
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(3): 6321–6335.
DOI: 10.3934/math.2024308
Received: 29 December 2023
Revised: 27 January 2024
Accepted: 01 February 2024
Published: 04 February 2024

Research article

Positive periodic solution for enterprise cluster model with feedback
controls and time-varying delays on time scales

Chun Peng1, Xiaoliang Li2,* and Bo Du1,*

1 School of Mathematics and Statistics, Huaiyin Normal University, Huaian, Jiangsu, 223300, China
2 Jiyang College, Zhejiang Agriculture and Forestry University, Zhuji, 311800, China

* Correspondence: Email: lixiaoliang@zafu.edu.cn, dubo7307@163.com.

Abstract: This paper aims to study a class of enterprise cluster models with feedback controls and
time-varying delays on time scales. Based on periodic time scales theory and the fixed point theorem
of strict-set-contraction, some new sufficient conditions for the existence of positive periodic solutions
are obtained. Finally, two examples are presented to verify the validity and applicability of the main
results in this paper.

Keywords: positive periodic solution; existence; time scales; enterprise cluster model
Mathematics Subject Classification: 34N05

1. Introduction

An ecosystem is a sustainable system, and the coexistence of species is one of its essential attributes.
Similarly, in the business world, competition and coexistence among enterprises are also crucial for
their sustainable development. In recent years, the use of ecological theory and dynamical system
methods to study clusters has gradually attracted the attention of a large number of researchers. In [1],
the authors considered the following autonomous model:

du1

dt
= u1(t)[a1 − b11u1(t) − b12(u2(t) − c2)2],

du2

dt
= u2(t)[a2 − b21u2(t) − b22(u1(t) − c1)2],

(1.1)

where u1 and u2 represent the output of two enterprises A and B, respectively; a1 and a2 are the intrinsic
growth of two enterprises; bi j(i, j = 1, 2) represents the load capacity of enterprises A and B; ci(i =

1, 2) denotes the initial production of enterprises A and B. Considering the impact of time delay, the
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following model can be obtained:

du1

dt
= u1(t)[a1 − b11u1(t − τ1) − b12(u2(t − τ2) − c2)2],

du2

dt
= u2(t)[a2 − b21u2(t − τ3) − b22(u1(t − τ4) − c1)2],

(1.2)

where τi (i = 1, 2, 3, 4) is a constant delay. Liang, Xu, and Tang [2, 3] studied dynamic
behaviours (including stability and Hopf bifurcation) for system (1.2). For more results about
competition models, see [4–6].

Due to the fact that the external development environment of enterprise clusters is constantly
changing over time, and the internal architecture of the enterprise clusters is also changing over time,
a coefficient of variation system can more accurately depict the actual situation. Muhammadhaji and
Nureji [7] studied the competition and cooperation model of enterprises with variable coefficients

du1

dt
= u1(t)[a1(t) − b11(t)u1(t) − b12(t)(u2(t) − c2(t))2],

du2

dt
= u2(t)[a2(t) − b21(t)u2(t) − b22(t)(u1(t) − c1(t))2],

(1.3)

where ai(t), bi j(t), and ci(t) are continuous functions on R, i, j = 1, 2. Using the Lyapunov function
method and useful inequality techniques, several conditions on the dynamic behaviours of system (1.3)
have been obtained. Xu and Shao [8] investigated a competition and corporation impulsive model with
variable coefficients and obtained the uniqueness and global attractivity of the positive periodic solution
by using the continuation theorem of coincidence degree theory and the Lyapunov functional method.

Feedback control has been widely applied in many fields, including economics, physics, biology,
neural networks, and so on. In order to maintain the continuous stability and accuracy of the system,
it is necessary to effectively monitor the system and use feedback control to adjust its state. Feedback
control helps to correct errors and deviations, ensuring that the system is in a stable operating state.
In short, for a complex system, an efficient feedback control system is the foundation for ensuring
long-term stable operation of the system. In recent years, Muhammadhaji and Maimaiti [9] studied a
non-autonomous competition and cooperation model of two enterprises with discrete feedback controls
and constant delays as follows:

du1

dt
= u1(t)[a1(t) − b11(t)u1(t − τ1) − b12(t)(u2(t − τ2) − c2(t))2 − d1(t)v1(t − τ3)],

du2

dt
= u2(t)[a2(t) − b21(t)u2(t − τ4) − b22(t)(u1(t − τ5) − c1(t))2 − d2(t)v2(t − τ6)],

dv1

dt
= − f1(t)v1(t) + e1(t)v1(t − τ7),

dv2

dt
= − f2(t)v2(t) + e2(t)v2(t − τ8),

(1.4)

where v1 and v2 denote the indirect feedback control variables, and fi and ei (i=1,2) are feedback
control coefficients. Lu, Lian, and Li [10] studied dynamic properties for a discrete competition model
of with multiple delays and feedback controls. Xu and Li [11] considered almost periodic solution
problems for a competition and cooperation model of two enterprises with time-varying delays and
feedback controls.
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The dynamic system on a time scale can unify discrete and continuous equations, which is currently
a hot research. However, the enterprise cluster model on time scales is rarely studied. To the best of
our knowledge, we only found that an enterprise cluster model based on with feedback controls on
time scales T has been studied in [12] as follows:

u∆(t) = r1(t) − a1(t)eu(t) − b1(t)
(
ev(t) − d2(t)

)2

− e1(t)φ(t),

v∆(t) = r2(t) − a2(t)ev(t) − b2(t)
(
eu(t) − d1(t)

)2

− e2(t)ψ(t),

φ∆(t) = −α1(t)φ(t) + β1(t)eu(t),

ψ∆(t) = −α2(t)ψ(t) + β2(t)ev(t).

(1.5)

The authors proposed new criteria for analyzing the permanence, periodic solution, and global
attractiveness of system (1.5). Motivated by the above work, we consider the following enterprise
cluster model with feedback controls and time-varying delays on time scale T:

u∆
1 (t) = a1(t)u1(σ(t)) − u1(t)[b11(t)u1(t − τ1(t)) + b12(t)(u2(t − τ2(t)) − c2(t))2 + d1(t)v1(t − τ3(t))],

u∆
2 (t) = a2(t)u2(σ(t)) − u2(t)[b21(t)u2(t − τ4(t)) + b22(t)(u1(t − τ5(t)) − c1(t))2 + d2(t)v2(t − τ6(t))],

v∆
1 (t) = −α1(t)v1(σ(t)) + e1(t)v1(t − τ7(t)),

v∆
2 (t) = −α2(t)v2(σ(t)) + e2(t)v2(t − τ8(t)),

(1.6)
where −a1,−a2, α1, α2 ∈ R

+ with a1(t), a2(t) ≥ 0, α1(t), α2(t) ≤ 0 for all t ∈ T; for i, j = 1, 2 and
k = 1, 2, · · · , 8, ai, αi, ci, di, ei, bi j, τk are continuous ω-periodic functions with ci, di, ei, bi j, τk ≥ 0. T
denotes a periodic time scale which has the subspace topology inherited from the standard topology
on R.

We list the main contributions of this paper as follows:
(1) We first study a class of enterprise cluster model with feedback controls and time-varying delays on
time scales. The model in the present paper is different than the model in [12], and when T = R and the
delays are constants in system (1.6), system (1.6) can be changed into system (1.4). Since the model
of this paper is based on the theory of time scales, which unifies discrete and continuous systems, the
results of this article have wider applicability than those of references [8–11].
(2) We develop the fixed-point theorem of k-set contraction operators for studying dynamic systems on
time scales.
(3) For obtaining the existence of positive periodic solutions to system (1.6), we construct a proper
cone by using periodic time scale theory.

The remainder of this paper is organized as follows: Section 2 gives some preliminaries. In
Section 3, some sufficient conditions for the existence of positive periodic solutions of system (1.6)
are obtained. In Section 4, two examples are given to show the effectiveness of the main results in this
paper. Finally, some conclusions and discussions are given.

2. Preliminaries

A time scale T is a closed subset of R. For t ∈ T, the forward jump operator σ and backward jump
operator ρ are respectively defined by
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σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}.

The forward graininess µ : T → [0,∞) is defined by µ(t) = σ(t) − t. R and R+ denote all regressive
rd-continuous functions and positive regressive rd-continuous functions, respectively.
Definition 2.1. [19] A function U : Tk → R is a delta-antiderivative of U : Tk → R if U∆ = u holds for
t ∈ Tk. Then, define the integral of u by∫ t

a
u(s)∆s = U(t) − U(a) for t ∈ T.

Lemma 2.1. [19] Let p, q ∈ R. Then,

(1) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(2) ep(ρ(t), s) = (1 − µ(t)p(t))ep(t, s);
(3) ep(t, s) = 1

ep(s,t) = e	p(s, t);
(4) ep(t, s)ep(s, r) = ep(t, r);
(5) ep(t, s)eq(t, s) = ep⊕q(t, s).

Definition 2.2. [20] A time scale T is periodic if there is k > 0 for each t ∈ T such that t ± k ∈ T. For
T , R, the period of the time scale is the smallest positive k.
Definition 2.3. [20] Let T , R be a periodic time scale with the period k. The function ψ : T → R is
periodic with period τ if there exists a natural number n such that τ = nk, ψ(t ± τ) = ψ(t) for all t ∈ T.
When T = R, ψ is a periodic function if τ is the smallest positive number such that ψ(t ± τ) = ψ(t).

LetB be a Banach space. For a bounded subset E ⊂ B, the Kuratowski measure of non-compactness
can be defined by

αB(E) = inf
{
δ > 0 : there is a finite number of subsets Ei ⊂ B such that E = ∪iEi and diam(Ei) ≤ δ

}
,

where diam(Ei) denotes the diameter of the set Ei. Let B and D be two Banach spaces and Ω be a
bounded open subset of B. A continuous and bounded map φ : Ω −→ D is called k-set contractive if
for any bounded set C ⊂ Ω we have

αD(φ(C)) ≤ kαB(C),

where k ≥ 0 is a constant. If 0 ≤ k < 1, the mapping φ is called strict-set-contractive.
Lemma 2.2. [21] Let P be a cone of the real Banach space X and Pr,R = {u ∈ P : r ≤ ||u|| ≤ R} with
R > r > 0. Assume that Ψ : Pr,R → P is strict-set-contractive such that one of the following two
conditions is satisfied:
(1) (Ψu � u for all u ∈ P, ||u|| = r) and (Ψu � u for all u ∈ P, ||u|| = R);
(2) (Ψu � u for all u ∈ P, ||u|| = r) and (Ψu � u for all u ∈ P, ||u|| = R).
Then, Ψ has at least one fixed point in Pr,R.

Let Cω be a ω-periodic continuous function space. Let

X = {x = (u1, u2, v1, v2)T ∈ C(T,R4)},

where u1, u2, v1, v2 ∈ Cω. X has the following norm:

||x|| = |u1|0 + |u2|0 + |v1|0 + |v2|0,
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where | f |0 = maxt∈T | f (t)|. Thus, X is a Banach space. Define the cone P in X by

P = {y ∈ X :
4∑

i=1

yi(t) ≥ ρ||y||, yi(t) > 0, t ∈ [0, ω]T},

where y = (y1, · · · , y4)T , ρ > 0 is a given constant. Throughout this paper, we need the following
notations:

ξ1 = max
t∈[0,ω]T

1
e	(−a1)(t, t − ω) − 1

, ξ2 = min
t∈[0,ω]T

1
e	(−a1)(t, t − ω) − 1

,

η1 = max
s∈[t,t−ω]T

e	(−a1)(t, s), η2 = min
s∈[t,t−ω]T

e	(−a1)(t, s),

ξ3 = max
t∈[0,ω]T

1
e	(−a2)(t, t − ω) − 1

, ξ4 = min
t∈[0,ω]T

1
e	(−a2)(t, t − ω) − 1

,

η3 = max
s∈[t,t−ω]T

e	(−a2)(t, s), η4 = min
s∈[t,t−ω]T

e	(−a2)(t, s),

ξ5 = max
t∈[0,ω]T

1
e	(α1)(t, t − ω) − 1

, ξ6 = min
t∈[0,ω]T

1
e	(α1)(t, t − ω) − 1

,

η5 = max
s∈[t,t−ω]T

e	(α1)(t, s), η6 = min
s∈[t,t−ω]T

e	(α1)(t, s),

ξ7 = max
t∈[0,ω]T

1
e	(α2)(t, t − ω) − 1

, ξ8 = min
t∈[0,ω]T

1
e	(α2)(t, t − ω) − 1

,

η7 = max
s∈[t,t−ω]T

e	(α2)(t, s), η8 = min
s∈[t,t−ω]T

e	(α2)(t, s),

b̂i j = max
t∈[0,ω]T

bi j(t), ĉi = max
t∈[0,ω]T

ci(t), d̂i = max
t∈[0,ω]T

di(t), êi = max
t∈[0,ω]T

ei(t), i, j = 1, 2,

ρ = min
{
ξ2η2

ξ1η1
,
ξ4η4

ξ3η3
,
ξ6η6

ξ5η5
,
ξ8η8

ξ7η7

}
.

Throughout this paper, we assume:
(H1) e	(−a1)(t, t − ω) > 1, e	(−a2)(t, t − ω), e	(α1)(t, t − ω) > 1 and e	(α2)(t, t − ω) > 1 for all t ∈ [0, ω]T.
Lemma 2.3. System (1.6) exists a periodic solution x = (u1, u2, v1, v2)T ∈ X if only if

u1(t) =
1

e	(−a1)(t, t − ω) − 1

∫ t

t−ω
u1(s)

[
b11(s)u1(s − τ1(s)) + b12(s)(u2(s − τ2(s)) − c2(s))2

+ d1(s)v1(s − τ3(s))
]
e	(−a1)(t, s)∆s,

(2.1)

u2(t) =
1

e	(−a1)(t, t − ω) − 1

∫ t

t−ω
u2(s)

[
b21(s)u2(s − τ4(s)) + b22(s)(u1(s − τ5(s)) − c1(s))2

+ d2(s)v2(s − τ6(s))]
]
e	(−a2)(t, s)∆s,

(2.2)

v1(t) =
1

e	α1(t, t − ω) − 1

∫ t

t−ω
v1(s)e1(s)v1(s − τ7(s))e	α1(t, s)∆s, (2.3)
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v2(t) =
1

e	α2(t, t − ω) − 1

∫ t

t−ω
v2(s)e2(s)v2(s − τ8(s))e	α2(t, s)∆s. (2.4)

Proof. The proof of Lemma 2.3 is similar to the proof of Lemma 2.3 in [22]. For the convenience of
the readers, we provide its details. Let x = (u1, u2, v1, v2)T ∈ X be a periodic solution of system (1.6).
Rewrite the first equation of system (1.6) in the form:

u∆
1 (t)−a1(t)u1(σ(t)) = −u1(t)[b11(t)u1(t− τ1(t)) + b12(t)(u2(t− τ2(t))− c2(t))2 + d1(t)v1(t− τ3(t))]. (2.5)

Multiplying both sides of (2.5) by e−a1(t, 0) and integrating them from t − ω to t, we get∫ t

t−ω
[e−a1(s, 0)u1(s)]∆∆s =

∫ t

t−ω
u1(s)

[
b11(s)u1(s − τ1(s)) + b12(s)(u2(s − τ2(s)) − c2(s))2

+ d1(s)v1(s − τ3(s))
]
e−a1(s, 0)∆s.

(2.6)

Dividing both sides of (2.6) by e−a1(t, 0), we get

u1(t) =
1

e	(−a1)(t, t − ω) − 1

∫ t

t−ω
u1(s)

[
b11(s)u1(s − τ1(s)) + b12(s)(u2(s − τ2(s)) − c2(s))2

+ d1(s)v1(s − τ3(s))
]
e	(−a1)(t, s)∆s.

Similar to the above proof, we obtain that Eqs (2.2)–(2.4) hold. Hence, the proof is completed.
Let the mapping Ψ : P→ P by

(Ψx)(t) = ((Ψu1)(t), (Ψu2)(t), (Ψv1)(t), (Ψv2)(t))T , t ∈ T,

where

(Ψu1)(t) =
1

e	(−a1)(t, t − ω) − 1

∫ t

t−ω
u1(s)

[
b11(s)u1(s − τ1(s)) + b12(s)(u2(s − τ2(s)) − c2(s))2

+ d1(s)v1(s − τ3(s))
]
e	(−a1)(t, s)∆s,

(2.7)

(Ψu2)(t) =
1

e	(−a1)(t, t − ω) − 1

∫ t

t−ω
u2(s)

[
b21(s)u2(s − τ4(s)) + b22(s)(u1(s − τ5(s)) − c1(s))2

+ d2(s)v2(s − τ6(s))]
]
e	(−a2)(t, s)∆s,

(2.8)

(Ψv1)(t) =
1

e	α1(t, t − ω) − 1

∫ t

t−ω
v1(s)e1(s)v1(s − τ7(s))e	α1(t, s)∆s, (2.9)

(Ψv2)(t) =
1

e	α2(t, t − ω) − 1

∫ t

t−ω
v2(s)e2(s)v2(s − τ8(s))e	α2(t, s)∆s. (2.10)

Lemma 2.4. Assume that (H1) holds. Then, Ψ : P→ P is well defined.
Proof. For each x = (u1, u2, v1, v2)T ∈ P and t ∈ T, by (2.7) we have

(Ψu1)(t + ω) =
1

e	(−a1)(t + ω, t) − 1

∫ t+ω

t
u1(s)

[
b11(s)u1(s − τ1(s)) + b12(s)(u2(s − τ2(s)) − c2(s))2

+ d1(s)v1(s − τ3(s))
]
e	(−a1)(t + ω, s)∆s.

(2.11)
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Letting η = s − ω in (2.11), in view of the periodicity of b11, b12, τ1, τ2, τ3, c2, and d1, we have

(Ψu1)(t + ω) =
1

e	(−a1)(t + ω, t) − 1

∫ t+ω

t
u1(η)

[
b11(η)u1(η − τ1(η)) + b12(η)(u2(s − τ2(η)) − c2(η))2

+ d1(η)v1(η − τ3(η))
]
e	(−a1)(t + ω, η + ω)∆η.

(2.12)
From the periodicity of a1 and the properties of ep(t, s), we have

e	(−a1)(t + ω, t) = e	(−a1)(t, t − ω) and e	(−a1)(t + ω, η + ω) = e	(−a1)(t, η).

Thus, by (2.12) we have (Ψu1)(t + ω) = (Ψu1)(t). Similar to the above proof, we also have

(Ψu2)(t + ω) = (Ψu2)(t), (Ψv1)(t + ω) = (Ψv1)(t), (Ψv2)(t + ω) = (Ψv2)(t).

From [22], it is easy to see that e	(−a1)(t, t − ω), e	(−a2)(t, t − ω), e	(α1)(t, t − ω), and e	(α2)(t, t − ω) are
independent on t. By (2.7), we get

|Ψu1|0 ≤ ξ1η1

∫ ω

0
u1(s)

[
b11(s)u1(s−τ1(s))+b12(s)(u2(s−τ2(s))−c2(s))2 +d1(s)v1(s−τ3(s))

]
∆s (2.13)

and

(Ψu1)(t) ≥ ξ2η2

∫ ω

0
u1(s)

[
b11(s)u1(s−τ1(s))+b12(s)(u2(s−τ2(s))−c2(s))2+d1(s)v1(s−τ3(s))

]
∆s. (2.14)

It follows from (2.13) and (2.14) that

(Ψu1)(t) ≥
ξ2η2

ξ1η1
|Ψu1|0. (2.15)

Similar to the above proof, from (2.8)–(2.10), we have

(Ψu2)(t) ≥
ξ4η4

ξ3η3
|Ψu2|0, (2.16)

(Ψv1)(t) ≥
ξ6η6

ξ5η5
|Ψv1|0, (2.17)

(Ψv2)(t) ≥
ξ8η8

ξ7η7
|Ψv2|0. (2.18)

From (2.15)–(2.18), we have

(Ψu1)(t) + (Ψu2)(t) + (Ψv1)(t) + (Ψv2)(t) ≥ ρ||Ψx||.

Hence, Ψx ∈ P.
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Lemma 2.5. Assume that (H1) holds. If Λ < 1, then Ψ : ΓR ∩ P → P is strict-set-contractive, where
ΓR = {x ∈ X : ||x|| < R},

Λ = ξ1η1ω
[
2R(b̂11 + d̂1) + b̂12R(2R + 2ĉ2)2]

+ ξ3η3ω
[
2R(b̂21 + d̂2) + b̂22R(2R + 2ĉ1)2]

+ 2ξ5η5ωR + 2ξ7η7ωR.

Proof. From Lemma 2.4, it is easy to see that Ψ is continuous and bounded on ΓR. Let U ⊂ ΓR and
γ = αX(U). For any sufficiently small positive number ε, there is a finite family of subsets {Ui} such
that U = ∪iUi and diamUi ≤ γ + ε. Thus,

||x − x̃|| ≤ γ + ε for all x, x̃ ∈ Ui,

where x = (u1, u2, v1, v2)T , x̃ = (ũ1, ũ2, ṽ1, ṽ2)T . For each x, x̃ ∈ U and t ∈ [0, ω]T, we have

|Ψu1 − Ψũ1|0 ≤ ξ1η1ω(γ + ε)
[
2R(b̂11 + d̂1) + b̂12R(2R + 2ĉ2)2]

= ξ1η1ω
[
2R(b̂11 + d̂1) + b̂12R(2R + 2ĉ2)2]γ + ε,

|Ψu2 − Ψũ2|0 ≤ ξ3η3ω(γ + ε)
[
2R(b̂21 + d̂2) + b̂22R(2R + 2ĉ1)2]

= ξ3η3ω
[
2R(b̂21 + d̂2) + b̂22R(2R + 2ĉ1)2]γ + ε,

|Ψv1 − Ψṽ1|0 ≤ 2ξ5η5ωRγ + ε,

|Ψv2 − Ψṽ2|0 ≤ 2ξ7η7ωRγ + ε.

Therefore, we have
||Ψx − Ψx̃|| ≤ Λγ + ε for all x, x̃ ∈ Ui.

Since ε is arbitrarily small and Λ < 1, we have

αX(ΨU) ≤ ΛαX(U)

and Ψ is strict-set-contractive on P ∪ ΓR.

3. Existence of positive periodic solution

In this section, we need the following assumption:
(H2) There exist constants r and R with 0 < r < R such that

Θ = max
{
ωξ1η1

[
b̂11r + b̂12(r + ĉ2)2 + d̂1r

]
, ωξ3η3

[
b̂21r + b̂22(r + ĉ1)2 + d̂2r

]
, ωξ5η5ê1r, ωξ7η7ê2r

}
< 1

(3.1)
and

1

ωξ2η2b̌11
+

1

ωξ4η4b̌21
+

1
ωξ6η6ě1

+
1

ωξ8η8ě2
> R. (3.2)

Theorem 3.1. Suppose that all conditions of Lemma 2.5 and assumption (H2) hold. Then, system (1.6)
has at least one positive ω-periodic solution.
Proof. We will use Lemma 2.2 for studying the existence of positive ω-periodic solutions to
system (1.6). Let ΓR,r = {x ∈ P : r < ||x|| < R}. In view of Lemma 2.3, it is easy to see that if
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there exists x∗ ∈ P such that Ψx∗ = x∗, then x∗ is a positive ω-periodic solution of system (1.6). Since
all conditions of Lemma 2.5 hold, we know that Ψ : ΓR,r ∩ P → P is strict-set-contractive. Now, we
show that condition (1) or (2) of Lemma 2.2 holds. For each x = (u1, u2, v1, v2)T ∈ ΓR,r, we first show
that Ψx � x for ||x|| = r. Otherwise, there exists x = (u1, u2, v1, v2)T ∈ ΓR,r with ||x|| = r such that
Ψx ≥ x. Thus, Ψx − x ∈ ΓR,r which implies that

|Ψu1|0 ≥ |u1|0, |Ψu2|0 ≥ |u2|0, |Ψv1|0 ≥ |v1|0, |Ψv2|0 ≥ |v2|0

and
|Ψu1|0 + |Ψu2|0 + |Ψv1|0 + |Ψv2|0 ≥ ||x||. (3.3)

In addition, for t ∈ [0, ω]T we have

(Ψu1)(t) =
1

e	(−a1)(t, t − ω) − 1

∫ t

t−ω
u1(s)

[
b11(s)u1(s − τ1(s)) + b12(s)(u2(s − τ2(s)) − c2(s))2

+ d1(s)v1(s − τ3(s))
]
e	(−a1)(t, s)∆s

≤ ωξ1η1
[
b̂11r + b̂12(r + ĉ2)2 + d̂1r

]
|u1|0,

(3.4)

(Ψu2)(t) =
1

e	(−a1)(t, t − ω) − 1

∫ t

t−ω
u2(s)

[
b21(s)u2(s − τ4(s)) + b22(s)(u1(s − τ5(s)) − c1(s))2

+ d2(s)v2(s − τ6(s))]
]
e	(−a2)(t, s)∆s

≤ ωξ3η3
[
b̂21r + b̂22(r + ĉ1)2 + d̂2r

]
|u2|0,

(3.5)

(Ψv1)(t) =
1

e	α1(t, t − ω) − 1

∫ t

t−ω
v1(s)e1(s)v1(s − τ7(s))e	α1(t, s)∆s

≤ ωξ5η5ê1r|v1|0,

(3.6)

(Ψv2)(t) =
1

e	α2(t, t − ω) − 1

∫ t

t−ω
v2(s)e2(s)v2(s − τ8(s))e	α2(t, s)∆s

≤ ωξ7η7ê2r|v2|0.

(3.7)

From (3.1) and (3.4)–(3.7), we have

|Ψu1|0 + |Ψu2|0 + |Ψv1|0 + |Ψv2|0 ≤ Θ||x|| < ||x||. (3.8)

(3.3) and (3.8) are contradictory. Next, we show that Ψx � x for all x ∈ ΓR,r and ||x|| = R. Otherwise,
there exists x = (u1, u2, v1, v2)T ∈ ΓR,r with ||x|| = R such that Ψx ≤ x. Thus, x − Ψx ∈ ΓR,r which
implies that

|u1|0 ≥ |Ψu1|0, |u2|0 ≥ |Ψu2|0, |v1|0 ≥ |Ψv1|0, |v2|0 ≥ |Ψv2|0. (3.9)

From (3.9), for t ∈ [0, ω]T, we have

|Ψu1|0 =
1

e	(−a1)(t, t − ω) − 1

∣∣∣∣∣ ∫ t

t−ω
u1(s)

[
b11(s)u1(s − τ1(s)) + b12(s)(u2(s − τ2(s)) − c2(s))2

+ d1(s)v1(s − τ3(s))
]
e	(−a1)(t, s)∆s

∣∣∣∣∣
0

≥ ωξ2η2b̌11|u1|
2
0

≥ ωξ2η2b̌11|u1|0|Ψu1|0,
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which implies

|u1|0 ≤
1

ωξ2η2b̌11
, (3.10)

|Ψu2|0 =
1

e	(−a1)(t, t − ω) − 1

∣∣∣∣∣ ∫ t

t−ω
u2(s)

[
b21(s)u2(s − τ4(s)) + b22(s)(u1(s − τ5(s)) − c1(s))2

+ d2(s)v2(s − τ6(s))]
]
e	(−a2)(t, s)∆s

∣∣∣∣∣
0

≥ ωξ4η4b̌21|u2|
2
0

≥ ωξ4η4b̌21|u2|0|Ψu2|0,

which implies

|u2|0 ≤
1

ωξ4η4b̌21
, (3.11)

|Ψv1|0 =
1

e	α1(t, t − ω) − 1

∣∣∣∣∣ ∫ t

t−ω
v1(s)e1(s)v1(s − τ7(s))e	α1(t, s)∆s

∣∣∣∣∣
0

≥ ωξ6η6ě1|v1|
2
0

≥ ωξ6η6ě1|v1|0|Ψv1|0,

which implies

|v1|0 ≤
1

ωξ6η6ě1
, (3.12)

|Ψv2|0 =
1

e	α2(t, t − ω) − 1

∣∣∣∣∣ ∫ t

t−ω
v2(s)e2(s)v2(s − τ8(s))e	α2(t, s)∆s

∣∣∣∣∣
0

≥ ωξ8η8ě2|v2|
2
0

≥ ωξ8η8ě2|v2|0|Ψv2|0,

which implies

|v2|0 ≤
1

ωξ8η8ě2
. (3.13)

From (3.10)–(3.13), we have

R = |u1|0 + |u2|0 + |v1|0 + |v2|0 ≥
1

ωξ2η2b̌11
+

1

ωξ4η4b̌21
+

1
ωξ6η6ě1

+
1

ωξ8η8ě2
> R,

which is a contradiction to (3.2). Applying Lemma 2.2, we obtain that Ψ has at least one nonzero fixed
point in ΓR,r. Hence, system (1.6) has at least one positive ω-periodic solution.

4. Numerical examples

Example 4.1. When T = R, consider the following system:

u′1(t) = a1(t)u1(t) − u1(t)[b11(t)u1(t − τ1(t)) + b12(t)(u2(t − τ2(t)) − c2(t))2 + d1(t)v1(t − τ3(t))],
u′2(t) = a2(t)u2(t) − u2(t)[b21(t)u2(t − τ4(t)) + b22(t)(u1(t − τ5(t)) − c1(t))2 + d2(t)v2(t − τ6(t))],
v′1(t) = −α1(t)v1(t) + e1(t)v1(t − τ7(t)),
v′2(t) = −α2(t)v2(t) + e2(t)v2(t − τ8(t)),

(4.1)
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where

a1(t) =
2 − sin2 300t

ω
, a2(t) =

2 − cos2 300t
ω

, α1(t) =
3 − sin2 300t

ω
, α2(t) =

3 − cos2 300t
ω

,

b11(t) = 2 − cos 200t, b12(t) = 2 + cos 200t, c2(t) = 0.1 + cos2 200t, d1(t) = 1 + cos2 200t,

b21(t) = 2 − sin 200t, b22(t) = 2 + sin 300t, c1(t) = 0.1 + sin2 200t, d2(t) = 1 + sin2 200t,

e1(t) = 3 + cos 300t, e2(t) = 3 − sin 200t, τi(t) = sin 200t, i = 1, 2, · · · , 8, ω =
π

100
.

Then, we get

ξ1 =
1

e − 1
, ξ2 =

1
e2 − 1

, ξ3 =
1

e − 1
, ξ4 =

1
e2 − 1

, ξ5 =
1

e2 − 1
, ξ6 =

1
e3 − 1

,

ξ7 =
1

e2 − 1
, ξ8 =

1
e3 − 1

, η1 = e2 − 1, η2 = e − 1, η3 = e2 − 1, η4 = e − 1,

η5 = e3 − 1, η6 = e2 − 1, η7 = e3 − 1, η8 = e2 − 1,

b̂11 = b̂12 = 3, ĉ1 = ĉ2 = 1.1, d̂1 = d̂2 = 2, ê1 = ê2 = 4, b̌11 = b̌21 = 1, ě1 = ě2 = 2.

Choosing R = 0.1, r = 0.01, we get

Λ = ξ1η1ω
[
2R(b̂11 + d̂1) + b̂12R(2R + 2ĉ2)2]

+ ξ3η3ω
[
2R(b̂21 + d̂2) + b̂22R(2R + 2ĉ1)2]

+ 2ξ5η5ωR + 2ξ7η7ωR

≈ 0.8976 < 1,

Θ = max
{
ωξ1η1

[
b̂11r + b̂12(r + ĉ2)2 + d̂1r

]
, ωξ3η3

[
b̂21r + b̂22(r + ĉ1)2 + d̂2r

]
, ωξ5η5ê1r, ωξ7η7ê2r

}
≈ 0.435 < 1

and
1

ωξ2η2b̌11
+

1

ωξ4η4b̌21
+

1
ωξ6η6ě1

+
1

ωξ8η8ě2
≈ 429.33 > R.

One can see that all conditions of Theorem 3.1 hold. Hence, system (4.1) has at least one positive
ω-periodic solution. Figure 1 shows periodicity of the solution to system (4.1).
Example 4.2. When T = Z, consider the following system:

∆u1(n) = a1(n)u1(n) − u1(n)[b11(n)u1(n − τ1(n)) + b12(n)(u2(t − τ2(n)) − c2(n))2 + d1(n)v1(n − τ3(n))],
∆u2(n) = a2(n)u2(n) − u2(n)[b21(n)u2(n − τ4(n)) + b22(n)(u1(n − τ5(n)) − c1(n))2 + d2(n)v2(n − τ6(n))],
∆v1(n) = −α1(n)v1(n) + e1(n)v1(n − τ7(n)),
∆v2(n) = −α2(n)v2(n) + e2(n)v2(n − τ8(n)),

(4.2)
where

∆ui(n) = ui(n + 1) − ui(n), ∆vi(n) = vi(n + 1) − vi(n), i = 1, 2,

a1(n) = 0.5 − 0.1 sin(πn + 1), a2(n) = 0.4 − 0.1 cos(πn + 1),
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α1(n) = 0.5 − 0.1 sin(πn + 0.5), α2(n) = 0.4 − 0.1 cos(πn + 0.5),

b11(n) = 2−cos(πn+1), b12(n) = 2+cos(πn+1), c2(n) = 0.1+0.1 cos2(πn+0.5), d1(n) = 1+cos2(πn+0.5),

b21(n) = 2−sin(πn+1), b22(n) = 2+sin(πn+1), c1(n) = 0.1+0.1 sin2(πn+0.1), d2(t) = 1+sin2(πn+0.1),

e1(n) = 3 + cos(πn + 0.2), e2(n) = 3 − sin(πn + 0.2), τi(n) = sin(πn + 1), i = 1, 2, · · · , 8, ω = 2.

Then, we get
ξ1 = 0.56, ξ2 = 0.19, ξ3 = 0.95, ξ4 = 0.33, ξ5 = 0.56, ξ6 = 0.19,

ξ7 = 0.95, ξ8 = 0.33, η1 = 6.25, η2 = 2.78, η3 = 4, η4 = 0.33,

η5 = 6.25, η6 = 2.78, η7 = 4, η8 = 2.04,

b̂11 = b̂12 = 3, ĉ1 = ĉ2 = 0.2, d̂1 = d̂2 = 2, ê1 = ê2 = 4, b̌11 = b̌21 = 1, ě1 = ě2 = 2.

Choosing R = 10−3, r = 10−4, we get

Λ = ξ1η1ω
[
2R(b̂11 + d̂1) + b̂12R(2R + 2ĉ2)2]

+ ξ3η3ω
[
2R(b̂21 + d̂2) + b̂22R(2R + 2ĉ1)2]

+ 2ξ5η5ωR + 2ξ7η7ωR

≈ 0.4492 < 1,

Θ = max
{
ωξ1η1

[
b̂11r + b̂12(r + ĉ2)2 + d̂1r

]
, ωξ3η3

[
b̂21r + b̂22(r + ĉ1)2 + d̂2r

]
, ωξ5η5ê1r, ωξ7η7ê2r

}
≈ 0.892 < 1

and
1

ωξ2η2b̌11
+

1

ωξ4η4b̌21
+

1
ωξ6η6ě1

+
1

ωξ8η8ě2
≈ 3.786 > R.

Thus, all conditions of Theorem 3.1 hold. It follows that system (4.2) has at least one positive ω-
periodic solution. Figure 2 shows the periodicity of the solution to system (4.2).
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Figure 1. Positive periodic solution of system (4.1). Figure 1 (a) shows the periodicity of u1

and u2, Figure 1 (b) shows periodicity of v1 and v2.
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Figure 2. Positive periodic solution of system (4.2). Figure 2 (a) shows the periodicity of u1

and u2, Figure 2 (b) shows the periodicity of v1 and v2.

5. Conclusions

In this paper, the issues of the existence of positive periodic solution to a class of enterprise cluster
models with feedback controls and time-varying delays on time scales have been studied. Based on
the theory of time scales, the fixed point theorem of strict-set-contraction, and under some conditions,
we showed that system (1.6) has at least one positive periodic solution. Two examples with their
respective computer simulations are given to illustrate the effectiveness of the obtained results. This
article develops the corresponding results in [12] in two aspects. On the one hand, the model studied
in this article is a generalization of classic enterprise cluster models. But, the model in [12] has
exponential function terms. Hence, the model in this article can better characterize the enterprise
cluster model. On the other hand, the research method of this article is different from that of [12]. The
research method in this paper can be applied to the study of the existence and dynamical behaviors of
positive periodic solutions or almost-periodic solutions for neutral-type enterprise cluster models.
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