In this article, we proved that a Schatten $ p $-(quasi)norm for $ 0 < p < 1 $, defined on Euclidean Jordan algebras, satisfied a relaxed triangle inequality with an optimal constant $ 2^{\frac{1}{p} - 1} $; hence, it indeed induced a quasinorm. This confirmed the validity of a conjecture raised by Huang, Chen, and Hu.
Citation: Juyoung Jeong. The Schatten $ p $-quasinorm on Euclidean Jordan algebras[J]. AIMS Mathematics, 2024, 9(2): 5028-5037. doi: 10.3934/math.2024244
In this article, we proved that a Schatten $ p $-(quasi)norm for $ 0 < p < 1 $, defined on Euclidean Jordan algebras, satisfied a relaxed triangle inequality with an optimal constant $ 2^{\frac{1}{p} - 1} $; hence, it indeed induced a quasinorm. This confirmed the validity of a conjecture raised by Huang, Chen, and Hu.
[1] | J. Faraut, A. Korányi, Analysis on symmetric cones, Oxford Academic, 1994. https://doi.org/10.1093/oso/9780198534778.001.0001 |
[2] | M. S. Gowda, Positive and doubly stochastic maps, and majorization in Euclidean Jordan algebras, Linear Algebra Appl., 528 (2017), 40–61. https://doi.org/10.1016/j.laa.2016.02.024 doi: 10.1016/j.laa.2016.02.024 |
[3] | M. S. Gowda, A Holder type inequality and an interpolation theorem in Euclidean Jordan algebras, J. Math. Anal. Appl., 474 (2019), 248–263. https://doi.org/10.1016/j.jmaa.2019.01.043 doi: 10.1016/j.jmaa.2019.01.043 |
[4] | M. S. Gowda, Optimizing certain combinations of spectral and linear / distance functions over spectral sets, 2019. https://doi.org/10.48550/arXiv.1902.06640 |
[5] | M. S. Gowda, R. Sznajder, A Riesz-Thorin type interpolation theorem in Euclidean Jordan algebras, Linear Algebra Appl., 585 (2020), 178–190. https://doi.org/10.1016/j.laa.2019.09.029 doi: 10.1016/j.laa.2019.09.029 |
[6] | M. S. Gowda, J. Jeong, A pointwise weak-majorization inequality for linear maps over Euclidean Jordan algebras, Linear Multilinear A., 70 (2022), 4157–4176. https://doi.org/10.1080/03081087.2020.1870096 doi: 10.1080/03081087.2020.1870096 |
[7] | C. H. Huang, J. S. Chen, C. C. Hu, The Schatten $p$-norm on $ \mathcal{R}^n$, J. Nonlinear Convex Anal., 21 (2020), 21–29. |
[8] | J. Jeong, M. S. Gowda, Spectral sets and functions in Euclidean Jordan algebras, Linear Algebra Appl., 518 (2017), 31–56. https://doi.org/10.1016/j.laa.2016.12.020 doi: 10.1016/j.laa.2016.12.020 |
[9] | J. Jeong, Y. M. Jung, Y. Lim, Weak majorization, doubly substochastic maps, and some related inequalities in Euclidean Jordan algebras, Linear Algebra Appl., 597 (2020), 133—154. https://doi.org/10.1016/j.laa.2020.03.028 doi: 10.1016/j.laa.2020.03.028 |
[10] | M. J. Lai, Y. Liu, S. Li, H. Wang, On the Schatten p-quasi-norm minimization for low-rank matrix recovery, Appl. Comput. Harmon. A., 51 (2021), 157–170. https://doi.org/10.1016/j.acha.2020.11.001 doi: 10.1016/j.acha.2020.11.001 |
[11] | A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of majorization and its applications, New York: Springer, 2010. https://doi.org/10.1007/978-0-387-68276-1 |
[12] | J. Tao, L. Kong, Z. Luo, N. Xiu, Some majorization inequalities in Euclidean Jordan algebras, Linear Algebra Appl., 461 (2014), 92–122. https://doi.org/10.1016/j.laa.2014.07.048 doi: 10.1016/j.laa.2014.07.048 |
[13] | J. Tao, An analog of Thompson's triangle inequality in Euclidean Jordan algebras, Electron. J. Linear Al., 37 (2021), 156–159. https://doi.org/10.13001/ela.2021.5585 doi: 10.13001/ela.2021.5585 |
[14] | J. Tao, J. Jeong, M. S. Gowda, Some log and weak majorization inequalities in Euclidean Jordan algebras, Linear Multilinear A., 70 (2022), 3189–3206. https://doi.org/10.1080/03081087.2020.1830020 doi: 10.1080/03081087.2020.1830020 |
[15] | F. Zhang, Matrix theory: Basic results and techniques, Springer Science+Business Media, 2011. https://doi.org/10.1007/978-1-4614-1099-7 |