Research article

Pinning clustering component synchronization of nonlinearly coupled complex dynamical networks

  • Received: 25 December 2023 Revised: 07 February 2024 Accepted: 23 February 2024 Published: 06 March 2024
  • MSC : 34D06, 34H05, 93D05

  • In this paper, the clustering component synchronization of nonlinearly coupled complex dynamical networks with nonidentical nodes was investigated. By applying feedback injections to those nodes who have connections with other clusters, some criteria for achieving clustering component synchronization were obtained. A numerical simulation was also included to verify the correctness of the results obtained.

    Citation: Jie Liu, Jian-Ping Sun. Pinning clustering component synchronization of nonlinearly coupled complex dynamical networks[J]. AIMS Mathematics, 2024, 9(4): 9311-9328. doi: 10.3934/math.2024453

    Related Papers:

  • In this paper, the clustering component synchronization of nonlinearly coupled complex dynamical networks with nonidentical nodes was investigated. By applying feedback injections to those nodes who have connections with other clusters, some criteria for achieving clustering component synchronization were obtained. A numerical simulation was also included to verify the correctness of the results obtained.



    加载中


    [1] C. W. Wu, L. O. Chua, Synchronization in an array of linearly coupled dynamical systems, IEEE T. Circuits, 42 (1995), 430–447. https://doi.org/10.1109/81.404047 doi: 10.1109/81.404047
    [2] J. Wu, L. Jiao, Synchronization in complex delayed dynamical networks with nonsymmetric coupling, Phys. A, 386 (2007), 513–530. https://doi.org/10.1016/j.physa.2007.07.052 doi: 10.1016/j.physa.2007.07.052
    [3] X. Liu, T. Chen, Synchronization analysis for nonlinearly-coupled complex networks with an asymmetrical coupling matrix, Phys. A, 387 (2008), 4429–4439. https://doi.org/10.1016/j.physa.2008.03.005 doi: 10.1016/j.physa.2008.03.005
    [4] W. Yu, G. Chen, J. L$\ddot{\rm{u}}$, J. Kurths, Synchronization via pinning control on general complex networks, SIAM J. Control Optim., 51 (2013), 1395–1416. https://doi.org/10.1137/100781699 doi: 10.1137/100781699
    [5] H. Qiang, Z. Lin, X. Zou, C. Sun, W. Lu, Synchronizing non-identical time-varying delayed neural network systems via iterative learning control, Neurocomputing, 411 (2020), 406–415. https://doi.org/10.1016/j.neucom.2020.05.053 doi: 10.1016/j.neucom.2020.05.053
    [6] J. Zhang, X. Chen, J. Cao, J. Qiu, Partial synchronization in community networks based on the intra-community connections, AIMS Mathematics, 6 (2021), 6542–6554. https://doi.org/10.3934/math.2021385 doi: 10.3934/math.2021385
    [7] S. Li, X. M. Wang, H. Y. Qin, S. M. Zhong, Synchronization criteria for neutral-type quaternion-valued neural networks with mixed delays, AIMS Mathematics, 6 (2021), 8044–8063. https://doi.org/10.3934/math.2021467 doi: 10.3934/math.2021467
    [8] B. Liu, M. Zhao, Synchronization and fluctuation of a stochastic coupled systems with additive noise, AIMS Mathematics, 8 (2023), 9352–9364. https://doi.org/10.3934/math.2023470 doi: 10.3934/math.2023470
    [9] X. G. Guo, B. Q. Wang, J. L. Wang, Z. G. Wu, L. Guo, Adaptive event-triggered PIO-based anti-disturbance fault-tolerant control for MASs with process and sensor faults, IEEE T. Netw. Sci. Eng., 11 (2024), 77–88. http://doi.org/10.1109/TNSE.2023.3289794 doi: 10.1109/TNSE.2023.3289794
    [10] I. A. Korneev, V. V. Semenov, A. V. Slepnev, T. E. Vadivasova, Complete synchronization of chaos in systems with nonlinear inertial coupling, Chaos Soliton. Fract., 142 (2021), 110459. https://doi.org/10.1016/j.chaos.2020.110459 doi: 10.1016/j.chaos.2020.110459
    [11] X. L. Zhang, H. L. Li, Y. Yu, L. Zhang, H. Jiang, Quasi-projective and complete synchronization of discrete-time fractional-order delayed neural networks, Neural Networks, 164 (2023), 497–507. https://doi.org/10.1016/j.neunet.2023.05.005 doi: 10.1016/j.neunet.2023.05.005
    [12] A. Abdurahman, M. Abudusaimaiti, H. Jiang, Fixed/predefined-time lag synchronization of complex-valued BAM neural networks with stochastic perturbations, Appl. Math. Comput., 444 (2023), 127811. https://doi.org/10.1016/j.amc.2022.127811 doi: 10.1016/j.amc.2022.127811
    [13] Z. Lu, F. Wang, Y. Tian, Y. Li, Lag synchronization of complex-valued interval neural networks via distributed delayed impulsive control, AIMS Mathematics, 8 (2023), 5502–5521. https://doi.org/10.3934/math.2023277 doi: 10.3934/math.2023277
    [14] Z. Liu, Distributed adaptive cluster synchronization for linearly coupled nonidentical dynamical systems, IEEE T. Circuits-II, 69 (2022), 1193–1197. https://doi.org/10.1109/TCSII.2021.3096249 doi: 10.1109/TCSII.2021.3096249
    [15] Y. Xie, D. Tong, Q. Chen, W. Zhou, Cluster synchronization for stochastic coupled neural networks with nonidentical nodes via adaptive pinning control, Neural Process. Lett., 55 (2023), 6571–6593. https://doi.org/10.1007/s11063-023-11149-9 doi: 10.1007/s11063-023-11149-9
    [16] O. I. Moskalenko, A. A. Koronovskii, A. D. Plotnikova, Peculiarities of generalized synchronization in unidirectionally and mutually coupled time-delayed systems, Chaos Soliton. Fracta., 148 (2021), 111031. https://doi.org/10.1016/j.chaos.2021.111031 doi: 10.1016/j.chaos.2021.111031
    [17] L. Tong, J. Liang, Y. Liu, Generalized cluster synchronization of Boolean control networks with delays in both the states and the inputs, J. Franklin I., 359 (2022), 206–223. https://doi.org/10.1016/j.jfranklin.2021.04.018 doi: 10.1016/j.jfranklin.2021.04.018
    [18] L. Li, D. W. C. Ho, J. Cao, J. Lu, Pinning cluster synchronization in an array of coupled neural networks under event-based mechanism, Neural Networks, 76 (2016), 1–12. https://doi.org/10.1016/j.neunet.2015.12.008 doi: 10.1016/j.neunet.2015.12.008
    [19] Y. Kang, J. Qin, Q. Ma, H. Gao, W. X. Zheng, Cluster synchronization for interacting clusters of nonidentical nodes via intermittent pinning control, IEEE T. Neur. Net. Lear., 29 (2018), 1747–1759. https://doi.org/10.1109/TNNLS.2017.2669078 doi: 10.1109/TNNLS.2017.2669078
    [20] L. V. Gambuzza, M. Frasca, A criterion for stability of cluster synchronization in networks with external equitable partitions, Automatica, 100 (2019), 212–218. https://doi.org/10.1016/j.automatica.2018.11.026 doi: 10.1016/j.automatica.2018.11.026
    [21] F. Yang, H. Li, G. Chen, D. Xia, Q. Han, Cluster lag synchronization of delayed heterogeneous complex dynamical networks via intermittent pinning control, Neural Comput. Applic., 31 (2019), 7945–7961. https://doi.org/10.1007/s00521-018-3618-7 doi: 10.1007/s00521-018-3618-7
    [22] Z. Zhang, H. Wu, Cluster synchronization in finite/fixed time for semi-Markovian switching T-S fuzzy complex dynamical networks with discontinuous dynamic nodes, AIMS Mathematics, 7 (2022), 11942–11971. https://doi.org/10.3934/math.2022666 doi: 10.3934/math.2022666
    [23] Y. Li, J. Lu, A. S. Alofi, J. Lou, Impulsive cluster synchronization for complex dynamical networks with packet loss and parameters mismatch, Appl. Math. Model., 112 (2022), 215–223. https://doi.org/10.1016/j.apm.2022.07.022 doi: 10.1016/j.apm.2022.07.022
    [24] N. Jayanthi, R. Santhakumari, G. Rajchakit, N. Boonsatit, A. Jirawattanapanit, Cluster synchronization of coupled complex-valued neural networks with leakage and time-varying delays in finite-time, AIMS Mathematics, 8 (2023), 2018–2043. https://doi.org/10.3934/math.2023104 doi: 10.3934/math.2023104
    [25] J. Y. Li, Y. C. Huang, H. X. Rao, Y. Xu, R. Lu, Finite-time cluster synchronization for complex dynamical networks under FDI attack: A periodic control approach, Neural Networks, 165 (2023), 228–237. https://doi.org/10.1016/j.neunet.2023.04.013 doi: 10.1016/j.neunet.2023.04.013
    [26] M. Hou, D. Liu, L. Fu, Y. Ma, Finite-time quantized dynamic event-triggered control for cluster synchronization of Markovian jump complex dynamic networks with time-varying delays and actuator faults, Commun. Nonlinear Sci., 123 (2023), 107298. https://doi.org/10.1016/j.cnsns.2023.107298 doi: 10.1016/j.cnsns.2023.107298
    [27] X. F. Wang, G. Chen, Pinning control of scale-free dynamical networks, Phys. A, 310 (2002), 521–531. https://doi.org/10.1016/S0378-4371(02)00772-0 doi: 10.1016/S0378-4371(02)00772-0
    [28] T. Chen, X. Liu, W. Lu, Pinning complex networks by a single controller, IEEE T. Circuits-I, 54 (2007), 1317–1326. https://doi.org/10.1109/TCSI.2007.895383 doi: 10.1109/TCSI.2007.895383
    [29] K. Wang, X. Fu, K. Li, Cluster synchronization in community networks with nonidentical nodes, Chaos, 19 (2009), 023106. https://doi.org/10.1063/1.3125714 doi: 10.1063/1.3125714
    [30] W. Wu, W. Zhou, T. Chen, Cluster synchronization of linearly coupled complex networks under pinning control, IEEE T. Circuits-I, 56 (2009), 829–839. https://doi.org/10.1109/TCSI.2008.2003373 doi: 10.1109/TCSI.2008.2003373
    [31] J. Feng, J. Wang, C. Xu, F. Austin, Cluster synchronization of nonlinearly coupled complex networks via pinning control, Discrete Dyn. Nat. Soc., 2011 (2011), 262349. https://doi.org/10.1155/2011/262349 doi: 10.1155/2011/262349
    [32] X. Liu, T. Chen, Finite-time and fixed-time cluster synchronization with or without pinning control, IEEE T. Cybernetics, 48 (2018), 240–252. https://doi.org/10.1109/TCYB.2016.2630703 doi: 10.1109/TCYB.2016.2630703
    [33] H. Fan, K. Shi, Y. Zhao, Pinning impulsive cluster synchronization of uncertain complex dynamical networks with multiple time-varying delays and impulsive effects, Phys. A, 587 (2022), 126534. https://doi.org/10.1016/j.physa.2021.126534 doi: 10.1016/j.physa.2021.126534
    [34] B. Lu, H. Jiang, C. Hu, A. Abdurahman, M. Liu, Adaptive pinning cluster synchronization of a stochastic reaction-diffusion complex network, Neural Networks, 166 (2023), 524–540. https://doi.org/10.1016/j.neunet.2023.07.034 doi: 10.1016/j.neunet.2023.07.034
    [35] X. Zhu, Z. Tang, J. Feng, D. Ding, Aperiodically intermittent pinning cluster synchronization of complex networks with hybrid delays: A region-division event-triggered protocol, J. Franklin I., 360 (2023), 11094–11113. https://doi.org/10.1016/j.jfranklin.2023.08.031 doi: 10.1016/j.jfranklin.2023.08.031
    [36] C. Yi, R. Guo, J. Cai, X. Yan, Pinning synchronization of dynamical neural networks with hybrid delays via event-triggered impulsive control, AIMS Mathematics, 8 (2023), 25060–25078. https://doi.org/10.3934/math.20231279 doi: 10.3934/math.20231279
    [37] X. G. Guo, P. M. Liu, Z. G. Wu, D. Zhang, C. K. Ahn, Hybrid event-triggered group consensus control for heterogeneous multiagent systems with TVNUD faults and stochastic FDI attacks, IEEE T. Automat. Contr., 68 (2023), 8013–8020. http://doi.org/10.1109/TAC.2023.3254368 doi: 10.1109/TAC.2023.3254368
    [38] Q. Cui, C. Xu, W. Ou, Y. Pang, Z. Liu, P. Li, et al., Bifurcation behavior and hybrid controller design of a 2D Lotka-Volterra commensal symbiosis system accompanying delay, Mathematics, 11 (2023), 4808. http://doi.org/10.3390/math11234808 doi: 10.3390/math11234808
    [39] C. Xu, Z. Liu, P. Li, J. Yan, L. Yao, Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks, Neural Process. Lett., 55 (2023), 6125–6151. https://doi.org/10.1007/s11063-022-11130-y doi: 10.1007/s11063-022-11130-y
    [40] C. Xu, Q. Cui, Z. Liu, Y. Pan, X. Cui, W. Ou, et al., Extended hybrid controller design of bifurcation in a delayed chemostat model, MATCH-Commun. Math. Co., 90 (2023), 609–648. http://doi.org/10.46793/match.90-3.609X doi: 10.46793/match.90-3.609X
    [41] P. Li, Y. Lu, C. Xu, J. Ren, Insight into Hopf bifurcation and control methods in fractional order BAM neural networks incorporating symmetric structure and delay, Cogn. Comput., 15 (2023), 1825–1867. http://doi.org/10.1007/s12559-023-10155-2 doi: 10.1007/s12559-023-10155-2
    [42] Y. Zhang, P. Li, C. Xu, X. Peng, R. Qiao, Investigating the effects of a fractional operator on the evolution of the ENSO model: bifurcations, stability and numerical analysis, Fractal Fract., 7 (2023), 602. http://doi.org/10.3390/fractalfract7080602 doi: 10.3390/fractalfract7080602
    [43] C. Xu, Y. Zhao, J. Lin, Y. Pang, Z. Liu, J. Shen, et al., Mathematical exploration on control of bifurcation for a plankton-oxygen dynamical model owning delay, J. Math. Chem., 2023 (2023), 1–31. http://doi.org/10.1007/s10910-023-01543-y doi: 10.1007/s10910-023-01543-y
    [44] C. Xu, W. Ou, Y. Pang, Q. Cui, M. U. Rahman, M. Farman, et al., Hopf bifurcation control of a fractional-order delayed turbidostat model via a novel extended hybrid controller, MATCH-Commun. Math. Co., 91 (2024), 367–413. http://doi.org/10.46793/match.91-2.367X doi: 10.46793/match.91-2.367X
    [45] W. Ou, C. Xu, Q. Cui, Y. Pang, Z. Liu, J. Shen, et al., Hopf bifurcation exploration and control technique in a predator-prey system incorporating delay, AIMS Mathematics, 9 (2024), 1622–1651. http://doi.org/10.3934/math.2024080 doi: 10.3934/math.2024080
    [46] C. Xu, Y. Pang, Z. Liu, J. Shen, M. Liao, P. Li, Insights into COVID-19 stochastic modelling with effects of various transmission rates: simulations with real statistical data from UK, Australia, Spain, and India, Phys. Scr., 99 (2024), 025218. http://doi.org/10.1088/1402-4896/ad186c doi: 10.1088/1402-4896/ad186c
    [47] F. Li, Z. Ma, Q. Duan, Partial component synchronization on chaotic networks, Phys. A, 515 (2019), 707–714. https://doi.org/10.1016/j.physa.2018.10.008 doi: 10.1016/j.physa.2018.10.008
    [48] F. Li, Z. Ma, Q. Duan, Clustering component synchronization in a class of unconnected networks via pinning control, Phys. A, 525 (2019), 394–401. https://doi.org/10.1016/j.physa.2019.03.080 doi: 10.1016/j.physa.2019.03.080
    [49] X. X. Liao, Mathematical theory of stability and its application, Wuhan: Central China Normal University Press, 2001.
    [50] Z. Wang, H. Shu, Y. Liu, D. W. C. Ho, X. Liu, Robust stability analysis of generalized neural networks with discrete and distributed time delays, Chaos Soliton. Fract., 30 (2006), 886–896. https://doi.org/10.1016/j.chaos.2005.08.166 doi: 10.1016/j.chaos.2005.08.166
    [51] M. Hui, X. Liu, S. Zhu, J. Cao, Event-triggered impulsive cluster synchronization of coupled reactiondiffusion neural networks and its application to image encryption, Neural Networks, 170 (2024), 46–54. http://doi.org/10.1016/j.neunet.2023.11.022 doi: 10.1016/j.neunet.2023.11.022
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(798) PDF downloads(55) Cited by(0)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog