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1. Introduction

Synchronization, similarly consensus, as a typical collective behavior in complex networks and
systems, has been extensively studied in the past decades due to its potential applications in various
fields, such as neural networks, biology, and secure communication and information processing [1–9].
Many kinds of synchronization, including complete synchronization [10, 11], lag synchronization [12,
13], cluster synchronization [14,15], generalized synchronization [16,17], etc., have been investigated.
Among them, cluster synchronization, as a particular synchronization phenomenon, requires that
synchronization occurs in each cluster, but there is no synchronization among the different clusters.
Cluster synchronization has attracted increasing attention recently since it is considered to be more
significant in biological science and communication engineering [18–26]. For example, in 2016, under
the event-based mechanism, Li et al. [18] proposed a new event-triggered sampled-data transmission
strategy, where only local and event-triggering states were utilized to update the broadcasting state of
each agent, to realize cluster synchronization of the coupled neural networks. In 2019, Yang et al. [21]
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investigated the cluster lag synchronization of the delayed heterogeneous complex dynamical networks
that involved both the transmission delay in communication channels and the time-varying delays in
self-dynamics simultaneously. In 2022, Li et al. [23] studied the cluster synchronization for a class of
complex dynamical networks with parameters mismatched to the selected cluster pattern and proposed
an impulsive control strategy with multiple control gains.

Generally speaking, synchronous trajectories are closely related to the topological structure of the
network and the self-dynamics of the isolated node, as well as the strength of the couplings among
the nodes. Therefore, it is almost impossible for a complex network to synchronize to the trajectory
that we desired. In this case, some controllers should be designed and applied to tame the network to
approach the synchronization trajectory that we desired. Pinning control, as a feasible and effective
strategy, has been proposed and widely studied; see [27–37]. For instance, in [28], without assuming
symmetry, irreducibility, or linearity of the couplings, Chen et al. proved that a single controller can
pin a coupled complex network to a homogenous solution. In [29], Wang et al. considered the cluster
synchronization of some dynamical networks with community structure and nonidentical nodes and
with identical local dynamics for all individual nodes in each community by using feedback control
schemes. In 2018, Liu and Chen [32] studied the finite-time and fixed-time cluster synchronization
problem for complex networks, designed some simple distributed protocols with or without pinning
control, and proved the effectiveness. For relevant works, one can refer to [38–46].

The aforementioned synchronization refers to the convergence on all components of a node’s state
variables. However, in some cases, we only need to focus on the convergence on some components
(rather than all components) of a node’s state variables. In [47] and [48], Li et al. gave the definitions
of partial component synchronization and clustering component synchronization, and obtained some
sufficient conditions on partial component synchronization and clustering component synchronization
for a class of chaotic dynamical networks, respectively.

It is necessary to point out that most of the existing works focus on linearly coupled networks, that is
to say, the inner coupling is linear. However, in some networks, such as neural and metabolic networks,
the coupling configurations are oscillate continuously between two fixed states, which means that the
inner coupling is nonlinear. At the same time, the individual nodes exhibit different dynamic behaviors
according to their functions. This means that these networks are formed by nonidentical nodes. In
this paper, we investigate the clustering component synchronization of nonlinearly coupled complex
dynamical networks with nonidentical nodes. By applying controllers to those selected nodes and
making mild assumptions, we obtain some sufficient conditions for achieving clustering component
synchronization. The novelty of this paper is that the synchronization discussed in this paper refers
to the synchronization of any k specified components of a node’s state variables of the network rather
than all or the first k components. The difficulty of the exploration method is how to construct an
effective Lyapunov function to investigate the synchronization behavior of any k specified components
of a node’s state variables of the network. Compared with the previous works, the advantage of
the proposed research method is that it can solve the synchronization problem where the specified
components of the node’s state variables are synchronized while the rest of the components of the
node’s state variables may not be synchronized. The main contributions of this paper are listed as
follows:

(i) The complex dynamical network discussed in this paper is formed by nonidentical nodes and
the inner coupling of the network is nonlinear, which is more realistic since the individual nodes often
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tend to exhibit various dynamics due to the influence of their functions or other factors, such as external
perturbation, and the observed data is usually a nonlinear function of the state variable rather than itself.

(ii) In this paper, the clustering component synchronization of the complex dynamical network is
studied, which not only has certain practical significance, but also has the characteristics of less control
difficulty and lower control cost. Compared with [48], the clustering component synchronization
discussed in this paper is the synchronization of any k specified components of a node’s state variables
instead of the first k components.

The rest of this paper is organized as follows: In Section 2, we recall some notations, definitions,
and lemmas. Our main results are established in Section 3. In Section 4, a numerical simulation is
provided to verify the correctness of our theoretical results. The paper is concluded in Section 5.

2. Preliminaries

Throughout this paper, we use the following notations:
Rn denotes the n-dimensional Euclidean space and ∥ · ∥ stands for its Euclidean norm;
Rn×n denotes the set of all n × n real matrices;
In denotes the n × n identity matrix;
diag(d1, d2, · · · , dn) denotes the diagonal matrix whose diagonal entries are d1 to dn;
the superscript “T” stands for the transpose of a matrix;
for symmetric matrix P, P < 0 means that P is negative definite; λmax(P) denotes the maximum
eigenvalue of P;
the symbol ⊗ denotes the Kronecker product.

Consider the s-dimensional nonautonomous system

ẋ = f (t, x), t ∈ R+ = [0,+∞), (2.1)

where x = (yT , zT )T , y = (x1, · · · , xl)T and z = (xl+1, · · · , xs)T , and f ∈ C[R+ × Rs,Rs] and f (t, 0) ≡ 0
for t ∈ R+.

Assume that the existence and uniqueness of solutions to the system (2.1) subject to x(t0) = x0, as
well as their dependence on initial values, are guaranteed.

Definition 2.1. ( [48,49]) The trivial solution of the system (2.1) is said to be stable with respect to the
variable y if ∀ ε > 0, ∀ t0 ∈ R+, ∃ δ(ε, t0) > 0, ∀ x0 ∈ S δ ≜ {x : ∥x∥ ≤ δ }, such that

∥y(t, t0, x0)∥ < ε

for t ≥ t0.

Definition 2.2. ( [48,49]) The trivial solution of the system (2.1) is said to be attractive with respect to
the variable y if ∀ t0 ∈ R+, ∃ δ(t0) > 0, ∀ x0 ∈ S δ = {x : ∥x∥ ≤ δ}, ∀ ε > 0, ∃ T (ε, t0, x0) > 0, such that

∥y(t, t0, x0)∥ < ε

for t ≥ t0 + T . Furthermore, S δ is called the region of attraction with respect to the variable y.
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Definition 2.3. ( [48, 49]) The trivial solution of the system (2.1) is said to be asymptotically stable
with respect to the variable y if it is both stable and attractive with respect to the variable y.

Definition 2.4. ( [49]) A function ψ is said to belong to the K class function, denoted by ψ ∈ K, if
ψ : R+ → R+ is continuous and strictly monotone increasing and ψ(0) = 0.

Definition 2.5. ( [50]) Let h : R → R be a function. If there exist constants β ≥ α > 0 such that for
any ν1, ν2 ∈ R with ν1 , ν2, the inequality

α ≤
h(ν1) − h(ν2)
ν1 − ν2

≤ β

holds, then h is said to belong to UNI(α, β), denoted by h ∈ UNI(α, β).

Lemma 2.1. ( [48, 49]) Let ϕ, ψ, α ∈ K. If there is a Lyapunov function V : R+ × Rs → R+ with
V(t, 0) = 0 for t ∈ R+, such that

ϕ(∥y∥) ≤ V(t, x) ≤ ψ(∥y∥) for (t, x) ∈ (R+,Rs), (2.2)

and its derivative along the trajectories of (2.1) meets

dV
dt

∣∣∣∣∣
(2.1)
≤ −α(∥y(t)∥), t ∈ R+, (2.3)

then the trivial solution of the system (2.1) is asymptotically stable with respect to the variable y.

Lemma 2.2. Let B = (bi j) ∈ Rm×m and C = (ci j) ∈ Rn×n, then for any permutation µ1, µ2, · · · , µn of
1, 2, · · · , n, there exist orthogonal matrices P ∈ Rmn×mn and Q ∈ Rn×n, such that the equality

P(B ⊗C)PT = (QCQT ) ⊗ B (2.4)

holds.

Proof. For any permutation µ1, µ2, · · · , µn of 1, 2, · · · , n, we define

P = (ξT
µ1
, ξT

n+µ1
, · · · , ξT

(m−1)n+µ1
, ξT

µ2
, ξT

n+µ2
, · · · , ξT

(m−1)n+µ2
, · · · , ξT

µn
, ξT

n+µn
, · · · , ξT

(m−1)n+µn
)T ,

and
Q = (ϵT

µ1
, ϵT
µ2
, · · · , ϵT

µn
)T ,

where ξk (k = 1, 2, · · · ,mn) is an mn-dimensional row vector whose kth element is 1 and all the other
elements are 0, while ϵl (l = 1, 2, · · · , n) is an n-dimensional row vector whose lth element is 1 and
all the other elements are 0. It is obvious that P and Q are orthogonal matrices, and (2.4) is true after
direct calculation. □

Lemma 2.3. ( [2]) For any x, y ∈ Rn and positive definite matrix Q ∈ Rn×n,

xT y ≤
1
2

xT Qx +
1
2

yT Q−1y.
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3. Main results

Consider a complex network consisting of m nonidentical nodes, which can be divided into r (2 ≤
r < m) disjoint nonempty clusters due to a nodes’ behavior or other properties. Without loss of
generality, let the partition be {U1,U2, · · · ,Ur}, where

U1 = {1, 2, · · · , q1}, U2 = {q1 + 1, q1 + 2, · · · , q2}, · · · ,Ur = {qr−1 + 1, qr−1 + 2, · · · ,m}. (3.1)

Thus, the network can be described as

ẋi(t) = fφi

(
xi(t)
)
+ c

m∑
j=1, j,i

ai j

(
g
(
x j(t)
)
− g
(
xi(t)
))
, t ∈ R+, i = 1, 2, · · · ,m, (3.2)

where xi(t) =
(
xi1(t), xi2(t), · · · , xin(t)

)T
∈ Rn is the state variable of the node i at time t; fφi : Rn → Rn

is a nonlinear function that describes the local dynamic of the nodes in the φith cluster and fφi , fφ j

for φi , φ j, where φi is defined as follows: If i ∈ Ul, then φi = l; c > 0 denotes the coupling strength;
g : Rn → Rn is the nonlinear coupling function, which is defined by g(v) =

(
g1(v1), g2(v2), · · · , gn(vn)

)T
for v = (v1, v2, · · · , vn)T ∈ Rn; and ai j is defined as follows: If there is a connection between node i and

node j (i , j), then ai j = a ji = 1; otherwise, ai j = a ji = 0. Let aii = −
m∑

j=1, j,i
ai j, then A := (ai j) ∈ Rm×m

is called the coupling configuration matrix, which represents the topological structure of the network,
and (3.2) can be rewritten as

ẋi(t) = fφi

(
xi(t)
)
+ c

m∑
j=1

ai jg
(
x j(t)
)
, t ∈ R+, i = 1, 2, · · · ,m. (3.3)

In what follows, we consider the pinning controlled network

ẋi(t) = fφi

(
xi(t)
)
+ c

m∑
j=1

ai jg
(
x j(t)
)
+ ui(t), t ∈ R+, i = 1, 2, · · · ,m, (3.4)

where ui(t) is the controller to be designed.
Select any k (1 ≤ k ≤ n) components of a node’s state variables as the components, which

are required to be synchronized. Denote these k components as p1, p2, · · · , pk and the remaining
components as pk+1, pk+2, · · · , pn. Let ei(t) = xi(t) − sφi(t), where sφi(t) is a solution of an isolated
node in the φith cluster, i.e., ṡφi(t) = fφi

(
sφi(t)
)
, t ∈ R+, i = 1, 2, · · · ,m. Define

êpl(t) =
(
e1 pl(t), e2 pl(t), · · · , em pl(t)

)T
, t ∈ R+, l = 1, 2, · · · , n.

First, we give the definition of clustering component synchronization of the pinning controlled
network (3.4) with respect to the specified components p1, p2, · · · , pk.

Definition 3.1. If lim
t→+∞

k∑
l=1
∥êpl(t)∥ = 0, then the pinning controlled network (3.4) is said to achieve

clustering component synchronization with respect to the specified components p1, p2, · · · , pk .
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In order to make the pinning controlled network (3.4) realize clustering component synchronization
with respect to the specified components p1, p2, · · · , pk, we design the pinning controller

ui(t) = −cdi

(
g
(
xi(t)
)
− g
(
sφi(t)
))
− c

m∑
j=1

ai jg
(
sφ j(t)

)
, t ∈ R+, i ∈ Ũφi , (3.5)

where di > 0 is the feedback control gain and Ũφi denotes the set of all nodes in the φith cluster, which
has connections with other clusters. Since A is a zero-row-sum matrix, we have

m∑
j=1

ai jg
(
sφ j(t)

)
= 0, t ∈ R+, i ∈ Uφi \ Ũφi .

So, if we let di = 0 for i ∈ Uφi \ Ũφi , then (3.5) can be rewritten as

ui(t) = −cdi

(
g
(
xi(t)
)
− g
(
sφi(t)
))
− c

m∑
j=1

ai jg
(
sφ j(t)

)
, t ∈ R+, i = 1, 2, · · · ,m. (3.6)

Now, we list the following assumptions that will be used later.
(A1) There exists a constant ω > 0 such that for any η, ζ ∈ Rn, the inequality

(η − ζ)T M
(
fφi(η) − fφi(ζ)

)
≤ ω(η − ζ)T M(η − ζ), i = 1, 2, · · · ,m

holds, where M = diag(γ1, γ2, · · · , γn). Here, we have

γ j =

{
1, j ∈ {p1, p2, · · · , pk},

0, otherwise;

(A2) For j ∈ {p1, p2, · · · , pk}, there exist constants β j ≥ α j > 0 such that g j ∈ UNI(α j, β j);
(A3) A is irreducible.

Theorem 3.1. Suppose that (A1), (A2), and (A3) hold. If the following conditions are satisfied:

ωIm +
c
8
(
4(αpl + βpl)A + 4A2 + (βpl − αpl)

2Im − 8αpl D
)
< 0, l = 1, 2, · · · , k,

where D = diag(d1, d2, · · · , dn), then the pinning controlled network (3.4) achieves clustering
component synchronization with respect to the specified components p1, p2, · · · , pk.

Proof. Consider the error dynamic network corresponding to the pinning controlled network (3.4):

ėi(t) = fφi

(
xi(t)
)
− fφi

(
sφi(t)
)
+ c

m∑
j=1

ai j

(
g
(
x j(t)
)
− g
(
sφ j(t)

))
− cdi

(
g
(
xi(t)
)
− g
(
sφi(t)
))
,

t ∈ R+, i = 1, 2, · · · ,m. (3.7)

Denote e(t) =
(
eT

1 (t), eT
2 (t), · · · , eT

m(t)
)T , then (3.7) can be rewritten in the compact form by using the

Kronecker product

ė(t) = f̃
(
x1(t), · · · , xm(t)

)
− f̃
(
sφ1(t), · · · , sφm(t)

)
AIMS Mathematics Volume 9, Issue 4, 9311–9328.
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+ c
(
(A − D) ⊗ In

)(̃
g
(
x1(t), · · · , xm(t)

)
− g̃
(
sφ1(t), · · · , sφm(t)

))
, t ∈ R+, (3.8)

where f̃ and g̃ are defined by

f̃ (ϑ1, · · · , ϑm) =
(
fφ1 1(ϑ1), · · · , fφ1 n(ϑ1), · · · , fφm 1(ϑm), · · · , fφm n(ϑm)

)T
,

and
g̃(ϑ1, · · · , ϑm) =

(
g1(ϑ11), · · · , gn(ϑ1n), · · · , g1(ϑm1), · · · , gn(ϑmn)

)T
for ϑi = (ϑi1, · · · , ϑin)T ∈ Rn, i = 1, 2, · · · ,m, respectively.

Let ê(t) =
(
êT

p1
(t), êT

p2
(t), · · · , êT

pn
(t)
)T , t ∈ R+. If we define

P = (ξT
p1
, ξT

n+p1
, · · · , ξT

(m−1)n+p1
, ξT

p2
, ξT

n+p2
, · · · , ξT

(m−1)n+p2
, · · · , ξT

pn
, ξT

n+pn
, · · · , ξT

(m−1)n+pn
)T ,

where ξ j ( j = 1, 2, · · · ,mn) is the same as in Lemma 2.2, then ê(t) = Pe(t), which, together with (3.8),
implies that

˙̂e(t) = f̂
(
x1(t), · · · , xm(t)

)
− f̂
(
sφ1(t), · · · , sφm(t)

)
+ c
(
In ⊗ (A − D)

)(
ĝ
(
x1(t), · · · , xm(t)

)
− ĝ
(
sφ1(t), · · · , sφm(t)

))
, t ∈ R+, (3.9)

where f̂ and ĝ are defined by

f̂ (ϑ1, · · · , ϑm) =
(
f̂ T
p1

(ϑ1, · · · , ϑm), · · · , f̂ T
pn

(ϑ1, · · · , ϑm)
)T
,

and
ĝ(ϑ1, · · · , ϑm) =

(
ĝT

p1
(ϑ1, · · · , ϑm), · · · , ĝT

pn
(ϑ1, · · · , ϑm)

)T
for ϑi = (ϑi1, · · · , ϑin)T ∈ Rn, i = 1, 2, · · · ,m, respectively. Here,

f̂pl(ϑ1, · · · , ϑm) =
(
fφ1 pl

(ϑ1), · · · , fφm pl
(ϑm)
)T
,

and
ĝpl(ϑ1, · · · , ϑm) =

(
gpl(ϑ1 pl), · · · , gpl(ϑm pl)

)T
.

Now, we construct the Lyapunov function

V(t, x) =
1
2

xT (Λ ⊗ Im)x for (t, x) ∈ R+ × Rmn,

where x = (yT , zT )T . Here, y = (x1, · · · , xmk)T and z = (xmk+1, · · · , xmn)T , Λ = diag(1, · · · , 1︸   ︷︷   ︸
k

, 0, · · · , 0︸   ︷︷   ︸
n−k

).

First, if we let ϕ(u) = 1
6u2 and ψ(u) = u2 for u ∈ R+, then it is obvious that ϕ, ψ ∈ K. Moreover,

since V(t, x) = 1
2 xT (Λ ⊗ Im)x = 1

2

mk∑
i=1

x2
i =

1
2yT y = 1

2∥y∥
2, we know that V : R+ × Rmn → R+, V(t, 0) = 0,

t ∈ R+, and (2.2) of Lemma 2.1 is satisfied.
Differentiating V(t, x) along the trajectories of the error dynamic network (3.9), we have

dV
dt

∣∣∣∣∣
(3.9)
=êT (t)(Λ ⊗ Im)˙̂e(t)
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=êT (t)(Λ ⊗ Im)
(

f̂
(
x1(t), · · · , xm(t)

)
− f̂
(
sφ1(t), · · · , sφm(t)

)
+ c
(
In ⊗ (A − D)

)(
ĝ
(
x1(t), · · · , xm(t)

)
− ĝ
(
sφ1(t), · · · , sφm(t)

)))
=V1(t) + V2(t) + V3(t), t ∈ R+, (3.10)

where
V1(t) = êT (t)(Λ ⊗ Im)

(
f̂
(
x1(t), · · · , xm(t)

)
− f̂
(
sφ1(t), · · · , sφm(t)

))
, t ∈ R+,

V2(t) = cêT (t)(Λ ⊗ A)
(
ĝ
(
x1(t), · · · , xm(t)

)
− ĝ
(
sφ1(t), · · · , sφm(t)

))
, t ∈ R+,

and
V3(t) = −cêT (t)(Λ ⊗ D)

(
ĝ
(
x1(t), · · · , xm(t)

)
− ĝ
(
sφ1(t), · · · , sφm(t)

))
, t ∈ R+.

By (A1), we get

V1(t) =êT (t)(Λ ⊗ Im)
(

f̂
(
x1(t), · · · , xm(t)

)
− f̂
(
sφ1(t), · · · , sφm(t)

))
=

k∑
l=1

êT
pl

(t)
(

f̂pl

(
x1(t), · · · , xm(t)

)
− f̂pl

(
sφ1(t), · · · , sφm(t)

))
=

m∑
i=1

eT
i (t)M

(
fφi

(
xi(t)
)
− fφi

(
sφi(t)
))

≤ω

m∑
i=1

eT
i (t)Mei(t)

=

k∑
l=1

êT
pl

(t)(ωIm)êpl(t), t ∈ R+. (3.11)

In view of Lemma 2.3 and (A2), we have

k∑
l=1

êT
pl

(t)A
(
ĝpl

(
x1(t), · · · , xm(t)

)
− ĝpl

(
sφ1(t), · · · , sφm(t)

)
−
αpl + βpl

2
êpl(t)

)
≤

1
2

k∑
l=1

êT
pl

(t)AAT êpl(t) +
1
2

k∑
l=1

(
ĝpl

(
x1(t), · · · , xm(t)

)
− ĝpl

(
sφ1(t), · · · , sφm(t)

)
−
αpl + βpl

2
êpl(t)

)T
(
ĝpl

(
x1(t), · · · , xm(t)

)
− ĝpl

(
sφ1(t), · · · , sφm(t)

)
−
αpl + βpl

2
êpl(t)

)
≤

k∑
l=1

êT
pl

(t)(
1
2

A2)êpl(t) +
k∑

l=1

êT
pl

(t)
( (βpl − αpl)

2

8
Im
)
êpl(t), t ∈ R+,

and so,

V2(t) =cêT (t)(Λ ⊗ A)
(
ĝ
(
x1(t), · · · , xm(t)

)
− ĝ
(
sφ1(t), · · · , sφm(t)

))
=c

k∑
l=1

êT
pl

(t)A
(
ĝpl

(
x1(t), · · · , xm(t)

)
− ĝpl

(
sφ1(t), · · · , sφm(t)

))
AIMS Mathematics Volume 9, Issue 4, 9311–9328.
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=

k∑
l=1

êT
pl

(t)
(c(αpl + βpl)

2
A
)
êpl(t)

+ c
k∑

l=1

êT
pl

(t)A
(
ĝpl

(
x1(t), · · · , xm(t)

)
− ĝpl

(
sφ1(t), · · · , sφm(t)

)
−
αpl + βpl

2
êpl(t)

)
≤

k∑
l=1

êT
pl

(t)
(c(αpl + βpl)

2
A +

c
2

A2 +
c(βpl − αpl)

2

8
Im
)
êpl(t), t ∈ R+. (3.12)

By (A2), we know

V3(t) = − cêT (t)(Λ ⊗ D)
(
ĝ
(
x1(t), · · · , xm(t)

)
− ĝ
(
sφ1(t), · · · , sφm(t)

))
= − c

k∑
l=1

êT
pl

(t)D
(
ĝpl

(
x1(t), · · · , xm(t)

)
− ĝpl

(
sφ1(t), · · · , sφm(t)

))
= − c

k∑
l=1

m∑
i=1

ei pl(t)di

(
gpl

(
xi pl(t)

)
− gpl

(
sφi pl

(t)
))

≤

k∑
l=1

êT
pl

(t)(−cαpl D)êpl(t), t ∈ R+. (3.13)

Substituting inequalities (3.11), (3.12), and (3.13) into (3.10), we obtain

dV
dt

∣∣∣∣∣
(3.9)
≤

k∑
l=1

êT
pl

(t)
(
ωIm +

c
8
(
4(αpl + βpl)A + 4A2 + (βpl − αpl)

2Im − 8αpl D
))

êpl(t), t ∈ R+,

which, together with the fact

ωIm +
c
8
(
4(αpl + βpl)A + 4A2 + (βpl − αpl)

2Im − 8αpl D
)
< 0, l = 1, 2, · · · , k

implies that

dV
dt

∣∣∣∣∣
(3.9)
≤

k∑
l=1

λmax

(
ωIm +

c
8
(
4(αpl + βpl)A + 4A2 + (βpl − αpl)

2Im − 8αpl D
))

êT
pl

(t)êpl(t)

≤ −h
k∑

l=1

êT
pl

(t)êpl(t), t ∈ R+,

where
h = −max

1≤l≤k

{
λmax

(
ωIm +

c
8
(
4(αpl + βpl)A + 4A2 + (βpl − αpl)

2Im − 8αpl D
))}

.

Thus, if we choose α(u) = hu2 for u ∈ R+, then it is obvious that α ∈ K, and (2.3) of Lemma 2.1
is satisfied. So, it follows from Lemma 2.1 that the trivial solution of the error dynamic network (3.9)

is asymptotically stable with respect to the variable y, so lim
t→+∞

k∑
l=1
∥êpl(t)∥ = 0, which shows that the

pinning controlled network (3.4) achieves clustering component synchronization with respect to the
specified components p1, p2, · · · , pk. □
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Remark 3.1. In [37], Guo et al. proposed a novel hybrid event-triggered method to realize the group
consensus of heterogeneous second-order multi-agent systems with time-varying unknown nonidentical
direction faults and stochastic false data injection attacks. By pinning the nodes who can receive state
information from other groups, the multi-agent system achieves group consensus, providing it meets
the conditions of Theorem 2. Compared with [37], the synchronization investigated in this paper is on
any k specified components of a node’s state variables, while the consensus realized in [37] is on all
components of the multi-agent. Additionally, many scholars employed adaptive pinning control [15],
adaptive control [24], periodic secure control [25], aperiodically intermittent pinning control [35],
event-triggered impulsive control [36, 51], and so on to realize the cluster synchronization of complex
dynamical networks. These synchronizations achieved are also on all components.

To make Theorem 3.1 more applicable, we give the following corollaries.

Corollary 3.2. Suppose that (A1), (A2), and (A3) hold. If the following conditions are fulfilled:

ω +
c
8

(βpl − αpl)
2 +

c
2
λmax
(
(αpl + βpl)A + A2 − 2αpl D

)
< 0, l = 1, 2, · · · , k, (3.14)

then the pinning controlled network (3.4) achieves clustering component synchronization with respect
to the specified components p1, p2, · · · , pk.

Corollary 3.3. Suppose that (A1), (A2), and (A3) hold. If the coupling strength is fulfilled:

c > −
8ω

max
1≤l≤k

{
(βpl − αpl)2 + 4λmax

(
(αpl + βpl)A + A2 − 2αpl D

)} > 0,

then the pinning controlled network (3.4) achieves clustering component synchronization with respect
to the specified components p1, p2, · · · , pk.

4. Numerical simulation

In this section, a numerical simulation is given to illustrate the effectiveness of the results obtained
in Section 3.

Example 4.1. Consider a nonlinearly coupled complex network consisting of 6 nonidentical nodes.
Suppose that these nodes are divided into 3 clusters: U1 = {1, 2}, U2 = {3, 4, 5}, and U3 = {6}, and the
topology structure is shown in Figure 1.
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Figure 1. The network with three clusters.

Obviously, the coupling configuration matrix is

A =



−1 1 0 0 0 0
1 −2 1 0 0 0
0 1 −3 1 1 0
0 0 1 −1 0 0
0 0 1 0 −2 1
0 0 0 0 1 −1


.

Suppose that the network can be described as

ẋi(t) = fφi

(
xi(t)
)
+ 10

6∑
j=1

ai jg
(
x j(t)
)
, t ∈ R+, i = 1, 2, · · · , 6,

where xi(t) =
(
xi1(t), xi2(t), xi3(t)

)T ; fφi and g are defined by

f1(v) = (0.3v2
1 − v3

1 − sin v2 − v3, 1.3v2
1 − v2, 0.11v1 − 0.1v3 + 0.02)T ,

f2(v) = (0.1v2
1 − v3

1 − tanh v2 − v3, 2v2 + 3, 0.15v1 − 0.1v3 + 0.01)T ,

f3(v) =
(
10 tanh v2 − 3.2v1 + 2.95(|v1 + 1| − |v1 − 1|),−v1 + v2 − v3,−14.87 sin v2

)T
,

and
g(v) = (4v1 + sin v1, 0.1v2 + tanh v2, 4v3 + sin v3)T

for v = (v1, v2, v3)T , respectively.
Let si(t) (i = 1, 2, 3) be the solutions of ṡi(t) = fi

(
si(t)
)
, satisfying initial conditions s1(0) = (1, 1, 1)T ,

s2(0) = (0.1, 0.1, 0.1)T , and s3(0) = (−1, 1, 1)T , respectively. Now, we investigate the pinning
controlled network

ẋi(t) = fφi

(
xi(t)
)
+ 10

6∑
j=1

ai jg
(
x j(t)
)
+ ui(t), t ∈ R+, i = 1, 2, · · · , 6, (4.1)

where ui(t) is defined by (3.6) with D = diag(0, 10, 18, 0, 6, 2).
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Let p1 = 1 and p2 = 3. In what follows, we verify that the pinning controlled network (4.1) can
achieve clustering component synchronization with respect to the specified components p1 and p2.

In fact, if we choose ω = 22.7, αpl = 3, and βpl = 5 (l = 1, 2), then it is not difficult to prove
that (A1), (A2), and (3.14) are satisfied. Moreover, it is obvious that A is irreducible. Thus, all the
conditions of Corollary 3.2 are fulfilled. So, it follows from Corollary 3.2 that the pinning controlled
network (4.1) achieves clustering component synchronization with respect to the specified components
p1 and p2. Figures 2–4 show the time evolution of the components of the error variables corresponding
to the pinning controlled network (4.1). It can be seen that the first and third components of the error
variables tend to 0 as t → +∞, respectively, while the second component does not. Figure 5 illustrates
that S i, j(t) = ∥si(t)− s j(t)∥ does not tend to 0 as t → +∞, 1 ≤ i < j ≤ 3. These indicate that the pinning
controlled network (4.1) achieves clustering component synchronization with respect to the specified
components p1 and p2.

Figure 2. The time evolution of ei1(t), i = 1, 2, 3, 4, 5, 6.

Figure 3. The time evolution of ei2(t), i = 1, 2, 3, 4, 5, 6.
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Figure 4. The time evolution of ei3(t), i = 1, 2, 3, 4, 5, 6.

Figure 5. The time evolution of S i, j(t), 1 ≤ i < j ≤ 3.

5. Conclusions

Clustering component synchronization is concerned with the convergence of some components of
the node’s state variables in a network rather than all components. As it has been stated in [48], the
research of clustering component synchronization may have potential application in some formation
control. For example, in the formation control of multiple unmanned aerial vehicle groups, the motion
of them is restricted by many factors (such as their own displacement and velocity, and the wind
speed of the environment). However, the control target of the formation is only some components
(such as displacement and velocity), and the above factors can be asymptotically convergent, which is
essentially a dynamic behavior of clustering component synchronization.

In this paper, the problem of clustering component synchronization for nonlinearly coupled complex
dynamical networks with nonidentical nodes is investigated. By applying matrix analysis and stability
theory, some sufficient conditions for achieving clustering component synchronization are obtained.
A numerical example is also provided to verify the effectiveness of the theoretical results. In reality,
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complex dynamical networks are often directed and sometimes unconnected. The problem of clustering
component synchronization for directed and unconnected networks is the subject of further research in
the future.
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