Research article Special Issues

Positive periodic solution for enterprise cluster model with feedback controls and time-varying delays on time scales

  • Received: 29 December 2023 Revised: 27 January 2024 Accepted: 01 February 2024 Published: 04 February 2024
  • MSC : 34N05

  • This paper aims to study a class of enterprise cluster models with feedback controls and time-varying delays on time scales. Based on periodic time scales theory and the fixed point theorem of strict-set-contraction, some new sufficient conditions for the existence of positive periodic solutions are obtained. Finally, two examples are presented to verify the validity and applicability of the main results in this paper.

    Citation: Chun Peng, Xiaoliang Li, Bo Du. Positive periodic solution for enterprise cluster model with feedback controls and time-varying delays on time scales[J]. AIMS Mathematics, 2024, 9(3): 6321-6335. doi: 10.3934/math.2024308

    Related Papers:

  • This paper aims to study a class of enterprise cluster models with feedback controls and time-varying delays on time scales. Based on periodic time scales theory and the fixed point theorem of strict-set-contraction, some new sufficient conditions for the existence of positive periodic solutions are obtained. Finally, two examples are presented to verify the validity and applicability of the main results in this paper.



    加载中


    [1] X. Tian, Q. Nie, On model construction of enterprises, interactive relationship from the perspective of business ecosystem, South. Econ. J., 4 (2006), 50–57.
    [2] M. Liao, C. Xu, X. Tang, Dynamical behavior for a competition and cooperation model of enterpries with two delays, Nonlinear Dynam., 75 (2014), 257–266. https://doi.org/10.1007/s11071-013-1063-9 doi: 10.1007/s11071-013-1063-9
    [3] M. Liao, C. Xu, X. Tang, Stability and Hopf bifurcation for a competition and cooperation model of two enterprises with delay, Commun. Nonlinear Sci., 19 (2014), 3845–3856. https://doi.org/10.1016/j.cnsns.2014.02.031 doi: 10.1016/j.cnsns.2014.02.031
    [4] G. Maciel, R. M. Garcia, Enhanced species coexistence in Lotka-Volterra competition models due to nonlocal interactions, J. Theor. Biol., 530 (2021), 110872. https://doi.org/10.1016/j.jtbi.2021.110872 doi: 10.1016/j.jtbi.2021.110872
    [5] M. Kulakov, G. Neverova, E. Frisman, The Ricker competition model of two species: Dynamic modes and phase multistability, Mathematics, 10 (2022), 1076. https://doi.org/10.3390/math10071076 doi: 10.3390/math10071076
    [6] G. Li, Y. Yao, Two-species competition model with chemotaxis: Well-posedness, stability and dynamics, Nonlinearity, 35 (2022), 135. https://doi.org/10.1088/1361-6544/ac4a8d doi: 10.1088/1361-6544/ac4a8d
    [7] A. Muhammadhaji, M. Nureji, Dynamical behavior of competition and cooperation dynamical model of two enterprises, J. Quant. Econ., 36 (2019), 94–98.
    [8] C. Xu, Y. Shao, Existence and global attractivity of periodic solution for enterprise clusters based on ecology theory with impulse, Appl. Math. Comput., 39 (2012), 367–384. https://doi.org/10.1007/s12190-011-0530-z doi: 10.1007/s12190-011-0530-z
    [9] A. Muhammadhaji, Y. Maimaiti, New criteria for analyzing the permanence, periodic solution, and global attractiveness of the competition and cooperation model of two enterprises with feedback controls and delays, Mathematics, 11 (2023), 4442. https://doi.org/10.3390/math11214442 doi: 10.3390/math11214442
    [10] L. Lu, Y. Lian, C. Li, Dynamics for a discrete competition and cooperation model of two enterprises with multiple delays and feedback controls, Open Math., 15 (2017), 218–232. https://doi.org/10.1515/math-2017-0023 doi: 10.1515/math-2017-0023
    [11] C. Xu, P. Li, Almost periodic solutions for a competition and cooperation model of two enterprises with time-varying delays and feedback controls, J. Appl. Math. Comput., 53 (2017), 397–411. https://doi.org/10.1007/s12190-015-0974-7 doi: 10.1007/s12190-015-0974-7
    [12] Y. Zhi, Z. Ding, Y. Li, Permanence and almost periodic solution for an enterprise cluster model based on ecology theory with feedback controls on time scales, Discrete Dyn. Nat. Soc., 2013 (2013), 639138. https://doi.org/10.1155/2013/639138 doi: 10.1155/2013/639138
    [13] L. Wang, P. Xie, M. Hu, Periodic solutions in shifts delta for a Nabla dynamic system of Nicholson's blowflies on time scales, IAENG Int. J. Appl. Math., 47 (2017), 1–7.
    [14] M. Adivar, Function bounds for solutions of Volterra integro dynamic equations on the time scales, Electron. J. Qual. Theo., 7 (2010), 1–22. https://doi.org/10.14232/ejqtde.2010.1.7 doi: 10.14232/ejqtde.2010.1.7
    [15] E. Kaufmann, Y. Raffoul, Periodic solutions for a neutral nonlinear dynamical equation on a time scale, J. Math. Anal. Appl., 319 (2006), 315–325. https://doi.org/10.1016/j.jmaa.2006.01.063 doi: 10.1016/j.jmaa.2006.01.063
    [16] M. Hu, L. Wang, Z. Wang, Positive periodic solutions in shifts for a class of higher-dimensional functional dynamic equations with impulses on time scales, Abstr. Appl. Anal., 2014 (2014), 509052. https://doi.org/10.1155/2014/509052 doi: 10.1155/2014/509052
    [17] Q. Xiao, Z. Zeng, Scale-limited lagrange stability and finite-time synchronization for memristive recurrent neural networks on time scales, IEEE T. Cybernetics, 47 (2017), 2984–2994. https://doi.org/10.1109/TCYB.2017.2676978 doi: 10.1109/TCYB.2017.2676978
    [18] J. Wang, H. Jiang, T. Ma, C. Hu, Delay-dependent dynamical analysis of complex-valued memristive neural networks: Continuous-time and discrete-time cases, Neural Networks, 101 (2018), 33–46. https://doi.org/10.1016/j.neunet.2018.01.015 doi: 10.1016/j.neunet.2018.01.015
    [19] M. Bohner, A. Peterson, Dynamic equations on time scales, an introduction with applications, Birkh$\ddot{\mathrm{a}}$user Boston, 2001. https://doi.org/10.1007/978-1-4612-0201-1
    [20] E. Kaufmann, Y. Raffoul, Periodic solutions for a neutral nonlinear dynamical equation on a time scale, J. Math. Anal. Appl., 319 (2006), 315–325. https://doi.org/10.1016/j.jmaa.2006.01.063 doi: 10.1016/j.jmaa.2006.01.063
    [21] D. Guo, Positive solutions of nonlinear operator equations and its applications to nonlinear integer equations, Adv. Math., 13 (1984), 294–310.
    [22] B. Du. X. Hu, W. Ge, Periodic solution of a neutral delay model of single-species population growth on time scales, Commun. Nonlinear Sci., 15 (2010), 394–400. https://doi.org/10.1016/j.cnsns.2009.03.014 doi: 10.1016/j.cnsns.2009.03.014
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(765) PDF downloads(79) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog