Research article Special Issues

The Schatten $ p $-quasinorm on Euclidean Jordan algebras

  • Received: 28 October 2023 Revised: 31 December 2023 Accepted: 10 January 2024 Published: 24 January 2024
  • MSC : 15A42, 17C20

  • In this article, we proved that a Schatten $ p $-(quasi)norm for $ 0 < p < 1 $, defined on Euclidean Jordan algebras, satisfied a relaxed triangle inequality with an optimal constant $ 2^{\frac{1}{p} - 1} $; hence, it indeed induced a quasinorm. This confirmed the validity of a conjecture raised by Huang, Chen, and Hu.

    Citation: Juyoung Jeong. The Schatten $ p $-quasinorm on Euclidean Jordan algebras[J]. AIMS Mathematics, 2024, 9(2): 5028-5037. doi: 10.3934/math.2024244

    Related Papers:

  • In this article, we proved that a Schatten $ p $-(quasi)norm for $ 0 < p < 1 $, defined on Euclidean Jordan algebras, satisfied a relaxed triangle inequality with an optimal constant $ 2^{\frac{1}{p} - 1} $; hence, it indeed induced a quasinorm. This confirmed the validity of a conjecture raised by Huang, Chen, and Hu.



    加载中


    [1] J. Faraut, A. Korányi, Analysis on symmetric cones, Oxford Academic, 1994. https://doi.org/10.1093/oso/9780198534778.001.0001
    [2] M. S. Gowda, Positive and doubly stochastic maps, and majorization in Euclidean Jordan algebras, Linear Algebra Appl., 528 (2017), 40–61. https://doi.org/10.1016/j.laa.2016.02.024 doi: 10.1016/j.laa.2016.02.024
    [3] M. S. Gowda, A Holder type inequality and an interpolation theorem in Euclidean Jordan algebras, J. Math. Anal. Appl., 474 (2019), 248–263. https://doi.org/10.1016/j.jmaa.2019.01.043 doi: 10.1016/j.jmaa.2019.01.043
    [4] M. S. Gowda, Optimizing certain combinations of spectral and linear / distance functions over spectral sets, 2019. https://doi.org/10.48550/arXiv.1902.06640
    [5] M. S. Gowda, R. Sznajder, A Riesz-Thorin type interpolation theorem in Euclidean Jordan algebras, Linear Algebra Appl., 585 (2020), 178–190. https://doi.org/10.1016/j.laa.2019.09.029 doi: 10.1016/j.laa.2019.09.029
    [6] M. S. Gowda, J. Jeong, A pointwise weak-majorization inequality for linear maps over Euclidean Jordan algebras, Linear Multilinear A., 70 (2022), 4157–4176. https://doi.org/10.1080/03081087.2020.1870096 doi: 10.1080/03081087.2020.1870096
    [7] C. H. Huang, J. S. Chen, C. C. Hu, The Schatten $p$-norm on $ \mathcal{R}^n$, J. Nonlinear Convex Anal., 21 (2020), 21–29.
    [8] J. Jeong, M. S. Gowda, Spectral sets and functions in Euclidean Jordan algebras, Linear Algebra Appl., 518 (2017), 31–56. https://doi.org/10.1016/j.laa.2016.12.020 doi: 10.1016/j.laa.2016.12.020
    [9] J. Jeong, Y. M. Jung, Y. Lim, Weak majorization, doubly substochastic maps, and some related inequalities in Euclidean Jordan algebras, Linear Algebra Appl., 597 (2020), 133—154. https://doi.org/10.1016/j.laa.2020.03.028 doi: 10.1016/j.laa.2020.03.028
    [10] M. J. Lai, Y. Liu, S. Li, H. Wang, On the Schatten p-quasi-norm minimization for low-rank matrix recovery, Appl. Comput. Harmon. A., 51 (2021), 157–170. https://doi.org/10.1016/j.acha.2020.11.001 doi: 10.1016/j.acha.2020.11.001
    [11] A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of majorization and its applications, New York: Springer, 2010. https://doi.org/10.1007/978-0-387-68276-1
    [12] J. Tao, L. Kong, Z. Luo, N. Xiu, Some majorization inequalities in Euclidean Jordan algebras, Linear Algebra Appl., 461 (2014), 92–122. https://doi.org/10.1016/j.laa.2014.07.048 doi: 10.1016/j.laa.2014.07.048
    [13] J. Tao, An analog of Thompson's triangle inequality in Euclidean Jordan algebras, Electron. J. Linear Al., 37 (2021), 156–159. https://doi.org/10.13001/ela.2021.5585 doi: 10.13001/ela.2021.5585
    [14] J. Tao, J. Jeong, M. S. Gowda, Some log and weak majorization inequalities in Euclidean Jordan algebras, Linear Multilinear A., 70 (2022), 3189–3206. https://doi.org/10.1080/03081087.2020.1830020 doi: 10.1080/03081087.2020.1830020
    [15] F. Zhang, Matrix theory: Basic results and techniques, Springer Science+Business Media, 2011. https://doi.org/10.1007/978-1-4614-1099-7
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(643) PDF downloads(40) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog