (0,b), having a continuous derivative ϕ on (0,b) such that ϕ(ϰ)0, for all ϰJ. Then the ϕ-Riemann-Liouville fractional integral of f of order μ is defined by

    Iμ,ϕ0+f(ϰ)=ϰ0ϕ(s)(ϕ(ϰ)ϕ(s))μ1Γ(μ)f(s)ds, 0<ϰb.

    Definition 2.2. [33] Let n1<μ<n, (nN), and f,ϕCn(J) such that ϕ(ϰ) is continuous and satisfying ϕ(ϰ)0 for all ϰJ. Then the left-sided ϕ-Hilfer fractional derivative of a function f of order μ and type β[0,1] is defined by

    HDμ,β,ϕ0+f(ϰ)=Iβ(nμ);ϕ0+Dγ;ϕa+f(ϰ),γ=μ+nβμβ,

    where

    Dγ;ϕ0+f(ϰ)=f[n]ϕI(1β)(nμ);ϕ0+f(ϰ),andf[n]ϕ=[1ϕ(ϰ)ddϰ]n.

    Lemma 2.3. [2,33] Let n1<μ<n, 0β1, and n<δR. For a given function f:JR, we have

    Iμ,ϕ0+Iβ,ϕ0+f(ϰ)=Iμ+β,ϕ0+f(ϰ),
    Iμ,ϕ0+(ϕ(ϰ)ϕ(0))δ1=Γ(δ)Γ(μ+δ)(ϕ(ϰ)ϕ(0))μ+δ1,

    and

    HDμ,β,ϕ0+(ϕ(ϰ)ϕ(0))δ1=0,δ<n.

    Lemma 2.4. [33] Let f:JR, n1<μ<n, and 0β1. Then

    (1) If fCn1(J), then

    Iμ;ϕ0+HDμ,β,ϕ0+f(ϰ)=f(ϰ)n1k=1(ϕ(ϰ)ϕ(0))γkΓ(γk+1)f[nk]ϕI(1β)(nμ);ϕ0+f(0),

    (2) If fC(J), then

    HDμ,β,ϕ0+Iμ;ϕ0+f(ϰ)=f(ϰ).

    Lemma 2.5. For μ,β,γ>0 and λR, we have

    Iμ,ϕ0+[ϕ(ϰ)ϕ(0)]β1Eγ,β[λ(ϕ(ϰ)ϕ(0))γ]=[ϕ(ϰ)ϕ(0)]β+μ1Eγ,β+μ[λ(ϕ(ϰ)ϕ(0))γ],

    where Eγ,β is Mittag-Leffler function with two-parameterdefined by

    Eγ,β(υ)=i=1υiΓ(γi+β),υC.

    Proof. See [34].

    Lemma 2.6. [27] Let μ(1,2] and β>0 be arbitrary. Then the functions Eμ(), Eμ,μ() and Eμ,β() are nonnegative. Furthermore,

    Eμ(χ):=Eμ,1(χ)1,Eμ,μ(χ)1Γ(μ),Eμ,β(χ)1Γ(β),

    for χ<0.

    Lemma 2.7. Let μ,k,β>0, λR and fC(J). Then

    Ik,ϕ0+[Iμ,ϕ0+Eμ,μ(λ(ϕ(ϰ)ϕ(0))μ)]=Iμ+k,ϕ0+Eμ,μ+k(λ(ϕ(ϰ)ϕ(0))μ).

    Proof. See [34].

    For some analysis techniques, we will suffice with indication to the classical Banach contraction principle (see [35]).

    To transform the ϕ-Hilfer type FLE (1.1) into a fixed point problem, we will present the following Lemma.

    Lemma 2.8. Let γj=μj+jβjμjβj, (j=1,2) such that μ1(0,1],μ2(1,2], βj[0,1],λ1,λ20 and   is a functionin the space C(J). Then, υ is a solutionof the ϕ-Hilfer linear FLE of the form

    {(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)v(ϰ)=(ϰ),ϰ(0,b],HDμ2,β2;ϕ0+v(ϰ)|ϰ=0=0,v(0)=0,v(b)=mi=1δiIσi,ϕ0+v(ζi), (2.1)

    if and only if υ satisfies the following equation

    υ(ϰ)=[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(b)ϕ(0)]μ1)(b))mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ζi)ϕ(0)]μ1)(ζi))]+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Γ(μ1)Iμ1,ϕ0+[Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)(ϰ)]. (2.2)

    where

    Θ:=(mi=1δi[ϕ(ζi)ϕ(0)]γ2+σi1Eμ2,γ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)[ϕ(b)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(b)ϕ(0)]μ2))0. (2.3)

    Proof. Let (HDμ2,β2;ϕ0++λ2)υ(ϰ)=P(ϰ). Then, the problem (2.1) is equivalent to the following problem

    {(HDμ1,β1;ϕ0++λ1)P(ϰ)=(ϰ),ϰ(0,b],P(0)=0.      (2.4)

    Applying the operator Iμ1,ϕ0+ to both sides of the first equation of (2.4) and using Lemma 2.4, we obtain

    P(ϰ)=c0Γ(γ1)[ϕ(ϰ)ϕ(0)]γ11λ1Iμ1,ϕ0+P(ϰ)+Iμ1,ϕ0+(ϰ), (2.5)

    where c0 is an arbitrary constant. For explicit solutions of Eq (2.4), we use the method of successive approximations, that is

    P0(ϰ)=c0Γ(γ1)[ϕ(ϰ)ϕ(0)]γ11, (2.6)

    and

    Pk(ϰ)=P0(ϰ)λ1Iμ1,ϕ0+Pk1(ϰ)+Iμ1,ϕ0+(ϰ). (2.7)

    By Definition 2.1 and Lemma 2.3 along with Eq (2.6), we obtain

    P1(ϰ)=P0(ϰ)λ1Iμ1,ϕ0+P0(ϰ)+Iμ1,ϕ0+(ϰ)=c0Γ(γ1)[ϕ(ϰ)ϕ(0)]γ11λ1Iμ1,ϕ0+(c0Γ(γ1)[ϕ(ϰ)ϕ(0)]γ11)+Iμ1,ϕ0+(ϰ)=c0Γ(γ1)[ϕ(ϰ)ϕ(0)]γ11λ1c0Γ(γ1+μ1)[ϕ(ϰ)ϕ(0)]γ1+μ11+Iμ1,ϕ0+(ϰ)=c02i=1(λ1)i1[ϕ(ϰ)ϕ(0)]iμ1+β1(1μ1)1Γ(iμ1+β1(1μ1))+Iμ1,ϕ0+(ϰ). (2.8)

    Similarly, by using Eqs (2.6)–(2.8), we get

    P2(ϰ)=P0(ϰ)λ1Iμ1,ϕ0+P1(ϰ)+Iμ1,ϕ0+(ϰ)=c0Γ(γ1)[ϕ(ϰ)ϕ(0)]γ11λ1Iμ1,ϕ0+(c02i=1(λ1)i1[ϕ(ϰ)ϕ(0)]iμ1+β1(1μ1)1Γ(iμ1+β1(1μ1))+Iμ1,ϕ0+(ϰ))+Iμ1,ϕ0+(ϰ)=c03i=1(λ1)i1[ϕ(ϰ)ϕ(0)]iμ1+β1(1μ1)1Γ(iμ1+β1(1μ1))+2i=1(λ1)i1Iiμ1,ϕ0+(ϰ).

    Repeating this process, we get Pk(ϰ) as

    Pk(ϰ)=c0k+1i=1(λ1)i1[ϕ(ϰ)ϕ(0)]iμ1+β1(1μ1)1Γ(iμ1+β1(1μ1))+ki=1(λ1)i1Iiμ1,ϕ0+(ϰ).

    Taking the limit k, we obtain the expression for Pk(ϰ), that is

    P(ϰ)=c0i=1(λ1)i1[ϕ(ϰ)ϕ(0)]iμ1+β1(1μ1)1Γ(iμ1+β1(1μ1))+i=1(λ1)i1Iiμ1,ϕ0+(ϰ).

    Changing the summation index in the last expression, ii+1, we have

    P(ϰ)=c0i=0(λ1)i[ϕ(ϰ)ϕ(0)]iμ1+γ11Γ(iμ1+γ1)+i=0(λ1)iIiμ1+μ1,ϕ0+(ϰ).

    From the definition of Mittag-Leffler function, we get

    P(ϰ)=c0[ϕ(ϰ)ϕ(0)]γ11Eμ1,γ1(λ1[ϕ(ϰ)ϕ(0)]μ1)+Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)(ϰ). (2.9)

    By the condition P(0)=0, we get c0=0 and hence

    Equation (2.9) reduces to

    P(ϰ)=Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)(ϰ). (2.10a)

    Similarly, the following equation

    {(HDμ2,β2;ϕ0++λ2)υ(ϰ)=P(ϰ),ϰ(0,b],υ(0)=0,υ(b)=mi=1δiIσi,ϕ0+υ(ζi)

    is equivalent to

    υ(ϰ)=c1[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)+c2[ϕ(ϰ)ϕ(0)]γ22Eμ2,γ21(λ2[ϕ(ϰ)ϕ(0)]μ2)+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)P(ϰ). (2.11)

    By the condition υ(0)=0, we obtain c2=0 and hence Eq (2.11) reduces to

    υ(ϰ)=c1[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)P(ϰ). (2.12)

    By the condition υ(b)=mi=1δi Iσi,ϕ0+υ(ζi), we get

    c1=1Θ(Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)P(b)mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)P(ζi)). (2.13)

    Put c0 in Eq (2.12), we obtain

    υ(ϰ)=[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)P(b)mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)P(ζi)]+Γ(μ2)Iμ2,ϕ0+[Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)P(ϰ)]. (2.14)

    Substituting Eq (2.10a) into Eq (2.14), we can get Eq (2.2).

    On the other hand, we assume that the solution υ satisfies Eq (2.2). Then, one can get υ(0)=0. Applying HDμ2,β2;ϕ0+ on both sides of Eq (2.2), we get

    HDμ2,β2;ϕ0+υ(ϰ)=HDμ2,β2;ϕ0+[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(b)ϕ(0)]μ1)(b))mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ζi)ϕ(0)]μ1)(ζi))]+HDμ2,β2;ϕ0+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Γ(μ1)Iμ1,ϕ0+[Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)(ϰ)]. (2.15)

    Since γ2=μ2+β2μ2β2, then, by Lemma 2.3, we have HDμ2,β2;ϕ0+[ϕ(ϰ)ϕ(0)]γ21=0 and hence Eq (2.15) reduces to the following equation

    HDμ2,β2;ϕ0+υ(ϰ)=HDμ2,β2;ϕ0+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Γ(μ1)Iμ1,ϕ0+[Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)(ϰ)].

    By using some properties of Mittag-Leffler function and taking ϰ=0, we obtain

    HDμ2,β2;ϕ0+υ(0)=0.

    Thus, the derivative condition is satisfied. The proof of Lemma 2.8 is completed.

    Lemma 2.9. (Comparison Theorem). For j=1,2, let γj=μj+jβjμjβj, μ1(0,1],μ2(1,2], βj[0,1],λ10 and  υC(J) be acontinuous function satisfies

    {(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)v(ϰ)0,HDμ2,β2;ϕ0+v(ϰ)|ϰ=00,v(0)0,v(b)0,

    then υ(ϰ)0, ϰ(0,b].

    Proof. If z0, then from Lemma 2.6, we have Eμ,β(z)0. If z<0, then Eμ,β(z) is completely monotonic function [35], that means Eμ,β(z) possesses derivatives for all arbitrary integer order and (1)ndndznEμ,β(z)0. Hence, Eμ,β(z)0 for all zR. In view of Eq (2.2), Eq (2.9), and from fact that Eμ1,γ1()0 and Eμ,μ()0 with help the definition of ϕ, we obtain υ(ϰ)0, for ϰ(0,b]. (Alternative proof). Let (HDμ2,β2;ϕ0++λ2)υ(ϰ)=P(ϰ). Then, we have

    {(HDμ1,β1;ϕ0++λ1)P(ϰ)0,P(0)0.

    Assume that P(ϰ)0 (for all ϰ(0,b]) is not true. Then, there exist ϰ1,ϰ2, (0<ϰ1<ϰ2b) such that P(ϰ2)<0,P(ϰ1)=0 and

    {P(ϰ)0,ϰ(0,ϰ1),P(ϰ)<0,ϰ(ϰ1,ϰ2).

    Since λ10, we have (HDμ1,β1;ϕ0++λ1)P(ϰ)0 for all ϰ(ϰ1,ϰ2). In view of

    HDμ1,β1,ϕ0+P(ϰ)=Iβ1(1μ1);ϕ0+(1ϕ(ϰ)ddϰ)I1γ1;ϕ0+P(ϰ),

    the operator I1γ1;ϕ0+P(ϰ) is nondecreasing on (ϰ1,ϰ2). Hence

    I1γ1;ϕ0+P(ϰ)I1γ1;ϕ0+P(ϰ1)0,ϰ(ϰ1,ϰ2).

    On the other hand, for all ϰ(ϰ1,ϰ2), we have

    I1γ1;ϕ0+P(ϰ)I1γ1;ϕ0+P(ϰ1)=1Γ(1γ1)ϰ0ϕ(s)(ϕ(ϰ)ϕ(s))1γ11P(s)ds1Γ(1γ1)ϰ10ϕ(s)(ϕ(ϰ1)ϕ(s))1γ11P(s)ds=1Γ(1γ1)ϰ10ϕ(s)[(ϕ(ϰ)ϕ(s))γ1(ϕ(ϰ1)ϕ(s))γ1]P(s)ds+1Γ(1γ1)ϰϰ1ϕ(s)(ϕ(ϰ)ϕ(s))γ1P(s)ds<0, for all ϰ(ϰ1,ϰ2),

    which is a contradiction. Therefore, P(ϰ)0 (ϰ(0,b]). By the same technique, one can prove that υ(ϰ)0, for all ϰ(0,b].

    As a result of Lemma 2.8, we have the following Lemma.

    Lemma 2.10. For j=1,2, let γj=μj+jβjμjβj, μ1(0,1],μ2(1,2], βj[0,1]  and f:J×RR is continuous function . If υC(J) satisfies the problem (1.1), then, υ satisfies thefollowing integral equation

    υ(ϰ)=[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(b)ϕ(0)]μ1)f(b,υ(b)))mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ζi)ϕ(0)]μ1)f(ζi,υ(ζi)))]+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)f(ϰ,υ(ϰ))).

    In this part, we focus on the existence of lower and upper explicit monotone iterative sequences that converge to the extremal solution for the nonlinear ϕ-Hilfer FLE (1.1). The existence of unique solution for the problem (1.1) is based on Banach fixed point theorem. Now, let us give the following definitions:

    Definition 3.1. For J= [0,b]R+. Let υC(J). Then, the upper and lower-control functions are defined by

    ¯f(ϰ,υ(ϰ))=sup0Yυ{f(ϰ,Y(ϰ))},

    and

    f_(ϰ,υ(ϰ))=infυYb{f(ϰ,Y(ϰ))},

    respectively. Clearly, ¯f(ϰ,υ(ϰ)) and f_(ϰ,υ(ϰ)) are monotonous non-decreasing on [a,b] and

    f_(ϰ,υ(ϰ))f(ϰ,υ(ϰ))¯f(ϰ,υ(ϰ))

    Definition 3.2. Let ¯υ, υ_ C(J) be upper and lower solutions of the problem (1.1) respectively. Then

    {(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)¯υ(ϰ)¯f(ϰ,¯υ(ϰ)),ϰ(0,b],HDμ2,β2;ϕ0+¯υ(ϰ)|ϰ=00,¯υ(0)0,¯υ(b)mi=1δiIσi,ϕ0+¯υ(ζi),

    and

    {(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)υ_(ϰ)f_(ϰ,υ_(ϰ)),ϰ(0,b],HDμ2,β2;ϕ0+υ_(ϰ)|ϰ=00,υ_(0)0,υ_(b)mi=1δiIσi,ϕ0+υ_(ζi).

    According to Lemma 2.8, we have

    ¯υ(ϰ)[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(b)ϕ(0)]μ1)f(b,¯υ(b))mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ζi)ϕ(0)]μ1)f(ζi,¯υ(ζi)))]+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)f(ϰ,¯υ(ϰ)))

    and

    υ_(ϰ)[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(b)ϕ(0)]μ1)f(b,υ_(b))mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ζi)ϕ(0)]μ1)f(ζi,υ_(ζi)))]+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)f(ϰ,υ_(ϰ))).

    Theorem 3.3. Let ¯υ(ϰ) and υ_(ϰ) be upper and lower solutions of the problem (1.1), respectively such that υ_ (ϰ)¯υ(ϰ) on J. Moreover, the function f(ϰ,υ) is continuouson J and there exists a constant number κ>0 such that |f(ϰ,υ)f(ϰ,v)|κ|υv|, for υ,vR+, ϰJ. If

    Q1=κ[ϕ(b)ϕ(0)]γ21Γ(γ2)Θ[[ϕ(b)ϕ(0)]μ2+μ1Γ(μ2+1)Γ(μ1+1)+mi=1δiΓ(μ2)[ϕ(ζi)ϕ(0)]μ2+μ1+σiΓ(μ2+σi+1)Γ(μ2+σi)Γ(μ1+1)]+κ[ϕ(b)ϕ(0)]μ2+μ1Γ(μ2+1)Γ(μ1+1)<1,

    then the problem (1.1) has a unique solution υC(J).

    Proof. Let Ξ=PP_, where P(ϰ)=(HDμ2,β2;ϕ0++λ2)υ(ϰ)  and P_(ϰ)=(HDμ2,β2;ϕ0++λ2)υ_(ϰ). Then, we get

    {(HDμ1,β1;ϕ0++λ1)Ξ0,ϰ(0,b],Ξ(0)=0.  

    In view of Lemma 2.9, we have Ξ(ϰ)0 on J  and hence P_ (ϰ)P(ϰ). Since P(ϰ)=(HDμ2,β2;ϕ0++λ2)υ(ϰ)  and P_(ϰ)=(HDμ2,β2;ϕ0++λ2)υ_(ϰ), by the same technique, we get υ_ (ϰ)υ(ϰ). Similarly, we can show that υ(ϰ)¯υ(ϰ). Consider the continuous operator G:C(J)C(J) defined by

    Gυ(ϰ)=[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(b)ϕ(0)]μ1)f(b,υ(b)))mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ζi)ϕ(0)]μ1)f(ζi,υ(ζi)))]+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)f(ϰ,υ(ϰ))).

    Clearly, the fixed point of G is a solution to problem (1.1). Define a closed ball BR as

    BR={υC(J):υC(J)R,}

    with

    RQ21Q1,

    where

    Q2=P[ϕ(b)ϕ(0)]γ21Γ(γ2)Θ[[ϕ(b)ϕ(0)]μ2+μ1Γ(μ2+1)Γ(μ1+1)+mi=1δiΓ(μ2)[ϕ(ζi)ϕ(0)]μ2+μ1+σiΓ(μ2+σi+1)Γ(μ2+σi)Γ(μ1+1)]+P[ϕ(b)ϕ(0)]μ2+μ1Γ(μ2+1)Γ(μ1+1)

    and P=supsJ|f(s,0)|. Let υBR and ϰJ. Then by Lemma 2.6, we have

    |f(ϰ,υ(ϰ))|=|f(ϰ,υ(ϰ))f(ϰ,0)+f(ϰ,0)||f(ϰ,υ(ϰ))f(ϰ,0)|+|f(ϰ,0)|κ|υ(ϰ)|+P(κυ+P).

    Now, we will present the proof in two steps:

    First step: We will show that G(BR)BR. First, by Lemma 2.6 and Definition 2.1, we have

    Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)[ϕ(ϰ)ϕ(0)]μ2Γ(μ2+1)Γ(μ2).

    Next, for υBR, we obtain

    |Gυ(ϰ)|[ϕ(b)ϕ(0)]γ21Γ(γ2)Θ[(κυ+P)[ϕ(b)ϕ(0)]μ2+μ1Γ(μ2+1)Γ(μ1+1)+mi=1δiΓ(μ2)[ϕ(ζi)ϕ(0)]μ2+μ1+σiΓ(μ2+σi+1)Γ(μ2+σi)Γ(μ1+1)(κυ+P)]+(κυ+P)[ϕ(b)ϕ(0)]μ2+μ1Γ(μ2+1)Γ(μ1+1)Q1R+Q2R.

    Thus G(BR)BR.

    Second step: We shall prove that G is contraction. Let υ,ˆυBR and ϰJ. Then by Lemma 2.6 and Definition 2.1, we obtain

    GυGˆυκυˆυ(ϕ(bϰ)ϕ(0))γ21Γ(γ2)Θ[[ϕ(b)ϕ(0)]μ2+μ1Γ(μ2+1)Γ(μ1+1)+mi=1δiΓ(μ2)[ϕ(ζi)ϕ(0)]μ2+μ1+σiΓ(μ2+σi+1)Γ(μ2+σi)Γ(μ1+1)]+κυˆυ[ϕ(b)ϕ(0)]μ2+μ1Γ(μ2+1)Γ(μ1+1)Q1υˆυ.

    Thus, G is a contraction. Hence, the Banach contraction principle theorem [35] shows that the problem (1.1) has a unique solution.

    Theorem 3.4. Assume that ¯υ,υ_C(J) be upper and lower solutions of the problem (1.1), respectively, and υ_ (ϰ)¯υ(ϰ) on  J. Inaddition, If the continuous function f: J×RR satisfies f(ϰ,υ(ϰ))f(ϰ,y(ϰ)) for allυ_ (ϰ)υ(ϰ)y(ϰ)¯υ(ϰ),ϰ J then there exist monotoneiterative sequences {υ_j}j=0 and {¯υj}j=0 which uniformly converges on J to the extremal solutions of problem (1.1) in Φ={υC(J):υ_(ϰ)υ(ϰ)¯υ(ϰ),ϰJ}.

    Proof. Step (1): Setting υ_0=υ_ and ¯υ0=¯υ, then given {υ_j}j=0 and {¯υj}j=0 inductively define υ_j+1 and ¯υj+1 to be the unique solutions of the following problem

    {(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)υ_j+1(ϰ)=f(ϰ,υ_j(ϰ)),ϰJ,       HDμ2,β2;ϕ0+υ_j+1(ϰ)|ϰ=0=0,υ_j+1(0)=0,υ_j+1(b)=mi=1δiIσi,ϕ0+υ_j+1(ζi). (3.1)

    and

    {(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)¯υj+1(ϰ)=f(ϰ,¯υj(ϰ)),ϰJ,       HDμ2,β2;ϕ0+¯υj+1(ϰ)|ϰ=0=0,¯υj+1(0)=0,¯υj+1(b)=mi=1δiIσi,ϕ0+¯υj+1(ζi). (3.2)

    By Theorem 3.3, we know that the above problems have a unique solutions in C(J).

    Step (2): Now, for ϰJ, we claim that

    υ_(ϰ)=υ_0(ϰ)υ_1(ϰ)........υ_j(ϰ)υ_j+1(ϰ)......¯υj+1(ϰ)¯υj(ϰ)......¯υ1(ϰ)¯υ0(ϰ)=¯υ(ϰ). (3.3)

    To confirm this claim, from (3.1) for j=0, we have

    {(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)υ_1(ϰ)=f(ϰ,υ_0(ϰ)),j0,HDμ2,β2;ϕ0+υ_1(ϰ)|ϰ=0=0,υ_1(0)=0,υ_1(b)=mi=1δiIσi,ϕ0+υ_1(ζi). (3.4)

    With reference to the definitions of the lower solution υ_(ϰ)=υ_0(ϰ) and putting Ξ(ϰ)=P1(ϰ) P_ 0(ϰ), where P1(ϰ)=(HDμ2,β2;ϕ0++λ2)υ1(ϰ)  and P_0(ϰ)=(HDμ2,β2;ϕ0++λ2)υ_0(ϰ). Then, we get

    {(HDμ1,β1;ϕ0++λ1)Ξ0,ϰ(0,b],Ξ(0)0.  

    Consequently, Lemma 2.9 implies Ξ(ϰ)0, that means P_ 0(ϰ)P1(ϰ),ϰJ and by the same technique, where P(ϰ)=(HDμ2,β2;ϕ0++λ2)υ(ϰ) we get υ(ϰ)0. Hence, υ_0(ϰ)υ_1(ϰ),ϰJ. Now, from Eq (3.4) and our assumptions, we infer that

    (HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)υ_1(ϰ)=f(ϰ,υ_0(ϰ))f(ϰ,υ_1(ϰ)).

    Therefore, υ_1 is a lower solution of problem (1.1). In the same way of the above argument, we conclude that υ_1(ϰ)υ_2(ϰ),ϰJ. By mathematical induction, we get υ_j(ϰ)υ_j+1(ϰ),ϰJ,j2.

    Similarly, we put Ξ(ϰ)=¯P1(ϰ)P_1(ϰ), where ¯P1(ϰ)=(HDμ2,β2;ϕ0++λ2)¯υ1(ϰ)  and P_1(ϰ)=(HDμ2,β2;ϕ0++λ2)υ_1(ϰ). Then, we get

    {(HDμ1,β1;ϕ0++λ1)Ξ(ϰ)0,ϰ(0,b],Ξ(0)0.  

    Consequently, Lemma 2.9 implies Ξ(ϰ)0, that means ¯P1(ϰ)P_1(ϰ),ϰJ and by the same technique, we get ¯υ1(ϰ)υ_1(ϰ),ϰJ. By mathematical induction, we get ¯υj(ϰ)υ_j(ϰ), ϰJ, j0.

    Step (3): In view of Eq (3.3), one can show that the sequences {υ_j}j=0 and {¯υj}j=0 are equicontinuous and uniformly bounded. In view of Arzela-Ascoli Theorem, we have limjυ_j=υ and limj¯υj=υ uniformly on J and the limit of the solutions υ and υ satisfy the problem (1.1). Moreover, υ, υΦ.

    Step (4): We will prove that υ and υ are the extremal solutions of the problem (1.1) in Φ. For this end, let υΦ be a solution of the problem (1.1) such that ¯υj(ϰ)υ(ϰ)υ_j(ϰ),ϰJ, for some jN. Therefore, by our assumption, we find that

    f(ϰ,¯υj(ϰ))f(ϰ,υ(ϰ))f(ϰ,υ_j(ϰ)).

    Hence

    (HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)¯υj+1(ϰ)(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)υ(ϰ)(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)υ_j+1(ϰ),

    and

    HDμ2,β2;ϕ0+¯υj+1(ϰ)|ϰ=0=HDμ2,β2;ϕ0+υ(ϰ)|ϰ=0=HDμ2,β2;ϕ0+υ_j+1(ϰ)|ϰ=0=0.

    Consequently, ¯υj+1(ϰ)υ(ϰ)υ_j+1(ϰ),ϰJ. It follows that

    ¯υj(ϰ)υ(ϰ)υ_j(ϰ),ϰJ, jN. (3.5)

    Taking the limit of Eq (3.5) as j, we get υ(ϰ)υ(ϰ)υ(ϰ), ϰJ. That is, υ and υ are the extremal solutions of the problem (1.1) in Φ.

    Corollary 3.5. Assume that f:J×R+R+ is continuous, and there exist \bm1,\bm2>0 such that

    \bm1f(ϰ,υ)\bm2,(ϰ,υ)J×R+. (3.6)

    Then the problem (1.1) has at least one solution υ(ϰ)C(J). Moreover

    υ(ϰ)[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(b)ϕ(0)]μ1)\bm2)mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ζi)ϕ(0)]μ1)\bm2)]+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)\bm2) (3.7)

    and

    υ(ϰ)[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(b)ϕ(0)]μ1)\bm1)mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ζi)ϕ(0)]μ1)\bm1)]+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)\bm1). (3.8)

    Proof. From Eq (3.6) and definition of control functions, we get

    \bm1f_(ϰ,υ(ϰ))¯f(ϰ,υ(ϰ))\bm2, (ϰ,υ)J×R+. (3.9)

    Now, we consider the following problem

    {(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)¯υ(ϰ)=\bm2,ϰ(0,b],HDμ2,β2;ϕ0+¯υ(ϰ)|ϰ=0=0, ¯υ(0)=0, ¯υ(b)=mi=1δiIσi,ϕ0+¯υ(ζi). (3.10)

    In view of Lemma 2.8, the problem (3.10) has a solution

    ¯υ(ϰ)=[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(b)ϕ(0)]μ1)\bm2)mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ζi)ϕ(0)]μ1)\bm2)]+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)\bm2).

    Taking into account Eq (3.9), we obtain

    ¯υ(ϰ)[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(b)ϕ(0)]μ1)¯f(b,¯υ(b)))mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ζi)ϕ(0)]μ1)¯f(ζi,¯υ(ζi)))]+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)¯f(ϰ,¯υ(ϰ))).

    It is obvious that ¯υ(ϰ) is the upper solution of problem (1.1). Also, we consider the following problem

    {(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)υ_(ϰ)=\bm1,ϰ(0,b],HDμ2,β2;ϕ0+υ_(ϰ)|ϰ=0=0, υ_(0)=0, υ_(b)=mi=1δiIσi,ϕ0+υ_(ζi). (3.11)

    In view of Lemma 2.8, the problem (3.11) has a solution

    υ_(ϰ)=[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(b)ϕ(0)]μ1)\bm1)mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ζi)ϕ(0)]μ1)\bm1)]+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)\bm1).

    Taking into account Eq (3.9), we obtain

    υ_(ϰ)[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(b)ϕ(0)]μ1)f_(b,υ_(b)))mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ζi)ϕ(0)]μ1)f_(ζi,υ_(ζi)))]+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)f_(ϰ,υ_(ϰ))).

    Thus, υ_(ϰ) is the lower solution of problem (1.1).

    The application of Theorem 3.4 results that problem (1.1) has at least one solution υ(ϰ)C(J) that satisfies the inequalities (3.7) and (3.8).

    Example 4.1. Let us consider the following problem

    {(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)υ(ϰ)=f(ϰ,υ(ϰ)),ϰ[0,1],HDμ2,β2;ϕ0+υ(ϰ)|ϰ=0=0,υ(0)=0,υ(b)=mi=1δiIσi,ϕ0+υ(ζi),  (4.1)

    Here μ1=12,μ2=32,β1=β2=13,γ1=23,γ2=43,λ1=λ2=10,m=1,δ1=14,σ1=23,ζ1=34,b=1, ϕ=eϰ,λ1=λ2=10 and we set f(ϰ,υ(ϰ))=2+ϰ2+ϰ35(1+υ(ϰ))υ(ϰ). For υ,wR+, ϰJ, we have

    |f(ϰ,υ)f(ϰ,w)|=|(2+ϰ2+ϰ35(1+υ(ϰ))υ(ϰ))(2+ϰ2+ϰ35(1+w(ϰ))w(ϰ))|15|υ(ϰ)w(ϰ)|.

    By the given data, we get Q10.9<1 and hence all conditions in Theorem 3.3 are satisfied with κ=15>0. Thus, the problem (4.1) has a unique solution υC(J). On the other hand, from Theorem 3.4 and Theorem 3.3, the sequences {υ_n}n=0 and {¯υn}n=0 can be obtained as

    ¯υn+1(ϰ)=Γ(32)I32,eϰ0+E32,32(10[eϰ1]32)(Γ(12)I12,eϰ0+E12,12(10[eϰ1]12)(2+ϰ2+15(1+¯υn(ϰ))ϰ3¯υn(ϰ))). (4.2)

    and

    υ_n+1(ϰ)=Γ(32)I32,eϰ0+E32,32(10[eϰ1]32)(Γ(12)I12,eϰ0+E12,12(10[eϰ1]12)(2+ϰ2+15(1+υ_n(ϰ))ϰ3υ_n(ϰ))). (4.3)

    Moreover, for any υR+ and ϰ[0,1], we have

    limυ+f(ϰ,υ(ϰ))=limυ+(2+ϰ2+ϰ35(1+υ(ϰ))υ(ϰ))=2+ϰ2+ϰ35.

    It follows that

    2<f(ϰ,υ(ϰ))<165.

    Thus, by Corollary 3.5, we get \bm1=2 and \bm2=165. Then by Definitions 3.1 and 3.2, the problem (4.1) has a solution which verifies υ_ (ϰ)υ(ϰ)¯υ(ϰ) where

    ¯υ(ϰ)=(eϰ1)431E32,43(10(eϰ1)32)Θ2[Γ(32)Γ(12)(e1)2E32,3(10(e1)32)E12,1(10(e1)12)45Γ(32)Γ(12)(e341)73E32,216(10(e341)32)E12,1(10(e341)12)]+165Γ(32)Γ(12)(eϰ1)2E32,3(10(e1)32)E12,1(10(eϰ1)12), (4.4)

    and

    υ_(ϰ)=(eϰ1)431E32,43(10(eϰ1)32)Θ165[Γ(32)Γ(12)(e1)2E32,3(10(e1)32)E12,1(10(e1)12)12Γ(32)Γ(12)(e341)73E32,216(10(e341)32)E12,1(10(e341)12)]+2Γ(32)Γ(12)(eϰ1)2E32,3(10(e1)32)E12,1(10(eϰ1)12), (4.5)

    are respectively the upper and lower solutions of the problem (4.1) and

    Θ:=(14[e341]1E32,2(10(e341)32)[e1]431E32,43(10(e1)32))0.

    Let us see graphically, we plot in Figure 1 the behavior of the upper solution ¯υ and lower solution υ_ of the problem (4.1) with given data above.

    Figure 1.  Graphical presentation of (υ_,¯υ).

    In this work, we have proved successfully the monotone iterative method is an effective method to study FLEs in the frame of ϕ-Hilfer fractional derivative with multi-point boundary conditions. Firstly, the formula of explicit solution of ϕ-Hilfer type FLE (1.1) in the term of Mittag-Leffler function has been derived. Next, we have investigated the lower and upper explicit monotone iterative sequences and proved that converge to the extremal solution of boundary value problems with multi-point boundary conditions. Finally, a numerical example has been given in order to illustrate the validity of our results.

    Furthermore, it will be very important to study the present problem in this article regarding the Mittag-Leffler power low [36], the generalized Mittag-Leffler power low with another function [37,38], and the fractal-fractional operators [39].

    Researchers would like to thank the Deanship of Scientific Research, Qassim University for funding the publication of this project. The authors are also grateful to the anonymous referees for suggestions that have improved manuscript.

    The authors declare that they have no competing interests.



    [1] M. D. Yang, H. H. Tseng, Y. C. Hsu, C. Y. Yang, M. H. Lai, D. H. Wu, A UAV open dataset of rice paddies for deep learning practice, Remote Sens., 13 (2021), 1358. https://doi.org/10.3390/rs13071358 doi: 10.3390/rs13071358
    [2] Q. Yang, L. Shi, J. Han, J. Yu, K. Huang, A near real-time deep learning approach for detecting rice phenology based on UAV images, Agr. Forest Meteorol., 287 (2020), 107938. https://doi.org/10.1016/j.agrformet.2020.107938 doi: 10.1016/j.agrformet.2020.107938
    [3] V. Margapuri, N. Penumajji, M. Neilsen, Seed classification using synthetic image datasets generated from low-altitude UAV imagery, In: 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), 2021,116–121. https://doi.org/10.1109/ICMLA52953.2021.00026
    [4] K. Dilmurat, V. Sagan, M. Maimaitijiang, S. Moose, F. B. Fritschi, Estimating crop seed composition using machine learning from multisensory UAV data, Remote Sens., 14 (2022), 4786. https://doi.org/10.3390/rs14194786 doi: 10.3390/rs14194786
    [5] M. M. Anuar, A. A. Halin, T. Perumal, B. Kalantar, Aerial imagery paddy seedlings inspection using deep learning, Remote Sens., 14 (2022), 274. https://doi.org/10.3390/rs14020274 doi: 10.3390/rs14020274
    [6] A. O. Conrad, W. Li, D. Y. Lee, G. L. Wang, L. Rodriguez-Saona, P. Bonello, Machine learning-based presymptomatic detection of rice sheath blight using spectral profiles, Plant Phenomics, 2020 (2020), 8954085. https://doi.org/10.34133/2020/8954085 doi: 10.34133/2020/8954085
    [7] S. Tan, J. Liu, H. Lu, M. Lan, J. Yu, G. Liao, et al., Machine learning approaches for rice seedling growth stages detection, Front. Plant Sci., 13 (2022), 914771. https://doi.org/10.3389/fpls.2022.914771 doi: 10.3389/fpls.2022.914771
    [8] F. Liao, X. Feng, Z. Li, D. Wang, C. Xu, G. Chu, et al., A spatio-temporal convolutional neural network model for rice nutrient level diagnosis at rice panicle initiation stage, http://doi.org/10.2139/ssrn.4272680
    [9] F. M. Muharam, K. Nurulhuda, Z. Zulkafli, M. A. Tarmizi, A. N. H. Abdullah, M. F. Che Hashim, et al., UAV-and Random-Forest-AdaBoost (RFA)-based estimation of rice plant traits, Agronomy, 11 (2021), 915. https://doi.org/10.3390/agronomy11050915 doi: 10.3390/agronomy11050915
    [10] T. Yamaguchi, Y. Tanaka, Y. Imachi, M. Yamashita, K. Katsura, Feasibility of combining deep learning and RGB images obtained by unmanned aerial vehicle for leaf area index estimation in rice, Remote Sens., 13 (2021), 84. https://doi.org/10.3390/rs13010084 doi: 10.3390/rs13010084
    [11] H. H. Tseng, M. D. Yang, R. Saminathan, Y. C. Hsu, C. Y. Yang, D. H. Wu, Rice seedling detection in UAV images using transfer learning and machine learning, Remote Sens., 14 (2022), 2837. https://doi.org/10.3390/rs14122837 doi: 10.3390/rs14122837
    [12] T. Liu, R. Li, X. Zhong, M. Jiang, X. Jin, P. Zhou, et al., Estimates of rice lodging using indices derived from UAV visible and thermal infrared images, Agr. Forest Meteorol., 252 (2018), 144–154. https://doi.org/10.1016/j.agrformet.2018.01.021 doi: 10.1016/j.agrformet.2018.01.021
    [13] X. Ma, X. Deng, L. Qi, Y. Jiang, H. Li, Y. Wang, et al., Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields, PloS One, 14 (2019), e0215676. https://doi.org/10.1371/journal.pone.0215676 doi: 10.1371/journal.pone.0215676
    [14] H. Liu, Y. Qi, W. Xiao, H. Tian, D. Zhao, K. Zhang, et al., Identification of male and female parents for hybrid rice seed production using UAV-based multispectral imagery, Agriculture, 12 (2022), 1005. https://doi.org/10.3390/agriculture12071005 doi: 10.3390/agriculture12071005
    [15] S. V. Desai, V. N. Balasubramanian, T. Fukatsu, S. Ninomiya, W. Guo, Automatic estimation of heading date of paddy rice using deep learning, Plant Methods, 15 (2019), 76. https://doi.org/10.1186/s13007-019-0457-1 doi: 10.1186/s13007-019-0457-1
    [16] J. Wu, G. Yang, X. Yang, B. Xu, L. Han, Y. Zhu, Automatic counting of in situ rice seedlings from UAV images based on a deep fully convolutional neural network, Remote Sens., 11 (2019), 691. https://doi.org/10.3390/rs11060691 doi: 10.3390/rs11060691
    [17] H. Ge, F. Ma, Z. Li, Z. Tan, C. Du, Improved accuracy of phenological detection in rice breeding by using ensemble models of machine learning based on UAV-RGB imagery, Remote Sens., 13 (2021), 2678. https://doi.org/10.3390/rs13142678 doi: 10.3390/rs13142678
    [18] G. Latif, S. E. Abdelhamid, R. E. Mallouhy, J. Alghazo, Z. A. Kazimi, Deep learning utilization in agriculture: Detection of rice plant diseases using an improved CNN model, Plants, 11 (2022), 2230. https://doi.org/10.3390/plants11172230 doi: 10.3390/plants11172230
    [19] N. Krishnamoorthy, L. V. N. Prasad, C. S. P. Kumar, B. Subedi, H. B. Abraha, V. E. Sathishkumar, Rice leaf diseases prediction using deep neural networks with transfer learning, Environm. Res., 198 (2021), 111275. https://doi.org/10.1016/j.envres.2021.111275 doi: 10.1016/j.envres.2021.111275
    [20] B. S. Reddy, A. K. Maurya, V. E. Sathishkumar, P. L. Narayana, M. H. Reddy, A. Baazeem, et al., Prediction of batch sorption of barium and strontium from saline water, Environ. Res., 197 (2021), 111107. https://doi.org/10.1016/j.envres.2021.111107 doi: 10.1016/j.envres.2021.111107
    [21] M. C. Michelini, A. Gazquez, M. L. Checovich, A. S. Tamayo, S. J. Maiale, A. B. Menéndez, et al., Determination of low‐temperature stress during the vegetative stage as a tool to predict plant yield in rice genotypes with contrasting tolerance levels, J. Agron. Crop Sci., 210 (2024), e12670. https://doi.org/10.1111/jac.12670 doi: 10.1111/jac.12670
    [22] P. I. Ritharson, K. Raimond, X. A. Mary, J. E. Robert, J. Andrew, DeepRice: A deep learning and deep feature based classification of Rice leaf disease subtypes, Artif. Intell. Agric., 11 (2024), 34–49. https://doi.org/10.1016/j.aiia.2023.11.001 doi: 10.1016/j.aiia.2023.11.001
    [23] N. M. U. Din, A. Assad, R. A. Dar, M. Rasool, S. U. Sabha, T. Majeed, et al., RiceNet: A deep convolutional neural network approach for classification of rice varieties, Expert Syst. Appl., 235 (2024), 121214. https://doi.org/10.1016/j.eswa.2023.121214 doi: 10.1016/j.eswa.2023.121214
    [24] G. Çınarer, N. Erbaş, A. Ö cal, Rice classification and quality detection success with artificial intelligence technologies, Braz. Arch. Biol. Technol., 67 (2024), e24220754. https://doi.org/10.1590/1678-4324-2024220754 doi: 10.1590/1678-4324-2024220754
    [25] P. Kulkarni, S. Shastri. Rice leaf diseases detection using machine learning, J. Sci. Res. Technol., 2 (2024), 17–22. https://doi.org/10.61808/jsrt81 doi: 10.61808/jsrt81
    [26] H. M. Qassim, N. M. Basheer, M. N. Farhan, Brightness preserving enhancement for dental digital X-ray images based on entropy and histogram analysis, J. Appl. Sci. Eng., 22 (2019), 187–194. https://doi.org/10.6180/jase.201903_22(1).0019 doi: 10.6180/jase.201903_22(1).0019
    [27] S. Nalluri, R. Sasikala, A deep neural architecture for SOTA pneumonia detection from chest X-rays, Int. J. Syst. Assur. Eng. Manag., 15 (2024), 489–502. https://doi.org/10.1007/s13198-022-01788-x doi: 10.1007/s13198-022-01788-x
    [28] Y. Zhang, Q. He, L. Yang, C. Liu, An improved tunicate swarm algorithm for solving the multiObjective optimisation problem of airport gate assignments, Appl. Sci., 12 (2022), 8203. https://doi.org/10.3390/app12168203 doi: 10.3390/app12168203
    [29] T. Fetouh, A. M. Elsayed, Optimal control and operation of fully automated distribution networks using improved tunicate swarm intelligent algorithm, IEEE Access, 8 (2020), 129689–129708. https://doi.org/10.1109/ACCESS.2020.3009113 doi: 10.1109/ACCESS.2020.3009113
    [30] B. Yan, G. Han, Effective feature extraction via stacked sparse autoencoder to improve intrusion detection system, IEEE Access, 6 (2018), 41238–41248. https://doi.org/10.1109/ACCESS.2018.2858277 doi: 10.1109/ACCESS.2018.2858277
    [31] Rice Seedling Dataset, Available from: https://github.com/aipal-chu/RiceSeedlingDataset.
  • This article has been cited by:

    1. Muhammad Aslam, Florentin Smarandache, Chi-square test for imprecise data in consistency table, 2023, 9, 2297-4687, 10.3389/fams.2023.1279638
    2. Adewale F. Lukman, Rasha A. Farghali, B. M. Golam Kibria, Okunlola A. Oluyemi, Robust-stein estimator for overcoming outliers and multicollinearity, 2023, 13, 2045-2322, 10.1038/s41598-023-36053-z
    3. Maciej Neugebauer, Cengiz Akdeniz, Vedat Demir, Hüseyin Yurdem, Fuzzy logic control for watering system, 2023, 13, 2045-2322, 10.1038/s41598-023-45203-2
    4. Muhammad Aslam, Neutrosophic Chi-Square Test for Analyzing Population Variances with Uncertain Data, 2025, 19, 1559-8608, 10.1007/s42519-025-00436-4
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1238) PDF downloads(51) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog