Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article

A novel approach is proposed for obtaining exact travelling wave solutions to the space-time fractional Phi-4 equation

  • Received: 12 September 2024 Revised: 22 October 2024 Accepted: 08 November 2024 Published: 19 November 2024
  • MSC : 65F10, 65H10, 90C30, 90C33

  • Complex physical occurrences currently need the use of nonlinear fractional partial differential equations. This paper provides a new approach to using the conformable derivative of Atangana to achieve exact travelling wave solutions to the space time-fractional Phi-4 problem. Our method enables a more profound comprehension of complex mathematical physics processes. We validate the solutions and demonstrate the effectiveness of our approaches in solving difficult nonlinear problems in nuclear and particle physics. Singular solutions can be retrieved by using the proposed method on nonlinear partial differential equations (NFPDEs). Our results are shown using contour and three-dimensional charts, which demonstrate various soliton formations for varying parameter values in the nonlinear zone. This study contributes to our growing knowledge of optical soliton.

    Citation: Ikram Ullah, Muhammad Bilal, Aditi Sharma, Hasim Khan, Shivam Bhardwaj, Sunil Kumar Sharma. A novel approach is proposed for obtaining exact travelling wave solutions to the space-time fractional Phi-4 equation[J]. AIMS Mathematics, 2024, 9(11): 32674-32695. doi: 10.3934/math.20241564

    Related Papers:

    [1] Gerardo Sánchez Licea . Strong and weak measurable optimal controls. AIMS Mathematics, 2021, 6(5): 4958-4978. doi: 10.3934/math.2021291
    [2] Jun Moon . The Pontryagin type maximum principle for Caputo fractional optimal control problems with terminal and running state constraints. AIMS Mathematics, 2025, 10(1): 884-920. doi: 10.3934/math.2025042
    [3] Yinlan Chen, Wenting Duan . The Hermitian solution to a matrix inequality under linear constraint. AIMS Mathematics, 2024, 9(8): 20163-20172. doi: 10.3934/math.2024982
    [4] Sajid Iqbal, Muhammad Samraiz, Gauhar Rahman, Kottakkaran Sooppy Nisar, Thabet Abdeljawad . Some new Grüss inequalities associated with generalized fractional derivative. AIMS Mathematics, 2023, 8(1): 213-227. doi: 10.3934/math.2023010
    [5] Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat . Milne-Type inequalities via expanded fractional operators: A comparative study with different types of functions. AIMS Mathematics, 2024, 9(5): 11228-11246. doi: 10.3934/math.2024551
    [6] Jun Moon . A Pontryagin maximum principle for terminal state-constrained optimal control problems of Volterra integral equations with singular kernels. AIMS Mathematics, 2023, 8(10): 22924-22943. doi: 10.3934/math.20231166
    [7] Muhammad Tariq, Hijaz Ahmad, Abdul Ghafoor Shaikh, Soubhagya Kumar Sahoo, Khaled Mohamed Khedher, Tuan Nguyen Gia . New fractional integral inequalities for preinvex functions involving Caputo-Fabrizio operator. AIMS Mathematics, 2022, 7(3): 3440-3455. doi: 10.3934/math.2022191
    [8] Lu-Chuan Ceng, Shih-Hsin Chen, Yeong-Cheng Liou, Tzu-Chien Yin . Modified inertial subgradient extragradient algorithms for generalized equilibria systems with constraints of variational inequalities and fixed points. AIMS Mathematics, 2024, 9(6): 13819-13842. doi: 10.3934/math.2024672
    [9] Fátima Cruz, Ricardo Almeida, Natália Martins . Optimality conditions for variational problems involving distributed-order fractional derivatives with arbitrary kernels. AIMS Mathematics, 2021, 6(5): 5351-5369. doi: 10.3934/math.2021315
    [10] Saowaluck Chasreechai, Muhammad Aamir Ali, Surapol Naowarat, Thanin Sitthiwirattham, Kamsing Nonlaopon . On some Simpson's and Newton's type of inequalities in multiplicative calculus with applications. AIMS Mathematics, 2023, 8(2): 3885-3896. doi: 10.3934/math.2023193
  • Complex physical occurrences currently need the use of nonlinear fractional partial differential equations. This paper provides a new approach to using the conformable derivative of Atangana to achieve exact travelling wave solutions to the space time-fractional Phi-4 problem. Our method enables a more profound comprehension of complex mathematical physics processes. We validate the solutions and demonstrate the effectiveness of our approaches in solving difficult nonlinear problems in nuclear and particle physics. Singular solutions can be retrieved by using the proposed method on nonlinear partial differential equations (NFPDEs). Our results are shown using contour and three-dimensional charts, which demonstrate various soliton formations for varying parameter values in the nonlinear zone. This study contributes to our growing knowledge of optical soliton.



    Necessary and sufficient conditions for optimality play a crucial role in solving problems in the calculus of variations. The main necessary conditions for such problems are the well-known conditions of Euler, Weierstrass, Legendre and Jacobi. In many cases, depending on the smoothness of the assumptions, Euler's necessary condition corresponds to a second order differential equation which restricts solutions to lie in a family of trajectories with certain uniformity properties. Also, the necessary condition of Jacobi cannot be applied when the extremal has corners and is not nonsingular. This is an unfortunate feature since, in general, the admissible arcs or trajectories which are candidates for solving the problem are neither nonsingular nor smooth.

    On the other hand, one fundamental aspect of the theory of sufficient conditions for optimality consists in slightly strengthening the necessary conditions. Concretely, if an admissible arc satisfies the strengthened conditions of Euler, Legendre and Jacobi, then it is a strict weak minimum. Additionally, if this admissible arc also satisfies the strengthened condition of Weierstrass, then it is a strict strong minimum. Some of the techniques used to obtain sufficiency include the construction of a Mayer field on which the extremals are independent of the path with respect to an invariant integral commonly called the Hilbert integral, the existence of a symmetric solution of the matrix Riccati inequality associated with the problem, a verification function satisfying the Hamilton-Jacobi equation, a quadratic function that satisfies a Hamilton-Jacobi inequality, the nonexistence of conjugate points on the underlying half-closed time interval, or the incorporation of some convexity arguments on the functions delimiting the calculus of variations problem (see for example [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17] and references therein).

    It is important to mention that the smoothness and the nonsingularity assumptions are crucial in the sufficiency theories mentioned above. In other words, the classical sufficiency theory in the calculus of variations, in general, may not give a response when the extremal under consideration is singular or has corners. In fact, as mentioned in [6], there is a gap between the set of necessary and sufficient conditions and [6,Section 3.7] is entirely devoted to the study of some problems for which the nonsingularity assumption fails. There, one finds a method which is only applicable to particular examples and may not hold in general, since "although this algorithm sheds light on the theory, it provides no panacea. Indeed there are no panaceas." Additionally, we refer the reader to [13], where the importance of the nonsingularity assumption in the classical calculus of variations sufficiency theory is fully explained.

    In this paper we derive two new sufficiency results which provide sufficient conditions for strong local minima in certain classes of parametric and nonparametric calculus of variations problems of Bolza with variable or free end-points, inequality and equality nonlinear isoperimetric constrains, and nonlinear mixed pointwise inequality and equality constraints. The main novelty of our new sufficient theorems concerns their applicability to cases in which the extremals under consideration may be singular and nonsmooth, that is, the strengthened condition of Legendre and the continuity of the derivative of the proposed extremal are no longer required. More precisely, given an admissible extremal whose derivative is not continuous nor piecewise continuous but only essentially bounded, the elements comprising the new sufficiency theorems are the classical transversality condition, a crucial inequality which arises from the original algorithm used to prove the main result of the article, the necessary condition of Legendre, but not its strengthened version, the positivity of the second variation over the set of all nonnul admissible variations, and three refined Weierstrass conditions which are related to the functions delimiting the problems.

    Another distinguishing characteristic of the main sufficiency result of the nonparametric calculus of variations problem presented in this paper is the fact that the initial and final end-points of the states are completely free, that is, they are not only variable end-points but they may belong to any set which is not necessarily a smooth manifold described by some functions which usually involve some type of equality or inequality conditions.

    The paper is organized as follows. In Section 2 we pose the parametric calculus of variations problem we shall deal with together with some basic definitions and the statement of the main result of the article. In Section 3 we enunciate the nonparametric calculus of variations problem we shall study together with some basic definitions and a corollary which is also one of the main results of the paper. Section 4 is devoted to state two auxiliary lemmas in which the proof of the theorem is strongly based. Section 5 is dedicated to the proof of the main theorem of the article. In Section 6 we prove the lemmas given in Section 4 and, in the final section, we provide an example which shows how the sufficient theory developed in this paper widens the range of applicability of the classical calculus of variations theory.

    Suppose we are given an interval T:=[t0,t1] in R, and functions l(b):RpR, lγ(b):RpR (γ=1,,K), Ψi(b):RpRn (i=0,1), L(t,x,˙x):T×Rn×RnR, Lγ(t,x,˙x):T×Rn×RnR (γ=1,,K) and φ(t,x,˙x):T×Rn×RnRs. Set

    R:={(t,x,˙x)T×Rn×Rnφα(t,x,˙x)0(αR),φβ(t,x,˙x)=0(βS)}

    where R:={1,,r} and S:={r+1,,s} (r=0,1,,s). If r=0 then R= and we disregard statements involving φα. Similarly, if r=s then S= and we disregard statements involving φβ.

    It will be assumed throughout the paper that L, Lγ (γ=1,,K) and φ=(φ1,,φs) have first and second derivatives with respect to x and ˙x. Moreover, we shall assume that the functions l, lγ (γ=1,,K) and Ψi (i=0,1) are of class C2 on Rp. Also, if we denote by c(t,x,˙x) either L(t,x,˙x), Lγ(t,x,˙x) (γ=1,,K), φ(t,x,˙x) or any of its partial derivatives of order less than or equal to two with respect to x and ˙x, we shall assume that if C is any bounded subset of T×Rn×Rn, then |c(C)| is a bounded subset of R. Additionally, we shall assume that if {(Γq,Λq)} is any sequence in AC(T;Rn)×L1(T;Rn) such that for some UT measurable and some {(Γ0,Λ0)}AC(T;Rn)×L(T;Rn), (Γq(t),Λq(t))(Γ0(t),Λ0(t)) uniformly on U, then for all qN, c(t,Γq(t),Λq(t)) is measurable on U and

    c(t,Γq(t),Λq(t))c(t,Γ0(t),Λ0(t))uniformly on U.

    Note that all conditions above concerning the functions L, Lγ (γ=1,,K) and φ, are satisfied if the functions L, Lγ (γ=1,,K), φ and their first and second derivatives with respect to x and ˙x are continuous on T×Rn×Rn.

    Set

    X:=AC(T;Rn),Us:=L(T;Rs),A:=X×Rp.

    We shall use the notation xb to denote any element xb:=(x,b)A. Let B any subset of Rp which we shall call the set of parameters. The parametric calculus of variations problem we shall deal with, denoted by (P), is that of minimizing the functional

    I(xb):=l(b)+t1t0L(t,x(t),˙x(t))dt

    over all xbA satisfying the constraints

    {c(t,x(t),˙x(t))is integrable on T.bB.x(ti)=Ψi(b) for i=0,1.Ii(xb):=li(b)+t1t0Li(t,x(t),˙x(t))dt0(i=1,,k).Ij(xb):=lj(b)+t1t0Lj(t,x(t),˙x(t))dt=0(j=k+1,,K).(t,x(t),˙x(t))R(a.e. in T).

    Elements b=(b1,,bp) (the notation denotes transpose) in B will be called parameters, elements xb in A will be called arcs or trajectories, and a trajectory xb is admissible if it satisfies the constraints. The notation x0b0 refers to an element (x0,b0)A.

    Let us now introduce some definitions which will be used throughout the paper.

    An arc x0b0 solves (P) if it is admissible and I(x0b0)I(xb) for all admissible arcs xb. For strong local minima, an admissible arc x0b0 is called a strong minimum of (P) if it is a minimum of I relative to the following norm

    xb:=|b|+suptT|x(t)|=|b|+xC,

    that is, if for some ϵ>0, I(x0b0)I(xb) for all admissible arcs satisfying xbx0b0<ϵ.

    For all xX, we use the notation (˜x(t)) in order to represent (t,x(t),˙x(t)). Also, (˜x0(t)) represents (t,x0(t),˙x0(t)).

    Given K real numbers λ1,,λK, for any xb admissible define the functional I0 by

    I0(xb):=I(xb)+Kγ=1λγIγ(xb)=l0(b)+t1t0L0(˜x(t))dt,

    where l0:RpR is given by

    l0(b):=l(b)+Kγ=1λγlγ(b),

    and L0:T×Rn×RnR is given by

    L0(t,x,˙x):=L(t,x,˙x)+Kγ=1λγLγ(t,x,˙x).

    Given λ1,,λK, for all (t,x,˙x,ρ,μ)T×Rn×Rn×Rn×Rs, define the Hamiltonian of the problem by

    H(t,x,˙x,ρ,μ):=ρ,˙xL0(t,x,˙x)μ,φ(t,x,˙x),

    where ρRn denotes the adjoint variable and μRs is the associated multiplier of the mixed constraints.

    Given (ρ,μ)X×Us, and λ1,,λK, for all (t,x,˙x)T×Rn×Rn, define the following function associated to the Hamiltonian,

    F0(t,x,˙x):=H(t,x,˙x,ρ(t),μ(t))˙ρ(t),x.

    Given (ρ,μ)X×Us and λ1,,λK, for any xb admissible define the functional J0 by

    J0(xb):=ρ(t1),x(t1)ρ(t0),x(t0)+l0(b)+t1t0F0(˜x(t))dt.

    The notation yβ refers to any element (y,β) in A.

    Given (ρ,μ)X×Us, and λ1,,λK, for any xbA with ˙xL(T;Rn) and any yβA consider the first variations of J0 and Iγ (γ=1,,K) with respect to xb over yβ which are given, respectively, by

    J0(xb;yβ):=ρ(t1),y(t1)ρ(t0),y(t0)+l0(b)β+t1t0{F0x(˜x(t))y(t)+F0˙x(˜x(t))˙y(t)}dt,
    Iγ(xb;yβ):=lγ(b)β+t1t0{Lγx(˜x(t))y(t)+Lγ˙x(˜x(t))˙y(t)}dt.

    For all (t,x,˙x)T×Rn×Rn, denote by

    Ia(t,x,˙x):={αRφα(t,x,˙x)=0},

    the set of active indices of (t,x,˙x) with respect to the mixed inequality constraints.

    For all xbA, denote by

    ia(xb):={i=1,,kIi(xb)=0},

    the set of active indices of xb with respect to the isoperimetric inequality constraints.

    Given xbA, let Y(xb) be the set of all yβA with ˙yL2(T;Rn) satisfying

    {y(ti)=Ψi(b)β(i=0,1),Ii(xb;yβ)0(iia(xb)),Ij(xb;yβ)=0(j=k+1,,K),φαx(˜x(t))y(t)+φα˙x(˜x(t))˙y(t)0(a.e. in T,αIa(˜x(t))),φβx(˜x(t))y(t)+φβ˙x(˜x(t))˙y(t)=0(a.e. in T,βS).

    The set Y(xb) will be called the set of admissible variations along xb.

    Given (ρ,μ)X×Us, and λ1,,λK, for any xbA with ˙xL(T;Rn) and any yβA with ˙yL2(T;Rn), we define the second variation of J0 with respect to xb over yβ, by

    J0(xb;yβ):=l0(b)β,β+t1t02Ω0(x;t,y(t),˙y(t))dt,

    where for all (t,y,˙y)T×Rn×Rn,

    2Ω0(x;t,y,˙y):=y,F0xx(˜x(t))y+2y,F0x˙x(˜x(t))˙y+˙y,F0˙x˙x(˜x(t))˙y.

    Given (ρ,μ)X×Us, λ1,,λK and x0b0A, we say that x0b0 is singular, if for some τT, |H˙x˙x(˜x0(τ),ρ(τ),μ(τ))|=0. It satisfies the Legendre condition if

    F0˙x˙x(˜x0(t))=H˙x˙x(˜x0(t),ρ(t),μ(t))0(a.e. in T)

    and the strengthened Legendre condition, if F0˙x˙x(˜x0(t))>0 (tT).

    Denote by E0 the Weierstrass excess function of F0, given by

    E0(t,x,˙x,u):=F0(t,x,u)F0(t,x,˙x)F0˙x(t,x,˙x)(u˙x).

    Similarly, the Weierstrass excess function of Lγ (γ=1,,K), is given by

    Eγ(t,x,˙x,u):=Lγ(t,x,u)Lγ(t,x,˙x)Lγ˙x(t,x,˙x)(u˙x).

    For all π=(π1,,πn)Rn, set

    V(π):=(1+|π|2)1/21.

    For all xX, define

    D(x):=V(x(t0))+t1t0V(˙x(t))dt.

    As we mentioned above the symbol denotes transpose.

    It is well-known that, under certain normality assumptions (see for example [10]), if x0b0 is a strong minimum of (P), then there exist ρX and μUs with μα(t)0 and μα(t)φα(˜x0(t))=0 (αR,a.e. in T) and multipliers λ1,,λK with λi0 and λiIi(x0b0)=0 (i=1,,k) such that

    ˙ρ(t)=Hx(˜x0(t),ρ(t),μ(t))  and  H˙x(˜x0(t),ρ(t),μ(t))=0(a.e. in T).

    The relations given above are the Euler-Lagrange equations of the constrained problem (P) and if (x0,ρ,μ) satisfies the Euler-Lagrange equations, then (x0,ρ,μ) will be called an extremal.

    The following theorem is the main result of the article. Given an admissible arc x0b0 with ˙x0 neither continuous nor piecewise continuous but only essentially bounded, this theorem gives sufficient conditions assuring that x0b0 is a strong minimum of problem (P). Hypothesis (ⅰ) of Theorem 2.1 is known as the transversality condition, hypothesis (ⅱ) arises from the original proof of the theorem, condition (ⅲ) is the necessary condition of Legendre, but not its strengthened version, hypothesis (ⅳ) is the positivity of the second variation over the set of all nonnull admissible variations and finally, hypothesis (ⅴ) involves three conditions related to the Weierstrass excess functions.

    2.1 Theorem: Let x0b0 be an admissible arc with ˙x0L(T;Rn). Assume that Ia(˜x0()) is piecewise constant on T, and there exist (ρ,μ)X×Us with μα(t)0 and μα(t)φα(˜x0(t))=0 (αR,a.e. in T), two positive numbers h,ϵ, and multipliers λ1,,λK with λi0 and λiIi(x0b0)=0 (i=1,,k) such that (x0,ρ,μ) is an extremal and the following holds:

    (i) l0(b0)+ρ(t1)Ψ1(b0)ρ(t0)Ψ0(b0)=0.

    (ii) ρ(t1)Ψ1(b0;β)ρ(t0)Ψ0(b0;β)0for all βRp.

    (iii) H˙x˙x(˜x0(t),ρ(t),μ(t))0 (a.e. in T).

    (iv) J0(x0b0;yβ)>0 for all nonnull yβY(x0b0).

    (v) For all xb admissible with xx0C<ϵ,

    a. E0(t,x(t),˙x0(t),˙x(t))0 (a.e. in T).

    b. t1t0E0(t,x(t),˙x0(t),˙x(t))dtht1t0V(˙x(t)˙x0(t))dt.

    c. t1t0E0(t,x(t),˙x0(t),˙x(t))dth|t1t0Eγ(t,x(t),˙x0(t),˙x(t))dt| (γ=1,,K).

    Then for some θ1,θ2>0 and all admissible trajectories xb satisfying xbx0b0<θ1,

    I(xb)I(x0b0)+θ2min{|bb0|2,D(xx0)}.

    In particular, x0b0 is a strong minimum of (P).

    Suppose we are given an interval T:=[t0,t1] in R, two sets B0,B1Rn and functions (x1,x2):Rn×RnR, γ(x1,x2):Rn×RnR (γ=1,,K), L(t,x,˙x):T×Rn×RnR, Lγ(t,x,˙x):T×Rn×RnR (γ=1,,K) and ϕ(t,x,˙x):T×Rn×RnRs. Set

    ˉR:={(t,x,˙x)T×Rn×Rnϕα(t,x,˙x)0(αR),ϕβ(t,x,˙x)=0(βS)}

    where R:={1,,r} and S:={r+1,,s} (r=0,1,,s). If r=0 then R= and we disregard statements involving φα. Similarly, if r=s then S= and we disregard statements involving φβ.

    It will be assumed throughout this section that L, Lγ (γ=1,,K) and ϕ=(ϕ1,,ϕs) have first and second derivatives with respect to x and ˙x. Moreover, we shall assume that the functions , γ (γ=1,,K) are of class C2 on Rn×Rn.

    Also, if we denote by c(t,x,˙x) either L(t,x,˙x), Lγ(t,x,˙x) (γ=1,,K), ϕ(t,x,˙x) or any of its partial derivatives of order less than or equal to two with respect to x and ˙x, we shall assume that all the assumptions posed in Section 2 in the statement of the problem are satisfied.

    As in Section 2, X will denote the space of absolutely continuous functions mapping T to Rn and Us:=L(T;Rs) the space of essentially bounded functions mapping T to Rs.

    The nonparametric calculus of variations problem we shall deal with, denoted by (ˉP), consists in minimizing the functional

    J(x):=(x(t0),x(t1))+t1t0L(t,x(t),˙x(t))dt

    over all xX satisfying the constraints

    {c(t,x(t),˙x(t))is integrable on T.x(ti)Bi for i=0,1.Ji(x):=i(x(t0),x(t1))+t1t0Li(t,x(t),˙x(t))dt0(i=1,,k).Jj(x):=j(x(t0),x(t1))+t1t0Lj(t,x(t),˙x(t))dt=0(j=k+1,,K).(t,x(t),˙x(t))ˉR(a.e. in T).

    Elements x in X will be called arcs or trajectories, and a trajectory x is admissible if it satisfies the constraints.

    An arc x0 solves (ˉP) if it is admissible and J(x0)J(x) for all admissible arcs x. For strong minima, an admissible arc x0 is called a strong minimum of (ˉP) if it is a minimum of J relative to the norm

    x:=suptT|x(t)|,

    that is, if for some ϵ>0, J(x0)J(x) for all admissible arcs satisfying xx0<ϵ.

    Let Ψ:RnRn×Rn be any function of class C2 such that B0×B1Ψ(Rn). Associate the nonparametric problem (ˉP) with the parametric problem of Section 2, which we denote by (PΨ), that is, (PΨ) will be the parametric problem given in Section 2, with p=n, B=Ψ1(B0×B1), l=Ψ, lγ=γΨ (γ=1,,K), L=L, Lγ=Lγ (γ=1,,K), φ=ϕ and Ψ0,Ψ1 the components of Ψ, that is, Ψ=(Ψ0,Ψ1). Recall that the notation xb means (x,b) where bRn is a parameter.

    3.1 Lemma: The following is satisfied:

    (i) xb is an admissible arc of (PΨ) if and only if x is an admissible arc of (ˉP) and bΨ1(x(t0),x(t1)).

    (ii) If xb is an admissible arc of (PΨ), then

    J(x)=I(xb).

    (iii) If x0b0 is a solution of (PΨ), then x0 is a solution of (ˉP).

    Proof: Conditions (ⅰ) and (ⅱ) follow from the definitions of the problems. Now, let x an admissible arc of (ˉP) and let bΨ1(x(t0),x(t1)). By (ⅰ), x0 is an admissible arc of (ˉP) and xb is an admissible arc of (PΨ). Then by (ⅱ),

    J(x0)=I(x0b0)I(xb)=J(x)

    which shows (ⅲ).

    The following corollary which is a consequence of Theorem 2.1 and Lemma 3.1, provides a set of sufficient conditions of problem (ˉP).

    3.2 Corollary: Let Ψ:RnRn×Rn be any function of class C2 such that B0×B1Ψ(Rn) and let (PΨ) be the parametric problem defined in the previous paragraph of Lemma 3.1. Let x0b0 be an admissible arc of (PΨ) with ˙x0L(T;Rn). Assume that Ia(˜x0()) is piecewise constant on T, and there exist (ρ,μ)X×Us with μα(t)0 and μα(t)φα(˜x0(t))=0 (αR,a.e. in T), two positive numbers h,ϵ, and multipliers λ1,,λK with λi0 and λiIi(x0b0)=0 (i=1,,k) such that (x0,ρ,μ) is an extremal and the following holds:

    (i) l0(b0)+ρ(t1)Ψ1(b0)ρ(t0)Ψ0(b0)=0.

    (ii) ρ(t1)Ψ1(b0;β)ρ(t0)Ψ0(b0;β)0for all βRn.

    (iii) H˙x˙x(˜x0(t),ρ(t),μ(t))0 (a.e. in T).

    (iv) J0(x0b0;yβ)>0 for all nonnull yβY(x0b0).

    (v) For all xb admissible with xx0<ϵ,

    a. E0(t,x(t),˙x0(t),˙x(t))0 (a.e. in T).

    b. t1t0E0(t,x(t),˙x0(t),˙x(t))dtht1t0V(˙x(t)˙x0(t))dt.

    c. t1t0E0(t,x(t),˙x0(t),˙x(t))dth|t1t0Eγ(t,x(t),˙x0(t),˙x(t))dt| (γ=1,,K).

    Then, x0 is a strong minimum of (ˉP).

    In this section we state two auxiliary results which will be used to prove Theorem 2.1. The proof of these results will be given in Section 6. As before X denotes AC(T;Rn).

    In the following two lemmas, we shall assume that we are given x0X and {xq} a sequence in X such that

    limqD(xqx0)=0  and  dq:=[2D(xqx0)]1/2>0(qN).

    For all qN and tT, let

    yq(t):=xq(t)x0(t)dq.

    We say that ˙xq(t)˙x0(t) almost uniformly on T, if for any ϵ>0, there exists UϵT measurable with m(Uϵ)<ϵ such that ˙xq(t)˙x0(t) uniformly on TUϵ.

    4.1 Lemma: For some subsequence of {xq}, again denoted by {xq}, and some y0X with ˙y0L2(T;Rn), ˙xq(t)˙x0(t) almost uniformly on T, yq(t)y0(t) uniformly on T and {˙yq} converges weakly in L1(T;Rn) to ˙y0.

    4.2 Lemma: Let UT measurable, R0L(U;Rn×n) and {Rq} a sequence in L(U;Rn×n). If ˙xq(t)˙x0(t) uniformly on U, Rq(t)R0(t) uniformly on U and R0(t)0 (tU), then

    lim infqURq(t)˙yq(t),˙yq(t)dtUR0(t)˙y0(t),˙y0(t)dt.

    The proof of Theorem 2.1 will be divided in three Lemmas. In Lemmas 5.1, 5.2 and 5.3 below, we shall be assuming that all the hypotheses of Theorem 2.1 are satisfied. Before enunciating the lemmas, we shall introduce some definitions.

    First of all, note that given x=(x1,,xn)Rn and b=(b1,,bp)Rp, if we define xi,bjRn+p by xi:=(x1,,xn,0,,0) and bj:=(0,,0,b1,,bp), then

    xi+bj=(x1,,xn,b1,,bp)=(xb)Rn+p.

    Define ˜F0:T×Rn+p×RnR by

    ˜F0(t,ξ,˙x):=l0(ξn+1,,ξn+p)t1t0+F0(t,ξ1,,ξn,˙x).

    Observe that the Weierstrass excess function ˜E0:T×Rn+p×Rn×RnR of ˜F0 is given by

    ˜E0(t,ξ,˙x,u):=˜F0(t,ξ,u)˜F0(t,ξ,˙x)˜F0˙x(t,ξ,˙x)(u˙x).

    It is clear that for all (t,x,˙x,u)T×Rn×Rn×Rn and all bRp,

    ˜E0(t,xi+bj,˙x,u)=E0(t,x,˙x,u).

    Define

    ˜J0(xb):=ρ(t1),x(t1)ρ(t0),x(t0)+t1t0˜F0(t,x(t)i+bj,˙x(t))dt.

    We have that J0(xb)=˜J0(xb) for all xbA, and

    ˜J0(xb)=˜J0(x0b0)+˜J0(x0b0;xbx0b0)+˜K0(x0b0;xb)+˜E0(x0b0;xb) (1)

    where

    ˜E0(x0b0;xb):=t1t0˜E0(t,x(t)i+bj,˙x0(t),˙x(t))dt,˜K0(x0b0;xb):=t1t0{˜M0(t,x(t)i+bj)+˙x(t)˙x0(t),˜N0(t,x(t)i+bj)}dt,˜J0(x0b0;xbx0b0):=ρ(t1),x(t1)x0(t1)ρ(t0),x(t0)x0(t0)+t1t0{˜F0ξ(t,x0(t)i+b0j,˙x0(t))([x(t)x0(t)]i+[bb0]j)+˜F0˙x(t,x0(t)i+b0j,˙x0(t))(˙x(t)˙x0(t))}dt,

    and ˜M0, ˜N0 are given by

    ˜M0(t,xi+bj):=˜F0(t,xi+bj,˙x0(t))˜F0(t,x0(t)i+b0j,˙x0(t))˜F0ξ(t,x0(t)i+b0j,˙x0(t))([xx0(t)]i+[bb0]j),
    ˜N0(t,xi+bj):=˜F0˙x(t,xi+bj,˙x0(t))˜F0˙x(t,x0(t)i+b0j,˙x0(t)).

    We have,

    ˜M0(t,xi+bj)=12[xx0(t)]i+[bb0]j,˜P0(t,xi+bj)([xx0(t)]i+[bb0]j), (2a)
    ˜N0(t,xi+bj)=˜Q0(t,xi+bj)([xx0(t)]i+[bb0]j), (2b)

    where

    ˜P0(t,xi+bj):=210(1λ)˜F0ξξ(t,[x0(t)+λ(xx0(t))]i+[b0+λ(bb0)]j,˙x0(t))dλ,˜Q0(t,xi+bj):=10˜F0˙xξ(t,[x0(t)+λ(xx0(t))]i+[b0+λ(bb0)]j,˙x0(t))dλ.

    5.1 Lemma: For some ν,κ>0 (κϵ) and any admissible arc xb satisfying xbx0b0<κ,

    ˜E0(x0b0;xb)h[D(xx0)V(x(t0)x0(t0))],|˜K0(x0b0;xb)|νxbx0b0[1+D(xx0)].

    Proof: By condition (v)(b) of Theorem 2.1, given xb admissible with xbx0b0<ϵ,

    ˜E0(x0b0;xb)=t1t0˜E0(t,x(t)i+bj,˙x0(t),˙x(t))dt=t1t0E0(t,x(t),˙x0(t),˙x(t))dtht1t0V(˙x(t)˙x0(t))dt=h[D(xx0)V(x(t0)x0(t0))].

    On the other hand, by (2) and using [t,b] in order to denote (t,x(t)i+bj), observe that for some constants c0,c1>0, for all xb admissible with xbx0b0<1 and almost all tT,

    |˜M0[t,b]+˙x(t)˙x0(t),˜N0[t,b]|=|12[x(t)x0(t)]i+[bb0]j,˜P0[t,b]([x(t)x0(t)]i+[bb0]j)+2˜Q0[t,b](˙x(t)˙x0(t))|12|[x(t)x0(t)]i+[bb0]j|[|˜P0[t,b]||[x(t)x0(t)]i+[bb0]j|+2|˜Q0[t,b]||˙x(t)˙x0(t)|]c0|[x(t)x0(t)]i+[bb0]j|[|[x(t)x0(t)]i+[bb0]j|+|˙x(t)˙x0(t)|]c0|[x(t)x0(t)]i+[bb0]j|[|x(t)x0(t)|+|bb0|+|˙x(t)˙x0(t)|]c0|[x(t)x0(t)]i+[bb0]j|[xbx0b0+|˙x(t)˙x0(t)|]c0|[x(t)x0(t)]i+[bb0]j|[1+|˙x(t)˙x0(t)|]c1|[x(t)x0(t)]i+[bb0]j|[1+|˙x(t)˙x0(t)|2]1/2.

    Setting ν:=max{c1,c1(t1t0)}, for all xb admissible with xbx0b0<1,

    |˜K0(x0b0;xb)|c1xbx0b0t1t0[1+V(˙x(t)˙x0(t))]dtνxbx0b0[1+D(xx0)V(x(t0)x0(t0))]νxbx0b0[1+D(xx0)]

    and so the conclusion of the lemma is obtained with κ=min{ϵ,1}.

    5.2 Lemma: If conclusion of Theorem 2.1 is false, then there exists a subsequence {xqbq} of admissible arcs such that

    limqD(xqx0)=0  and  dq:=[2D(xqx0)]1/2>0(qN).

    Proof: If conclusion of Theorem 2.1 is false, then for all θ1,θ2>0, there exists an admissible arc xb such that

    xbx0b0<θ1andI(xb)<I(x0b0)+θ2min{|bb0|2,D(xx0)}. (3)

    Since

    μα(t)0 (αR,a.e. in T)  and  λi0 (i=1,,k),

    if xb is admissible, then I(xb)J0(xb). Also, since

    μα(t)φα(˜x0(t))=0 (αR,a.e. in T)  and  λiIi(x0b0)=0 (i=1,,k),

    then I(x0b0)=J0(x0b0). Therefore (3) implies that, for all θ1,θ2>0, there exists xb admissible with

    xbx0b0<θ1  and  J0(xb)<J0(x0b0)+θ2min{|bb0|2,D(xx0)}.

    Let κ and ν be the positive numbers given in Lemma 5.1. Thus, if conclusion of Theorem 2.1 is false, then for all qN, there exists xqbq admissible such that

    xqbqx0b0<min{κ,1/q},J0(xqbq)J0(x0b0)<min{|bqb0|2q,D(xqx0)q}. (4)

    Clearly, D(xqx0)=0 if and only if xq=x0. Then, by the second relation of (4),

    D(xqx0)=0bqb0.

    Suppose D(xqx0)=0 for infinitely many q's. For i=0,1, we have

    0=xq(ti)x0(ti)=Ψi(bq)Ψi(b0)=10Ψi(b0+λ[bqb0])(bqb0)dλ, (5)
    0=Ψi(bq)Ψi(b0)=Ψi(b0)(bqb0)+10(1λ)Ψi(b0+λ[bqb0];bqb0)dλ. (6)

    Denoting by (bq,b0) the line segment in Rp joining the points bq and b0, by the second relation of (4), by condition (ⅰ) of Theorem 2.1, by (6), and the mean value theorem, there exists Ξq(bq,b0) such that

    0>J0(x0bq)J0(x0b0)=l0(bq)l0(b0)=l0(b0)(bqb0)+12l0(Ξq)(bqb0),bqb0=ρ(t0)Ψ0(b0)(bqb0)ρ(t1)Ψ1(b0)(bqb0)+12l0(Ξq)(bqb0),bqb0=1i=0(1)i+110(1λ)ρ(ti)Ψi(b0+λ[bqb0];bqb0)dλ+12l0(Ξq)(bqb0),bqb0. (7)

    Choose an appropriate subsequence of {(bqb0)/|bqb0|} (without relabeling), such that

    limqbqb0|bqb0|=β0 (8)

    for some β0Rp with |β0|=1. By (5),

    Ψi(b0)β0=0(i=0,1). (9)

    For all (t,ξ,˙x)T×Rn+p×Rn and γ=1,,K, if we set

    ˜Lγ(t,ξ,˙x):=lγ(ξn+1,,ξn+p)t1t0+Lγ(t,ξ1,,ξn,˙x),

    and for all (t,ξ,˙x,u)T×Rn+p×Rn×Rn and γ=1,,K, if we set

    ˜Eγ(t,ξ,˙x,u):=˜Lγ(t,ξ,u)˜Lγ(t,ξ,˙x)˜Lγ˙x(t,ξ,˙x)(u˙x),

    we have that for all xbA and γ=1,,K,

    ˜Iγ(xb)=˜Iγ(x0b0)+˜Iγ(x0b0;xbx0b0)+˜Kγ(x0b0;xb)+˜Eγ(x0b0;xb)

    where

    ˜Eγ(x0b0;xb):=t1t0˜Eγ(t,x(t)i+bj,˙x0(t),˙x(t))dt,˜Kγ(x0b0;xb):=t1t0{˜Mγ(t,x(t)i+bj)+˙x(t)˙x0(t),˜Nγ(t,x(t)i+bj)}dt,˜Iγ(x0b0;xbx0b0):=t1t0{˜Lγξ(t,x0(t)i+b0j,˙x0(t))([x(t)x0(t)]i+[bb0]j)+˜Lγ˙x(t,x0(t)i+b0j,˙x0(t))(˙x(t)˙x0(t))}dt,˜Iγ(xb):=t1t0˜Lγ(t,x(t)i+bj,˙x(t))dt,

    and ˜Mγ, ˜Nγ are given by

    ˜Mγ(t,xi+bj):=˜Lγ(t,xi+bj,˙x0(t))˜Lγ(t,x0(t)i+b0j,˙x0(t))˜Lγξ(t,x0(t)i+b0j,˙x0(t))([xx0(t)]i+[bb0]j),
    ˜Nγ(t,xi+bj):=˜Lγ˙x(t,xi+bj,˙x0(t))˜Lγ˙x(t,x0(t)i+b0j,˙x0(t)).

    We have

    ˜Mγ(t,xi+bj)=12[xx0(t)]i+[bb0]j,˜Pγ(t,xi+bj)([xx0(t)]i+[bb0]j),
    ˜Nγ(t,xi+bj)=˜Qγ(t,xi+bj)([xx0(t)]i+[bb0]j),

    where

    ˜Pγ(t,xi+bj):=210(1λ)˜Lγξξ(t,[x0(t)+λ(xx0(t))]i+[b0+λ(bb0)]j,˙x0(t))dλ,˜Qγ(t,xi+bj):=10˜Lγ˙xξ(t,[x0(t)+λ(xx0(t))]i+[b0+λ(bb0)]j,˙x0(t))dλ.

    Since x0bq and x0b0 are admissible, for all iia(x0b0), we have

    0Ii(x0bq)=Ii(x0bq)Ii(x0b0)=˜Ii(x0bq)˜Ii(x0b0)=˜Ii(x0b0;x0bqx0b0)+˜Ki(x0b0;x0bq)+˜Ei(x0b0;x0bq)=Ii(x0b0;x0bqx0b0)+˜Ki(x0b0;x0bq)=li(b0)(bqb0)+˜Ki(x0b0;x0bq).

    As one readily verifies, for all γ=1,,K,

    limq˜Kγ(x0b0;x0bq)|bqb0|=0.

    Then, for iia(x0b0),

    0li(b0)β0=Ii(x0b0;0β0). (10)

    On the other hand, once again since x0bq and x0b0 are admissible, for all j=k+1,,K, we have

    0=Ij(x0bq)Ij(x0b0)=˜Ij(x0bq)˜Ij(x0b0)=˜Ij(x0b0;x0bqx0b0)+˜Kj(x0b0;x0bq)+˜Ej(x0b0;x0bq)=Ij(x0b0;x0bqx0b0)+˜Kj(x0b0;x0bq)=lj(b0)(bqb0)+˜Kj(x0b0;x0bq).

    Then, for j=k+1,,K,

    0=lj(b0)β0=Ij(x0b0;0β0). (11)

    Consequently, by (9), (10) and (11), 0β0Y(x0b0).

    By (7), (8) and condition (ⅱ) of Theorem 2.1, it follows that

    012[ρ(t1)Ψ1(b0;β0)ρ(t0)Ψ0(b0;β0)+l0(b0)β0,β0]12l0(b0)β0,β0=12J0(x0b0;0β0)

    which contradicts (ⅳ) of Theorem 2.1. Therefore, we may assume that for all qN,

    dq=[2D(xqx0)]1/2>0.

    Since (x0,ρ,μ) is an extremal, for all qN,

    ˜J0(x0b0;xqbqx0b0)=ρ(t1),xq(t1)x0(t1)ρ(t0),xq(t0)x0(t0)+l0(b0)(bqb0)

    and thus

    limq˜J0(x0b0;xqbqx0b0)=0. (12)

    By (1), the first relation of (4) and Lemma 5.1, for all qN,

    ˜J0(xqbq)˜J0(x0b0)=˜J0(x0b0;xqbqx0b0)+˜K0(x0b0;xqbq)+˜E0(x0b0;xqbq)˜J0(x0b0;xqbqx0b0)νxqbqx0b0+D(xqx0)(hνxqbqx0b0)hV(xq(t0)x0(t0)),

    then, by (4), for all qN,

    D(xqx0)(hνq1q)<νq+hV(xq(t0)x0(t0))˜J0(x0b0;xqbqx0b0).

    By (12),

    limqD(xqx0)=0.

    5.3 Lemma: If conclusion of Theorem 2.1 is false, then condition (iv) of Theorem 2.1 is false.

    Proof: Let {xqbq} be the sequence of admissible arcs given in Lemma 5.2. Then,

    limqD(xqx0)=0  and  dq=[2D(xqx0)]1/2>0(qN).

    Case (1): Suppose first that the sequence {(bqb0)/dq} is bounded in Rp.

    For all qN and tT, define

    yq(t):=xq(t)x0(t)dq  and  ωq(t):=yq(t)i+bqb0dqj.

    By Lemma 4.1, for some y0X with ˙y0L2(T;Rn) and a subsequence of {xq}, again denoted by {xq}, {˙yq} converges weakly in L1(T;Rn) to ˙y0. Once again, by Lemma 4.1,

    limqyq(t)=y0(t)uniformly on  T. (13)

    Since the sequence {(bqb0)/dq} is bounded in Rp, then we may assume that there exists some β0Rp such that

    limqbqb0dq=β0. (14)

    First, we are going to show that for i=0,1,

    y0(ti)=Ψi(b0)β0. (15)

    Note first that for i=0,1 and all qN, we have that

    yq(ti)=10Ψi(b0+λ[bqb0])(bqb0)dqdλ. (16)

    By (13), (14) and (16), we obtain (15). Now, we claim that

    J^{\prime\prime}_0({x_0}_{b_0};{y_0}_{\beta_0})\le0 \ \ \text{and}\ \ {y_0}_{\beta_0}\not\equiv(0, 0). (17)

    To prove it, observe that by (2), (13) and (14),

    \begin{eqnarray*} \lim\limits_{q\to\infty}\frac{{\tilde M}_0(t, x^q(t){\bf i}+b_q{\bf j})}{d_q^2} & = & \lim\limits_{q\to\infty}{ {{1} \over {2}}} \langle \omega_q(t), {\tilde P}_0(t, x^q(t){\bf i}+b_q{\bf j})\omega_q(t) \rangle \\ & = & { {{1} \over {2}}} \langle y_0(t){\bf i}+{\beta_0}{\bf j}, {\tilde F}_{0\xi\xi}(t, x_0(t){\bf i}+b_0{\bf j}, {\dot x}_0(t))[y_0(t){\bf i}+{\beta_0}{\bf j}] \rangle, \\ \end{eqnarray*}
    \lim\limits_{q\to\infty}\frac{{\tilde N}_0(t, x^q(t){\bf i}+b_q{\bf j})}{d_q} = \lim\limits_{q\to\infty}{\tilde Q}_0(t, x^q(t){\bf i}+b_q{\bf j})\omega_q(t) = {\tilde F}_{0{\dot x}\xi}(t, x_0(t){\bf i}+b_0{\bf j}, {\dot x}_0(t))[y_0(t){\bf i}+{\beta_0}{\bf j}]

    both uniformly on T . With this in mind and since \{{\dot y}_q\} converges weakly in L^1(T; {\bf R}^n) to {\dot y}_0 , we have

    \begin{eqnarray*} \lim\limits_{q\to\infty}\frac{{\tilde K}_0({x_0}_{b_0};x^q_{b_q})}{d_q^2} & = & \frac{1}{2} \int_{t_0}^{t_1} \{ \langle y_0(t){\bf i}+{\beta_0}{\bf j}, {\tilde F}_{0\xi\xi}(t, x_0(t){\bf i}+b_0{\bf j}, {\dot x}_0(t))[y_0(t){\bf i}+{\beta_0}{\bf j}] \rangle \\ && \hskip1.5cm + 2\langle {\dot y}_0(t), {\tilde F}_{0{\dot x}\xi}(t, x_0(t){\bf i}+b_0{\bf j}, {\dot x}_0(t))[y_0(t){\bf i}+{\beta_0}{\bf j}] \rangle \}dt. \\ \end{eqnarray*} (18)

    Since (x_0, \rho, \mu) is an extremal and by condition (ⅰ) of Theorem 2.1, it follows that

    \begin{eqnarray*} && \lim\limits_{q\to\infty}\frac{\tilde J^\prime_0({x_0}_{b_0};x^q_{b_q}-{x_0}_{b_0})}{d_q^2} \\ & = & \lim\limits_{q\to\infty}\frac{1}{d_q^2} [\langle \rho(t_1), x^q(t_1)-x_0(t_1) \rangle - \langle \rho(t_0), x^q(t_0)-x_0(t_0) \rangle + l_0^\prime(b_0)(b_q-b_0)] \\ & = & \lim\limits_{q\to\infty}\frac{1}{d_q^2} [\rho^\ast(t_1)(\Psi_1(b_q)-\Psi_1(b_0)-\Psi_1^\prime(b_0)(b_q-b_0)) \\ && \hskip2cm - \rho^\ast(t_0)(\Psi_0(b_q)-\Psi_0(b_0)-\Psi_0^\prime(b_0)(b_q-b_0))] \\ & = & \lim\limits_{q\to\infty}\frac{1}{d_q^2} \int_0^1 \sum\limits_{i = 0}^1 (-1)^{i+1}(1-\lambda)\rho^\ast(t_i)\Psi_i^{\prime\prime}(b_0+\lambda[b_q-b_0];b_q-b_0)d\lambda \\ & = & { {{1} \over {2}}} [\rho^\ast(t_1)\Psi_1^{\prime\prime}(b_0;\beta_0) - \rho^\ast(t_0)\Psi_0^{\prime\prime}(b_0;\beta_0)]. \\ \end{eqnarray*} (19)

    Consequently, by (1), (4), (19), and condition (ⅱ) of Theorem 2.1,

    0\ge \lim\limits_{q\to\infty}\frac{{\tilde K}_0({x_0}_{b_0};x^q_{b_q})}{d_q^2} + \liminf\limits_{q\to\infty}\frac{{\tilde {\cal E}}_0({x_0}_{b_0};x^q_{b_q})}{d_q^2}. (20)

    Now, let us show that

    \liminf\limits_{q\to\infty}\frac{{\tilde {\cal E}}_0({x_0}_{b_0};x^q_{b_q})}{d_q^2} \ge \frac{1}{2} \int_{t_0}^{t_1} \langle {\dot y}_0(t), {\tilde F}_{0{\dot x}{\dot x}}(t, x_0(t){\bf i}+b_0{\bf j}, {\dot x}_0(t)){\dot y}_0(t) \rangle dt. (21)

    To this end, let U a measurable subset of T such that {\dot x}^q(t)\to {\dot x}_0(t) uniformly on U . For all q\in{\bf N} and t\in U , we have that

    \frac{1}{d_q^2}{\tilde E}_0(t, x^q(t){\bf i}+b_q{\bf j}, {\dot x}_0(t), {\dot x}^q(t)) = { {{1} \over {2}}} \langle {\dot y}_q(t), R_q(t){\dot y}_q(t) \rangle,

    where

    R_q(t): = 2\int_0^1 (1-\lambda){\tilde F}_{0{\dot x}{\dot x}}(t, x^q(t){\bf i}+b_q{\bf j}, {\dot x}_0(t)+\lambda[{\dot x}^q(t)-{\dot x}_0(t)])d\lambda.

    Clearly,

    \lim\limits_{q\to\infty}R_q(t) = R_0(t): = {\tilde F}_{0{\dot x}{\dot x}}(t, x_0(t){\bf i}+b_0{\bf j}, {\dot x}_0(t)) \, \, \text{uniformly on}\ U.

    By condition (ⅲ) of Theorem 2.1, we have

    {\tilde F}_{0{\dot x}{\dot x}}(t, x_0(t){\bf i}+b_0{\bf j}, {\dot x}_0(t)) = R_0(t) \ge 0 \quad (t\in U).

    With this in mind, and since by (v)(a) of Theorem 2.1 for all q\in{\bf N} ,

    E_0(t, x^q(t), {\dot x}_0(t), {\dot x}^q(t))\ge0 \quad (\text{a.e. in}\ T),

    by Lemma 4.2,

    \begin{eqnarray*} \liminf\limits_{q\to\infty}\frac{{\tilde {\cal E}}_0({x_0}_{b_0};x^q_{b_q})}{d_q^2} & = & \liminf\limits_{q\to\infty}\frac{1}{d_q^2}\int_{t_0}^{t_1} {\tilde E}_0(t, x^q(t){\bf i}+b_q{\bf j}, {\dot x}_0(t), {\dot x}^q(t)) dt \\ & = & \liminf\limits_{q\to\infty}\frac{1}{d_q^2}\int_{t_0}^{t_1} E_0(t, x^q(t), {\dot x}_0(t), {\dot x}^q(t)) dt \\ &\ge& \liminf\limits_{q\to\infty}\frac{1}{d_q^2}\int_U E_0(t, x^q(t), {\dot x}_0(t), {\dot x}^q(t)) dt \\ & = & \liminf\limits_{q\to\infty}\frac{1}{d_q^2}\int_U {\tilde E}_0(t, x^q(t){\bf i}+b_q{\bf j}, {\dot x}_0(t), {\dot x}^q(t)) dt \\ & = & \frac{1}{2}\liminf\limits_{q\to\infty}\int_U \langle {\dot y}_q(t), R_q(t){\dot y}_q(t) \rangle dt \ge \frac{1}{2}\int_U \langle {\dot y}_0(t), R_0(t){\dot y}_0(t) \rangle dt. \\ \end{eqnarray*}

    As U can be chosen to differ from T by a set of an arbitrarily small measure and the function

    t\mapsto\langle {\dot y}_0(t), R_0(t){\dot y}_0(t) \rangle

    belongs to L^1(T; {\bf R}) , this inequality holds when U = T , and this establishes (21). With this in mind, by (18) and (20), we have

    \begin{eqnarray*} 0 &\ge& \int_{t_0}^{t_1} \{ \langle {\dot y}_0(t), {\tilde F}_{0{\dot x}{\dot x}}(t, x_0(t){\bf i}+b_0{\bf j}, {\dot x}_0(t)){\dot y}_0(t) \rangle + 2 \langle {\dot y}_0(t), {\tilde F}_{0{\dot x}\xi}(t, x_0(t){\bf i}+b_0{\bf j}, {\dot x}_0(t))[y_0(t){\bf i}+{\beta_0}{\bf j}] \rangle \\ && \hskip1cm + \langle y_0(t){\bf i}+{\beta_0}{\bf j}, {\tilde F}_{0\xi\xi}(t, x_0(t){\bf i}+b_0{\bf j}, {\dot x}_0(t))[y_0(t){\bf i}+{\beta_0}{\bf j}] \rangle \} dt \\ & = & \langle l_0^{\prime\prime}(b_0)\beta_0, \beta_0 \rangle \\ && \hskip1cm + \int_{t_0}^{t_1} \{ \langle {\dot y}_0(t), F_{0{\dot x}{\dot x}}({\tilde x}_0(t)){\dot y}_0(t) \rangle + 2\langle {\dot y}_0(t), F_{0{\dot x} x}({\tilde x}_0(t))y_0(t) \rangle + \langle y_0(t), F_{0xx}({\tilde x}_0(t))y_0(t) \rangle \} dt \\ & = & \langle l_0^{\prime\prime}(b_0)\beta_0, \beta_0 \rangle + \int_{t_0}^{t_1} 2\Omega_0(x_0;t, y_0(t), {\dot y}_0(t))dt = J^{\prime\prime}_0({x_0}_{b_0};{y_0}_{\beta_0}). \\ \end{eqnarray*}

    Now, let us show that {y_0}_{\beta_0}\not\equiv(0, 0) . By (20), the first conclusion of Lemma 5.1, the fact that V(\pi)\le |\pi|^2/2 for all \pi\in{\bf R}^n ,

    \begin{eqnarray*} 0 &\ge& \lim\limits_{q\to\infty}\frac{{\tilde K}_0({x_0}_{b_0};x^q_{b_q})}{d_q^2} + \frac{h}{2} - \frac{h}{2}\limsup\limits_{q\to\infty}\frac{|x^q(t_0)-x_0(t_0)|^2}{d_q^2} \\ & = & \lim\limits_{q\to\infty}\frac{{\tilde K}_0({x_0}_{b_0};x^q_{b_q})}{d_q^2} + \frac{h}{2} - \frac{h}{2}\limsup\limits_{q\to\infty}\frac{|\Psi_0(b_q)-\Psi_0(b_0)|^2}{d_q^2} \\ & = & \lim\limits_{q\to\infty}\frac{{\tilde K}_0({x_0}_{b_0};x^q_{b_q})}{d_q^2} + \frac{h}{2} - \frac{h}{2}\limsup\limits_{q\to\infty} \biggl|\int_0^1 \Psi_0^\prime(b_0+\lambda[b_q-b_0])\biggl(\frac{b_q-b_0}{d_q}\biggr)d\lambda\biggr|^2 \\ & = & \lim\limits_{q\to\infty}\frac{{\tilde K}_0({x_0}_{b_0};x^q_{b_q})}{d_q^2} + \frac{h}{2} - \frac{h}{2}|\Psi_0^\prime(b_0)\beta_0|^2 \\ & = & \lim\limits_{q\to\infty}\frac{{\tilde K}_0({x_0}_{b_0};x^q_{b_q})}{d_q^2} + \frac{h}{2} - \frac{h}{2}|y_0(t_0)|^2. \\ \end{eqnarray*}

    With this in mind and (18), the fact that {y_0}_{\beta_0}\equiv(0, 0) contradicts the positivity of h and this establishes (17).

    Let us now show that

    I^\prime_i({x_0}_{b_0};{y_0}_{\beta_0})\le0 \quad (i\in i_a({x_0}_{b_0})). (22)

    To this end, note that, for all \gamma = 0, 1, \ldots, K ,

    \lim\limits_{q\to\infty} \frac{{\tilde M}_\gamma(t, x^q(t){\bf i}+b_q{\bf j})}{d_q} = \lim\limits_{q\to\infty} { {{1} \over {2}}} \langle [x^q(t)-x_0(t)]{\bf i} + [b_q-b_0]{\bf j}, {\tilde P}_\gamma(t, x^q(t){\bf i}+b_q{\bf j})\omega_q(t) \rangle = 0,
    \lim\limits_{q\to\infty} {\tilde N}_\gamma(t, x^q(t){\bf i}+b_q{\bf j}) = \lim\limits_{q\to\infty} {\tilde Q}_\gamma(t, x^q(t){\bf i}+b_q{\bf j})([x^q(t)-x_0(t)]{\bf i}+[b_q-b_0]{\bf j}) = 0,

    all uniformly on T and \{{\dot y}_q\} converges weakly in L^1(T; {\bf R}^n) to {\dot y}_0 , then for all \gamma = 0, 1, \ldots, K ,

    \lim\limits_{q\to\infty}\frac{{\tilde K}_\gamma({x_0}_{b_0};x^q_{b_q})}{d_q} = 0. (23)

    As in (19), we have

    \begin{eqnarray*} && \lim\limits_{q\to\infty}\frac{\tilde J^\prime_0({x_0}_{b_0};x^q_{b_q}-{x_0}_{b_0})}{d_q} \\ & = & \lim\limits_{q\to\infty}\frac{1}{d_q} \sum\limits_{i = 0}^1 (-1)^{i+1} \int_0^1(1-\lambda)\rho^\ast(t_i)\Psi_i^{\prime\prime}(b_0+\lambda[b_q-b_0];b_q-b_0)d\lambda \\ & = & 0. \\ \end{eqnarray*} (24)

    By (4), (23) and (24),

    0 \ge \limsup\limits_{q\to\infty} \frac{{\tilde J}_0(x^q_{b_q})-{\tilde J}_0({x_0}_{b_0})}{d_q} = \limsup\limits_{q\to\infty} \frac{{\tilde {\cal E}}_0({x_0}_{b_0};x^q_{b_q})}{d_q}.

    Since {\tilde {\cal E}}_0({x_0}_{b_0};x^q_{b_q})\ge0 (q\in{\bf N}) , then

    \lim\limits_{q\to\infty}\frac{{\tilde {\cal E}}_0({x_0}_{b_0};x^q_{b_q})}{d_q} = 0.

    Therefore, by condition (v)(c) of Theorem 2.1, for all \gamma = 1, \ldots, K ,

    \lim\limits_{q\to\infty}\frac{{\tilde {\cal E}}_\gamma({x_0}_{b_0};x^q_{b_q})}{d_q} = 0. (25)

    As for all q\in{\bf N} and i\in i_a({x_0}_{b_0}) ,

    \begin{eqnarray*} 0 &\ge& I_i(x^q_{b_q}) \\ & = & I_i(x^q_{b_q})-I_i({x_0}_{b_0}) \\ & = & {\tilde I}_i(x^q_{b_q})-{\tilde I}_i({x_0}_{b_0}) \\ & = & \tilde I^\prime_i({x_0}_{b_0};x^q_{b_q}-{x_0}_{b_0}) + {\tilde K}_i({x_0}_{b_0};x^q_{b_q}) + {\tilde {\cal E}}_i({x_0}_{b_0};x^q_{b_q}) \\ & = & I^\prime_i({x_0}_{b_0};x^q_{b_q}-{x_0}_{b_0}) + {\tilde K}_i({x_0}_{b_0};x^q_{b_q}) + {\tilde {\cal E}}_i({x_0}_{b_0};x^q_{b_q}), \\ \end{eqnarray*}

    then, by (23) and (25), for all i\in i_a({x_0}_{b_0}) ,

    0 \ge \lim\limits_{q\to\infty} \frac{I^\prime_i({x_0}_{b_0};x^q_{b_q}-{x_0}_{b_0})}{d_q}.

    Therefore, since y_q(t)\to y_0(t) uniformly on T , \{{\dot y}_q\} converges weakly in L^1(T; {\bf R}^n) to {\dot y}_0 and (b_q-b_0)/d_q\to\beta_0 , then for all i\in i_a({x_0}_{b_0}) ,

    0 \ge \lim\limits_{q\to\infty} \frac{I^\prime_i({x_0}_{b_0};x^q_{b_q}-{x_0}_{b_0})}{d_q} = I^\prime_i({x_0}_{b_0};{y_0}_{\beta_0})

    which establishes (22).

    Now, let us show that

    I^\prime_j({x_0}_{b_0};{y_0}_{\beta_0}) = 0 \quad (j = k+1, \ldots, K). (26)

    Indeed, as for all q\in{\bf N} and j = k+1, \ldots, K ,

    \begin{eqnarray*} 0 & = & I_j(x^q_{b_q}) - I_j({x_0}_{b_0}) \\ & = & {\tilde I}_j(x^q_{b_q})-{\tilde I}_j({x_0}_{b_0}) \\ & = & \tilde I^\prime_j({x_0}_{b_0};x^q_{b_q}-{x_0}_{b_0}) + {\tilde K}_j({x_0}_{b_0};x^q_{b_q}) + {\tilde {\cal E}}_j({x_0}_{b_0};x^q_{b_q}) \\ & = & I^\prime_j({x_0}_{b_0};x^q_{b_q}-{x_0}_{b_0}) + {\tilde K}_j({x_0}_{b_0};x^q_{b_q}) + {\tilde {\cal E}}_j({x_0}_{b_0};x^q_{b_q}), \\ \end{eqnarray*}

    by (23) and (25), for all j = k+1, \ldots, K ,

    0 = \lim\limits_{q\to\infty} \frac{I^\prime_j({x_0}_{b_0};x^q_{b_q}-{x_0}_{b_0})}{d_q} = I^\prime_j({x_0}_{b_0};{y_0}_{\beta_0})

    which is precisely (26).

    We claim that, for all \alpha\in {\cal I}_a({\tilde x}_0(t)) ,

    \varphi_{\alpha x}({\tilde x}_0(t))y_0(t)+\varphi_{\alpha {\dot x}}({\tilde x}_0(t)){\dot y}_0(t) \le 0\quad(\text{a.e. in}\ T). (27)

    Indeed, for all \alpha\in R , q\in{\bf N} , almost all t\in T and \lambda\in[0, 1] , define

    G_q^\alpha(t;\lambda) : = \varphi_\alpha(t, x_0(t)+\lambda[x^q(t)-x_0(t)], {\dot x}_0(t)+\lambda[{\dot x}^q(t)-{\dot x}_0(t)]),
    {\cal W}_q^\alpha(t) : = [-\varphi_\alpha({\tilde x}^q(t))]^{1/2},
    Z_0^\alpha(t) : = -\varphi_{\alpha x}({\tilde x}_0(t))y_0(t)-\varphi_{\alpha {\dot x}}({\tilde x}_0(t)){\dot y}_0(t),

    where as usual ({\tilde x}^q(t)): = (t, x^q(t), {\dot x}^q(t)) (\text{a.e. in}\ T) . Given t\in[t_0, t_1) a point of continuity of {\cal I}_a({\tilde x}_0(\cdot)) and \alpha\in {\cal I}_a({\tilde x}_0(t)) , since {\cal I}_a({\tilde x}_0(\cdot)) is piecewise constant on T , there exists an interval [t, \bar t]\subset T with t < \bar t such that \varphi_\alpha({\tilde x}_0(\tau)) = 0 for all \tau\in[t, \bar t] . Using the notation

    [\tau]: = (\tau, x_0(\tau)+\lambda[x^q(\tau)-x_0(\tau)], {\dot x}_0(\tau)+\lambda[{\dot x}^q(\tau)-{\dot x}_0(\tau)]),

    we have

    \begin{eqnarray*} 0 &\le& \lim\limits_{q\to\infty} \int_{[t, \bar t]\cap U} \frac{({\cal W}_q^\alpha(\tau))^2}{d_q} d\tau = \lim\limits_{q\to\infty}\frac{1}{d_q} \int_{[t, \bar t]\cap U} \{ -\varphi_\alpha({\tilde x}^q(\tau))+\varphi_\alpha({\tilde x}_0(\tau)) \} d\tau \\ & = & -\lim\limits_{q\to\infty}\frac{1}{d_q} \int_{[t, \bar t]\cap U} \{ G_q^\alpha(\tau;1) - G_q^\alpha(\tau;0) \} d\tau = -\lim\limits_{q\to\infty}\frac{1}{d_q} \int_{[t, \bar t]\cap U} \int_0^1 \frac{\partial}{\partial\lambda}G_q^\alpha(\tau;\lambda) d\lambda d\tau \\ & = & -\lim\limits_{q\to\infty}\frac{1}{d_q} \int_{[t, \bar t]\cap U} \int_0^1 \{ \varphi_{\alpha x}[\tau](x^q(\tau)-x_0(\tau)) + \varphi_{\alpha {\dot x}}[\tau]({\dot x}^q(\tau)-{\dot x}_0(\tau)) \} d\lambda d\tau \\ & = & -\lim\limits_{q\to\infty} \int_{[t, \bar t]\cap U} \int_0^1 \{ \varphi_{\alpha x}[\tau]y_q(\tau) + \varphi_{\alpha {\dot x}}[\tau]{\dot y}_q(\tau) \} d\lambda d\tau \\ & = & \int_{[t, \bar t]\cap U} \{ -\varphi_{\alpha x}({\tilde x}_0(\tau))y_0(\tau)-\varphi_{\alpha {\dot x}}({\tilde x}_0(\tau)){\dot y}_0(\tau) \} d\tau = \int_{[t, \bar t]\cap U} Z_0^\alpha(\tau) d\tau. \\ \end{eqnarray*}

    Since U can be chosen to differ from T by a set of an arbitrarily small measure, then

    0 \le \int_t^{\bar t} Z_0^\alpha(\tau) d\tau.

    If Z_0^\alpha(\tau) < 0 on a measurable set \Theta such that \Theta\subset[t, \bar t] and m(\Theta) > 0 , then

    0 \gt \int_{\Theta\cap U} Z_0^\alpha(\tau)d\tau = \lim\limits_{q\to\infty}\int_{\Theta\cap U}\frac{({\cal W}_q^\alpha(\tau))^2}{d_q}d\tau \ge 0

    which is a contradiction. Therefore, Z_0^\alpha(\tau)\ge0 \text{a.e. in}\ [t, \bar t] with t\in[t_0, t_1) an arbitrary point of continuity of {\cal I}_a({\tilde x}_0(\cdot)) and, therefore, Z_0^\alpha(t)\ge0 for almost all t\in T which shows (27).

    Now, let us show that for all \beta\in S ,

    \varphi_{\beta x}({\tilde x}_0(t))y_0(t)+\varphi_{\beta {\dot x}}({\tilde x}_0(t)){\dot y}_0(t) = 0 \ (\text{a.e. in}\ T). (28)

    Indeed, for all \beta\in S , q\in{\bf N} , almost all t\in T and \lambda\in[0, 1] , define

    {\cal H}_q^\beta(t;\lambda): = \varphi_\beta(t, x_0(t)+\lambda[x^q(t)-x_0(t)], {\dot x}_0(t)+\lambda[{\dot x}^q(t)-{\dot x}_0(t)]).

    For all \beta\in S , q\in{\bf N} and almost all t\in T , we have

    \begin{eqnarray*} 0 & = & {\cal H}_q^\beta(t;1)-{\cal H}_q^\beta(t;0) = \int_0^1 \frac{\partial}{\partial\lambda}{\cal H}_q^\beta(t;\lambda)d\lambda \\ & = & \int_0^1 \{ \varphi_{\beta x}[t](x^q(t)-x_0(t)) + \varphi_{\beta {\dot x}}[t]({\dot x}^q(t)-{\dot x}_0(t)) \} d\lambda. \\ \end{eqnarray*}

    Therefore, for all \beta\in S , q\in{\bf N} and almost all t\in T ,

    0 = \int_0^1 \{ \varphi_{\beta x}[t]y_q(t) + \varphi_{\beta {\dot x}}[t]{\dot y}_q(t) \} d\lambda. (29)

    By (29), for all t\in T and \beta\in S ,

    0 = \int_{[t_0, t]\cap U} \{ \varphi_{\beta x}({\tilde x}_0(\tau))y_0(\tau)+\varphi_{\beta {\dot x}}({\tilde x}_0(\tau)){\dot y}_0(\tau) \} d\tau.

    Since, as before, U can be chosen to differ from T by a set of an arbitrarily small measure, then for all t\in T and \beta\in S ,

    0 = \int_{t_0}^t \{ \varphi_{\beta x}({\tilde x}_0(\tau))y_0(\tau)+\varphi_{\beta {\dot x}}({\tilde x}_0(\tau)){\dot y}_0(\tau) \} d\tau

    and so (28) is verified. Consequently, from (15), (22), (26), (27) and (28), {y_0}_{\beta_0}\in {\cal Y}({x_0}_{b_0}) . This fact together with (17) contradicts condition (ⅳ) of Theorem 2.1.

    Case (2): Now, suppose that the sequence \{(b_q-b_0)/d_q\} is not bounded. Then,

    \lim\limits_{q\to\infty}\biggl|\frac{b_q-b_0}{d_q}\biggr| = +\infty. (30)

    Choose an appropriate subsequence of \{(b_q-b_0)/|b_q-b_0|\} (without relabeling), and \bar\beta_0\in{\bf R}^p with |\bar\beta_0| = 1 , such that

    \lim\limits_{q\to\infty}\frac{b_q-b_0}{|b_q-b_0|} = \bar\beta_0. (31)

    For all q\in{\bf N} and t\in T , define

    \bar\omega_q(t): = \frac{x^q(t)-x_0(t)}{|b_q-b_0|}{\bf i} + \frac{b_q-b_0}{|b_q-b_0|}{\bf j}.

    By Lemma 4.1 and (30),

    \lim\limits_{q\to\infty}\frac{x^q(t)-x_0(t)}{|b_q-b_0|} = \lim\limits_{q\to\infty} y_q(t) \cdot \frac{d_q}{|b_q-b_0|} = y_0(t) \cdot 0 = 0 \, \, \text{uniformly on }\ T. (32)

    For i = 0, 1 and all q\in{\bf N} , we have

    \frac{x^q(t_i)-x_0(t_i)}{|b_q-b_0|} = \int_0^1 \Psi_i^\prime(b_0+\lambda[b_q-b_0])\biggl(\frac{b_q-b_0}{|b_q-b_0|}\biggr)d\lambda. (33)

    By (31), (32) and (33), for i = 0, 1 ,

    \Psi_i^\prime(b_0)\bar\beta_0 = 0. (34)

    Now, by (2), (31) and (32),

    \begin{eqnarray*} \lim\limits_{q\to\infty}\frac{{\tilde M}_0(t, x^q(t){\bf i}+b_q{\bf j})}{|b_q-b_0|^2} & = & \lim\limits_{q\to\infty}{ {{1} \over {2}}} \langle \bar\omega_q(t), {\tilde P}_0(t, x^q(t){\bf i}+b_q{\bf j})\bar\omega_q(t)\rangle \\ & = & { {{1} \over {2}}} \langle 0_{\bar\beta_0}, {\tilde F}_{0\xi\xi}(t, x_0(t){\bf i}+b_0{\bf j}, {\dot x}_0(t))0_{\bar\beta_0}\rangle \\ & = & \frac{\langle \bar\beta_0, l_0^{\prime\prime}(b_0)\bar\beta_0\rangle}{2(t_1-t_0)}, \\ \end{eqnarray*}
    \begin{eqnarray*} \lim\limits_{q\to\infty}\frac{{\tilde N}_0(t, x^q(t){\bf i}+b_q{\bf j})}{|b_q-b_0|} & = & \lim\limits_{q\to\infty}{\tilde Q}_0(t, x^q(t){\bf i}+b_q{\bf j})\bar\omega_q(t) \\ & = & {\tilde F}_{0{\dot x}\xi}(t, x_0(t){\bf i}+b_0{\bf j}, {\dot x}_0(t))0_{\bar\beta_0} \\ & = & 0 \\ \end{eqnarray*}

    both uniformly on T . Together with Lemma 4.1, this implies that

    \begin{eqnarray*} \lim\limits_{q\to\infty}\frac{{\tilde K}_0({x_0}_{b_0};x^q_{b_q})}{|b_q-b_0|^2} & = & { {{1} \over {2}}} \langle \bar\beta_0, l_0^{\prime\prime}(b_0)\bar\beta_0\rangle + \lim\limits_{q\to\infty}\int_{t_0}^{t_1} \biggl\langle \frac{d_q}{|b_q-b_0|} \cdot {\dot y}_q(t), \frac{{\tilde N}_0(t, x^q(t){\bf i}+b_q{\bf j})}{|b_q-b_0|} \biggr\rangle dt \\ & = & { {{1} \over {2}}} \langle \bar\beta_0, l_0^{\prime\prime}(b_0)\bar\beta_0\rangle. \\ \end{eqnarray*} (35)

    As in (19), we have

    \lim\limits_{q\to\infty}\frac{\tilde J^\prime_0({x_0}_{b_0};x^q_{b_q}-{x_0}_{b_0})}{|b_q-b_0|^2} = { {{1} \over {2}}} [\rho^\ast(t_1)\Psi_1^{\prime\prime}(b_0;\bar\beta_0) - \rho^\ast(t_0)\Psi_0^{\prime\prime}(b_0;\bar\beta_0)]. (36)

    Even more, by (1), (4), (36), and condition (ⅱ) of Theorem 2.1,

    0 \ge \lim\limits_{q\to\infty}\frac{{\tilde K}_0({x_0}_{b_0};x^q_{b_q})}{|b_q-b_0|^2} + \liminf\limits_{q\to\infty}\frac{{\tilde {\cal E}}_0({x_0}_{b_0};x^q_{b_q})}{|b_q-b_0|^2}. (37)

    Consequently, since {\tilde {\cal E}}_0({x_0}_{b_0};x^q_{b_q})\ge0 (q\in{\bf N}) , by (35) and (37),

    0 \ge { {{1} \over {2}}} \langle \bar\beta_0, l_0^{\prime\prime}(b_0)\bar\beta_0 \rangle = { {{1} \over {2}}} J^{\prime\prime}_0({x_0}_{b_0};0_{\bar\beta_0}). (38)

    Let us now show that for all i\in i_a({x_0}_{b_0}) ,

    I^\prime_i({x_0}_{b_0};0_{\bar\beta_0})\le0. (39)

    To prove it, note that since

    \lim\limits_{q\to\infty}\frac{x^q(t)-x_0(t)}{|b_q-b_0|} = 0\ \text{uniformly on}\ T,

    and \{{\dot y}_q\} converges weakly in L^1(T; {\bf R}^n) to {\dot y}_0 , for all \gamma = 0, 1, \ldots, K ,

    \lim\limits_{q\to\infty}\frac{{\tilde K}_\gamma({x_0}_{b_0};x^q_{b_q})}{|b_q-b_0|} = 0. (40)

    As in (24),

    \lim\limits_{q\to\infty}\frac{\tilde J^\prime_0({x_0}_{b_0};x^q_{b_q}-{x_0}_{b_0})}{|b_q-b_0|} = 0. (41)

    Then, by (4), (40) and (41),

    0 \ge \limsup\limits_{q\to\infty}\frac{{\tilde J}_0(x^q_{b_q})-{\tilde J}_0({x_0}_{b_0})}{|b_q-b_0|} = \limsup\limits_{q\to\infty}\frac{{\tilde {\cal E}}_0({x_0}_{b_0};x^q_{b_q})}{|b_q-b_0|}\ge0.

    Thus, by condition (v)(c) of Theorem 2.1, for all \gamma = 1, \ldots, K ,

    \lim\limits_{q\to\infty}\frac{{\tilde {\cal E}}_\gamma({x_0}_{b_0};x^q_{b_q})}{|b_q-b_0|} = 0. (42)

    As for all q\in{\bf N} and i\in i_a({x_0}_{b_0}) ,

    \begin{eqnarray*} 0 &\ge& I_i(x^q_{b_q}) \\ & = & I_i(x^q_{b_q})-I_i({x_0}_{b_0}) \\ & = & {\tilde I}_i(x^q_{b_q})-{\tilde I}_i({x_0}_{b_0}) \\ & = & \tilde I^\prime_i({x_0}_{b_0};x^q_{b_q}-{x_0}_{b_0}) + {\tilde K}_i({x_0}_{b_0};x^q_{b_q}) + {\tilde {\cal E}}_i({x_0}_{b_0};x^q_{b_q}) \\ & = & I^\prime_i({x_0}_{b_0};x^q_{b_q}-{x_0}_{b_0}) + {\tilde K}_i({x_0}_{b_0};x^q_{b_q}) + {\tilde {\cal E}}_i({x_0}_{b_0};x^q_{b_q}), \\ \end{eqnarray*}

    then, by (40) and (42), for all i\in i_a({x_0}_{b_0}) ,

    0 \ge \lim\limits_{q\to\infty}\frac{I^\prime_i({x_0}_{b_0};x^q_{b_q}-{x_0}_{b_0})}{|b_q-b_0|}.

    Hence, since

    \{{\dot y}_q\}\ \text{converges weakly to }\ {\dot y}_0\ \text{in} \ L^1(T;{\bf R}^n), \quad \frac{d_q}{|b_q-b_0|}\to0,
    \lim\limits_{q\to\infty}\frac{x^q(t)-x_0(t)}{|b_q-b_0|} = 0 \ \text{ uniformly on }\ T, \ \ \text{and}\ \ \frac{b_q-b_0}{|b_q-b_0|}\to\bar\beta_0,

    for all i\in i_a({x_0}_{b_0}) ,

    0 \ge \lim\limits_{q\to\infty}\frac{I^\prime_i({x_0}_{b_0};x^q_{b_q}-{x_0}_{b_0})}{|b_q-b_0|} = l_i^\prime(b_0)\bar\beta_0 = I^\prime_i({x_0}_{b_0};0_{\bar\beta_0})

    which establishes (39). Finally, let us show that for all j = k+1, \ldots, K ,

    I^\prime_j({x_0}_{b_0};0_{\bar\beta_0}) = 0. (43)

    Indeed, as for all q\in{\bf N} and j = k+1, \ldots, K ,

    \begin{eqnarray*} 0 & = & I_j(x^q_{b_q})-I_j({x_0}_{b_0}) \\ & = & {\tilde I}_j(x^q_{b_q})-{\tilde I}_j({x_0}_{b_0}) \\ & = & \tilde I^\prime_j({x_0}_{b_0};x^q_{b_q}-{x_0}_{b_0}) + {\tilde K}_j({x_0}_{b_0};x^q_{b_q}) + {\tilde {\cal E}}_j({x_0}_{b_0};x^q_{b_q}) \\ & = & I^\prime_j({x_0}_{b_0};x^q_{b_q}-{x_0}_{b_0}) + {\tilde K}_j({x_0}_{b_0};x^q_{b_q}) + {\tilde {\cal E}}_j({x_0}_{b_0};x^q_{b_q}), \\ \end{eqnarray*}

    then, by (40) and (42), for all j = k+1, \ldots, K ,

    0 = \lim\limits_{q\to\infty}\frac{I^\prime_j({x_0}_{b_0};x^q_{b_q}-{x_0}_{b_0})}{|b_q-b_0|} = I^\prime_j({x_0}_{b_0};0_{\bar\beta_0})

    which is precisely (43). Consequently, (34), (38), (39) and (43) contradicts condition (ⅳ) of Theorem 2.1 and this completes the proof of Theorem 2.1.

    Proof of Lemma 4.1: For all q\in{\bf N} and almost all t\in T , define

    c_q: = [1+{ {{1} \over {2}}} V(x^q(t_0)-x_0(t_0))]^{1/2} \ \ \text{and}\ \ W_q(t): = [1+{ {{1} \over {2}}} V({\dot x}^q(t)-{\dot x}_0(t))]^{1/2}.

    For all q\in{\bf N} , note that

    \begin{eqnarray*} && \frac{|y_q(t_0)|^2}{c_q^2} + \int_{t_0}^{t_1} \frac{|{\dot y}_q(t)|^2}{W_q^2(t)}dt \\ & = & \frac{|x^q(t_0)-x_0(t_0)|^2}{d_q^2[1+{ {{1} \over {2}}} V(x^q(t_0)-x_0(t_0))]} + \frac{1}{d_q^2}\int_{t_0}^{t_1} \frac{|{\dot x}^q(t)-{\dot x}_0(t)|^2}{1+{ {{1} \over {2}}} V({\dot x}^q(t)-{\dot x}_0(t))}dt \\ & = & \frac{|x^q(t_0)-x_0(t_0)|^2}{D(x^q-x_0)[2+V(x^q(t_0)-x_0(t_0))]} + \frac{1}{D(x^q-x_0)}\int_{t_0}^{t_1} \frac{|{\dot x}^q(t)-{\dot x}_0(t)|^2}{2+V({\dot x}^q(t)-{\dot x}_0(t))}dt \\ & = & \frac{1}{D(x^q-x_0)}\biggl(V(x^q(t_0)-x_0(t_0)) + \int_{t_0}^{t_1} V({\dot x}^q(t)-{\dot x}_0(t))dt \biggr) \\ & = & \frac{D(x^q-x_0)}{D(x^q-x_0)} = 1. \\ \end{eqnarray*}

    Clearly \lim_{q\to\infty}c_q = 1 . Then, there exist some subsequence of \{x^q\} , again denoted by \{x^q\} , some \bar y_0\in{\bf R}^n and some \sigma_0\in L^2(T; {\bf R}^n) such that

    \lim\limits_{q\to\infty}\frac{y_q(t_0)}{c_q} = \lim\limits_{q\to\infty}y_q(t_0) = \bar y_0,
    \{{\dot y}_q/W_q\} \, \, \text{converges weakly in }\ L^2(T;{\bf R}^n)\ \text{to} \ \sigma_0.

    As W_q^2(t) \ge W_q(t) \ge 1 for all q\in{\bf N} and for almost all t\in T , we have

    0 \le \int_{t_0}^{t_1}[W_q(t)-1]dt \le \int_{t_0}^{t_1}[W_q^2(t)-1]dt = \frac{1}{2} \int_{t_0}^{t_1} V({\dot x}^q(t)-{\dot x}_0(t))dt \le D(x^q-x_0).

    Thus, it follows that

    \lim\limits_{q\to\infty}\int_{t_0}^{t_1} [W_q(t)-1]dt = \lim\limits_{q\to\infty}\int_{t_0}^{t_1} [W_q^2(t)-1]dt = 0.

    Note also that

    \int_{t_0}^{t_1}[W_q(t)-1]^2dt = \int_{t_0}^{t_1} [W_q^2(t)-1]dt-2\int_{t_0}^{t_1}[W_q(t)-1]dt.

    Then for any h\in L^\infty(T; {\bf R}^n) ,

    \lim\limits_{q\to\infty}\|hW_q-h\|_2 = 0

    and so

    \lim\limits_{q\to\infty}\int_{t_0}^{t_1} \langle h(t), {\dot y}_q(t) \rangle dt = \lim\limits_{q\to\infty}\int_{t_0}^{t_1} \biggl\langle h(t)W_q(t), \frac{{\dot y}_q(t)}{W_q(t)} \biggr\rangle dt = \int_{t_0}^{t_1} \langle h(t), \sigma_0(t) \rangle dt.

    Therefore, \{{\dot y}_q\} converges weakly in L^1(T; {\bf R}^n) to \sigma_0 . Hence, \{{\dot y}_q\} is equi-integrable on T and therefore the sequence \{y_q\} is equi-continuous on T . Thus, if y_0(t): = \bar y_0 + \int_{t_0}^t\sigma_0(\tau)d\tau , then, y_0\in{\cal X} with {\dot y}_0\in L^2(T; {\bf R}^n) and

    \lim\limits_{q\to\infty}y_q(t) = \lim\limits_{q\to\infty}y_q(t_0) + \lim\limits_{q\to\infty}\int_{t_0}^t{\dot y}_q(\tau)d\tau = y_0(t) \, \, \text{uniformly on }\ T,
    \{{\dot y}_q\} \, \, \text{converges weakly in }\ L^1(T;{\bf R}^n) \ \text{to}\ {\dot y}_0 = \sigma_0.

    Now, let us show that {\dot x}^q(t)\to {\dot x}_0(t) almost uniformly on T . For almost all t\in T , define

    W(t): = [1+{ {{1} \over {2}}} V({\dot x}(t))]^{1/2}.

    Observe that

    \int_{t_0}^{t_1} \frac{|{\dot x}(t)|^2}{2W^2(t)}dt = \int_{t_0}^{t_1} \frac{|{\dot x}(t)|^2}{2+V({\dot x}(t))}dt = \int_{t_0}^{t_1} V({\dot x}(t))dt\le D(x),
    \int_{t_0}^{t_1} 2W^2(t)dt = 2t_1-2t_0 + \int_{t_0}^{t_1} V({\dot x}(t))dt \le 2t_1-2t_0 + D(x).

    From these relations, we have

    \|{\dot x}\|_1^2 \le \int_{t_0}^{t_1} \frac{|{\dot x}(t)|^2}{2W^2(t)}dt \int_{t_0}^{t_1} 2W^2(t)dt \le D(x)[2t_1-2t_0+D(x)].

    Consequently, \|{\dot x}^q-{\dot x}_0\|_1\to0 and so some subsequence of \{{\dot x}^q\} converges almost uniformly to {\dot x}_0 on T .

    Proof of Lemma 4.2: Recall the definition of W_q given in the proof of Lemma 4.1. As W_q(t)\to1 uniformly on U , then for all h\in L^2(U; {\bf R}^n) ,

    \lim\limits_{q\to\infty}\int_U \langle {\dot y}_q(t), h(t) \rangle dt = \lim\limits_{q\to\infty}\int_U \biggl\langle \frac{{\dot y}_q(t)}{W_q(t)}, W_q(t)h(t) \biggr\rangle dt = \int_U \langle {\dot y}_0(t), h(t) \rangle dt,

    that is, \{{\dot y}_q\} converges weakly in L^2(U; {\bf R}^n) to {\dot y}_0 . As R_0(t)\ge0 (t\in U) , the function

    {\dot y}\mapsto \int_U\langle R_0(t){\dot y}(t), {\dot y}(t) \rangle dt

    is convex in L^2(U; {\bf R}^n) and since this function is strongly continuous on L^2(U; {\bf R}^n) , then this function is weakly lower semicontinuous in L^2(U; {\bf R}^n) . Thus,

    \liminf\limits_{q\to\infty}\int_U\langle R_0(t){\dot y}_q(t), {\dot y}_q(t) \rangle dt \ge \int_U \langle R_0(t){\dot y}_0(t), {\dot y}_0(t) \rangle dt.

    Since R_q(t)\to R_0(t) uniformly on U , it follows that

    \liminf\limits_{q\to\infty}\int_U \langle R_q(t){\dot y}_q(t), {\dot y}_q(t) \rangle dt \ge \int_U \langle R_0(t){\dot y}_0(t), {\dot y}_0(t) \rangle dt.

    In this section, we show with an example how our sufficiency theory is able to detect optimality even when the proposed extremal to be a strong minimum is singular and its derivative is only essentially bounded. It is worthwhile observing that the initial and final end-points of the states of admissible trajectories are not restricted to belong to any manifold described by any smooth function, in contrast, these boundary points must only lie in the set of real numbers, that is, these boundary points are completely free.

    In Example 7.1 since no isoperimetric constraints occur l_0 , L_0 , F_0 , E_0 and J^{\prime\prime}_0 correspond simply to l , L , F , E and J^{\prime\prime} respectively.

    7.1 Example: Let x_0\colon[0, 1]\to{\bf R} be any absolutely continuous function with {\dot x}_0\in L^\infty([0, 1];{\bf R}) and x_0(0) = x_0(1) = 0 . Consider the nonparametric problem (\bar P) of minimizing

    {\cal J}(x): = x^2(0)-x(1)+\int_0^1 \{ \exp(t({\dot x}(t)-{\dot x}_0(t)))+x(t) \} dt

    over all arcs x\in{\cal X} satisfying the constraints

    \left\{\begin{array}{l} c(t, x(t), {\dot x}(t)) \, \, is\ integrable\ on \ [0, 1]. \\ x(0)\in{\bf R}, \, \, x(1)\in{\bf R}. \\ (t, x(t), {\dot x}(t))\in\bar{\cal R} \, \, (a.e.\ in\ [0, 1]) \\ \end{array}\right.

    where

    \bar{\cal R}: = \{ (t, x, {\dot x})\in [0, 1]\times{\bf R}\times{\bf R} \mid \phi_1(t, x, {\dot x}) \le 0 \},
    \phi_1(t, x, {\dot x}): = ({\dot x}-{\dot x}_0(t))^2-\exp(t({\dot x}-{\dot x}_0(t)))+t({\dot x}-{\dot x}_0(t))+1,

    {\cal X}: = {AC}([0, 1];{\bf R}) and c(t, x, {\dot x}) denotes either

    {\cal L}(t, x, {\dot x}): = \exp(t({\dot x}-{\dot x}_0(t)))+x,

    \phi_1(t, x, {\dot x}) , or any of its partial derivatives of order less than or equal to two with respect to x and {\dot x} .

    For this problem we shall consider the data of the nonparametric problem given in Section 3 which are given by T = [0, 1] , n = 1 , r = 1 , s = 1 , k = K = 0 , {\cal B}_0 = {\bf R} , {\cal B}_1 = {\bf R} , \ell(x_1, x_2) = x_1^2-x_2 , {\cal L}(t, x, {\dot x}) = \exp(t({\dot x}-{\dot x}_0(t)))+x , \phi_1(t, x, {\dot x}) = ({\dot x}-{\dot x}_0(t))^2-\exp(t({\dot x}-{\dot x}_0(t)))+t({\dot x}-{\dot x}_0(t))+1 .

    Clearly, all the assumptions posed in the statement of the problem are easily verified.

    Also, it is evident that the trajectory x_0 is admissible of (\bar P) . Let \Psi\colon{\bf R}\to{\bf R}\times{\bf R} be defined by \Psi(b): = (b, b) . Clearly, \Psi is C^2 in {\bf R} and {\cal B}_0\times{\cal B}_1\subset\Psi({\bf R}) . The associated parametric problem of Section 2 denoted by (P_\Psi) has the following data, p = 1 , {\cal B} = \Psi^{-1}({\cal B}_0\times{\cal B}_1) = {\bf R} , l = \ell\circ\Psi , L = {\cal L} , \varphi = \varphi_1 = \phi_1 and \Psi_0 , \Psi_1 the components of \Psi , that is, \Psi_0(b) = b , \Psi_1(b) = b (b\in{\bf R}) . Recall that the notation x_b means (x, b) where b\in{\bf R} is a parameter.

    Observe that if we set b_0: = 0 , then {x_0}_{b_0} is admissible of (P_\Psi) . Also, clearly {\cal I}_a({\tilde x}_0(\cdot)) is constant on T . Let (\rho(t), \mu_1(t)): = (t, 0) (t\in T) and note that (\rho, \mu)\in{\cal X}\times{\cal U}_1 , \mu_1(t)\ge0 , \mu_1(t)\varphi_1({\tilde x}_0(t)) = 0 (\text{a.e. in}\ T) .

    Now, observe that the Hamiltonian H is given by

    H(t, x, {\dot x}, \rho(t), \mu(t)) = t{\dot x}-\exp(t({\dot x}-{\dot x}_0(t)))-x.

    Also, note that

    H_x({\tilde x}_0(t), \rho(t), \mu(t)) = -1, \quad H_{\dot x}({\tilde x}_0(t), \rho(t), \mu(t)) = 0 \quad (\text{a.e. in}\ T),

    and so (x_0, \rho, \mu) satisfies the Euler-Lagrange equations which are given by

    \dot\rho(t) = -H_x({\tilde x}_0(t), \rho(t), \mu(t)), \quad H_{\dot x}({\tilde x}_0(t), \rho(t), \mu(t)) = 0 \quad (\text{a.e. in}\ T).

    Thus, (x_0, \rho, \mu) is an extremal. As \Psi_0(b) = b , \Psi_1(b) = b , l(b) = b^2-b (b\in{\bf R}) , then

    l^\prime(b_0)+\rho(1)\Psi_1^\prime(b_0)-\rho(0)\Psi_0^\prime(b_0) = 0

    and so condition (ⅰ) of Corollary 3.2 is satisfied. Also, as one readily verifies,

    \rho(1)\Psi_1^{\prime\prime}(b_0;\beta)-\rho(0)\Psi_0^{\prime\prime}(b_0;\beta) = 0 \ \text{for all }\ \beta\in{\bf R}

    and so condition (ⅱ) of Corollary 3.2 is fulfilled.

    Additionally, as

    H_{{\dot x}{\dot x}}({\tilde x}_0(t), \rho(t), \mu(t)) = -t^2 \quad (\text{a.e. in}\ T),

    it follows that (ⅲ) of Corollary 3.2 is satisfied and (x_0, \rho, \mu) is singular since

    H_{{\dot x}{\dot x}}({\tilde x}_0(0), \rho(0), \mu(0)) = 0.

    As \varphi_{1x}({\tilde x}_0(t)) = \varphi_{1{\dot x}}({\tilde x}_0(t)) = 0 (\text{a.e. in}\ T) , then {\cal Y}({x_0}_{b_0}) is given by all y_\beta\in{\cal X}\times{\bf R} with {\dot y}\in L^2(T; {\bf R}) satisfying y(0) = \beta , y(1) = \beta . We have,

    J^{\prime\prime}({x_0}_{b_0};y_\beta) = 2\beta^2+\int_0^1 t^2{\dot y}^2(t)dt \gt 0

    for all y_\beta\in{\cal Y}({x_0}_{b_0}) , y_\beta\not = (0, 0) , and hence (ⅳ) of Corollary 3.2 is satisfied. Now, observe that for all (t, x, {\dot x})\in T\times{\bf R}\times{\bf R} ,

    F(t, x, {\dot x}) = -H(t, x, {\dot x}, \rho(t), \mu(t))-\dot\rho(t)x = -t{\dot x}+\exp(t({\dot x}-{\dot x}_0(t))).

    Hence for almost all t\in T , if x_b is admissible,

    \begin{eqnarray*} E(t, x(t), {\dot x}_0(t), {\dot x}(t)) & = & F(t, x(t), {\dot x}(t)) - F(t, x(t), {\dot x}_0(t)) - F_{\dot x}(t, x(t), {\dot x}_0(t))({\dot x}(t)-{\dot x}_0(t)) \\ & = & -t{\dot x}(t)+\exp(t({\dot x}(t)-{\dot x}_0(t)))+t{\dot x}_0(t)-1 \\ & = & \exp(t({\dot x}(t)-{\dot x}_0(t)))-t({\dot x}(t)-{\dot x}_0(t))-1 \ge 0 \\ \end{eqnarray*}

    which implies that (v)(a) of Corollary 3.2 is verified with any \epsilon > 0 . Finally, for all x_b admissible, we have

    \begin{eqnarray*} \int_0^1 E(t, x(t), {\dot x}_0(t), {\dot x}(t))dt & = & \int_0^1 \{ \exp(t({\dot x}(t)-{\dot x}_0(t)))-t({\dot x}(t)-{\dot x}_0(t))-1 \} dt \\ &\ge& \int_0^1 ({\dot x}(t)-{\dot x}_0(t))^2 dt \ge 2 \int_0^1 V({\dot x}(t)-{\dot x}_0(t)) dt. \\ \end{eqnarray*}

    Therefore, (v)(b) of Corollary 3.2 is satisfied with any \epsilon > 0 and h = 2 . Since k = K = 0 , it is evident that (v)(c) of Corollary 3.2 is also verified with any \epsilon > 0 and h = 2 . By Corollary 3.2, x_0 is a strong minimum of (\bar P) .

    The author is grateful to Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, for the support given by the project PAPIIT-IN102220.

    The author declares no conflict of interest.



    [1] A. Khan, T. Abdeljawad, J. F. Gomez-Aguilar, H. Khan, Dynamical study of fractional order mutualism parasitism food web module, Chaos Soliton. Fract., 134 (2020), 109685. https://doi.org/10.1016/j.chaos.2020.109685 doi: 10.1016/j.chaos.2020.109685
    [2] M. Aslam, R. Murtaza, T. Abdeljawad, G. U. Rahman, A. Khan, H. Khan, et al., A fractional order HIV/AIDS epidemic model with Mittag-Leffler kernel, Adv. Differ. Equ., 2021 (2021), 107. https://doi.org/10.1186/s13662-021-03264-5 doi: 10.1186/s13662-021-03264-5
    [3] H. Khan, Z. A. Khan, H. Tajadodi, A. Khan, Existence and data-dependence theorems for fractional impulsive integro-differential system, Adv. Differ. Equ., 2020 (2020), 458. https://doi.org/10.1186/s13662-020-02823-6 doi: 10.1186/s13662-020-02823-6
    [4] A. Khan, H. Khan, J. F. Gómez-Aguilar, T. Abdeljawad, Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos Soliton. Fract., 127 (2019), 422–427. https://doi.org/10.1016/j.chaos.2019.07.026 doi: 10.1016/j.chaos.2019.07.026
    [5] A. Khan, P. S. Scindia, S. T. Sutar, T. Abdeljawad, On stability analysis of a fractional volterra integro delay differential equation in the context of Mittag-Leffler kernel, Wave. Random Complex, 2023 (2023), 1–19. https://doi.org/10.1080/17455030.2023.2223720 doi: 10.1080/17455030.2023.2223720
    [6] H. Khan, J. Alzabut, H. Gulzar, Existence of solutions for hybrid modified ABC-fractional differential equations with p-Laplacian operator and an application to a waterborne disease model, Alex. Eng. J., 70 (2023), 665–672. https://doi.org/10.1016/j.aej.2023.02.045 doi: 10.1016/j.aej.2023.02.045
    [7] A. Berhail, N. Tabouche, M. M. Matar, J. Alzabut, On nonlocal integral and derivative boundary value problem of nonlinear Hadamard Langevin equation with three different fractional orders, Bol. Soc. Mat. Mex., 26 (2020), 303–318. https://doi.org/10.1007/s40590-019-00257-z doi: 10.1007/s40590-019-00257-z
    [8] M. Bilal, J. Iqbal, K. Shah, B. Abdalla, T. Abdeljawad, I. Ullah, Analytical solutions of the space-time fractional Kundu-Eckhaus equation by using modified extended direct algebraic method, Partial Differential Equations in Applied Mathematics, 11 (2024), 100832. https://doi.org/10.1016/j.padiff.2024.100832 doi: 10.1016/j.padiff.2024.100832
    [9] V. F. Morales-Delgado, M. A. Taneco-Hernández, J. F. Gómez-Aguilar, On the solutions of fractional order of evolution equations, Eur. Phys. J. Plus, 132 (2017), 47. https://doi.org/10.1140/epjp/i2017-11341-0 doi: 10.1140/epjp/i2017-11341-0
    [10] A. Atangana, J. F. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus, 133 (2018), 166. https://doi.org/10.1140/epjp/i2018-12021-3 doi: 10.1140/epjp/i2018-12021-3
    [11] E. M. E. Zayed, Y. A. Amer, A. H. Arnous, Functional variable method and its applications for finding exact solutions of nonlinear PDEs in mathematical physics, Sci. Res. Essays, 8 (2013), 2068–2074.
    [12] Y. Yıldırım, A. Biswas, M. Asma, P. Guggilla, S. Khan, M. Ekici, et al., Pure-cubic optical soliton perturbation with full nonlinearity, Optik, 222 (2020), 165394. https://doi.org/10.1016/j.ijleo.2020.165394 doi: 10.1016/j.ijleo.2020.165394
    [13] M. Eslami, H. Rezazadeh, The first integral method for Wu-Zhang system with conformable time-fractional derivative, Calcolo, 53 (2016), 475–485. https://doi.org/10.1007/s10092-015-0158-8 doi: 10.1007/s10092-015-0158-8
    [14] M. Eslami, F. S. Khodadad, F. Nazari, H. Rezazadeh, The first integral method applied to the Bogoyavlenskii equations by means of conformable fractional derivative, Opt. Quant. Electron., 49 (2017), 391. https://doi.org/10.1007/s11082-017-1224-z doi: 10.1007/s11082-017-1224-z
    [15] I. Ullah, Dynamics behaviours of N-kink solitons in conformable Fisher-Kolmogorov-Petrovskii-Piskunov equation, Eng. Computation., 2024 (2024), 358. https://doi.org/10.1108/ec-04-2024-0358 doi: 10.1108/ec-04-2024-0358
    [16] A. Gaber, H. Ahmad, Solitary wave solutions for space-time fractional coupled integrable dispersionless system via generalized kudryashov method, Facta Univ.-Ser. Math., 35 (2020), 1439–1449. https://doi.org/10.22190/FUMI2005439G doi: 10.22190/FUMI2005439G
    [17] Y. Pandir, Y. Gurefe, E. Misirli, The extended trial equation method for some time fractional differential equations, Discrete Dyn. Nat. Soc., 2013 (2013), 491359. https://doi.org/10.1155/2013/491359 doi: 10.1155/2013/491359
    [18] X. D. Zhang, Y. L. Feng, Z. Y. Luo, J. Liu, A spatial sixth-order numerical scheme for solving fractional partial differential equation, Appl. Math. Lett., 159 (2025), 109265. https://doi.org/10.1016/j.aml.2024.109265 doi: 10.1016/j.aml.2024.109265
    [19] S. K. Sharma, D. Kumar, A numerical study of new fractional model for convective straight fin using fractional-order Legendre functions, Chaos Soliton. Fract., 141 (2020), 110282. https://doi.org/10.1016/j.chaos.2020.110282 doi: 10.1016/j.chaos.2020.110282
    [20] D. Kumar, K. Hosseini, F. Samadani, The sine-Gordon expansion method to look for the traveling wave solutions of the Tzitzéica type equations in nonlinear optics, Optik, 149 (2017), 439–446. https://doi.org/10.1016/j.ijleo.2017.09.066 doi: 10.1016/j.ijleo.2017.09.066
    [21] I. Ullah, K. Shah, T. Abdeljawad, M. M. Alam, A. S. Hendy, S. Barak, Dynamics behaviours of kink solitons in conformable Kolmogorov-Petrovskii-Piskunov equation, Qual. Theory Dyn. Syst., 23 (2024), 268. https://doi.org/10.1007/s12346-024-01119-4 doi: 10.1007/s12346-024-01119-4
    [22] O. Guner, A. Bekir, H. Bilgil, A note on exp-function method combined with complex transform method applied to fractional differential equations, Adv. Nonlinear Anal., 4 (2015), 201–208. https://doi.org/10.1515/anona-2015-0019 doi: 10.1515/anona-2015-0019
    [23] I. Ullah, K. Shah, S. Barak, T. Abdeljawad, S. Barak, Pioneering the plethora of soliton for the (3+1)-dimensional fractional heisenberg ferromagnetic spin chain equation, Phys. Scr., 99 (2024), 095229. https://doi.org/10.1088/1402-4896/ad6ae6 doi: 10.1088/1402-4896/ad6ae6
    [24] Y. K. Xie, Z. Wang, A ratio-dependent impulsive control of an SIQS epidemic model with non-linear incidence, Appl. Math. Comput., 423 (2022), 127018. https://doi.org/10.1016/j.amc.2022.127018 doi: 10.1016/j.amc.2022.127018
    [25] Y. J. Jiang, J. T. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235 (2011), 3285–3290. https://doi.org/10.1016/j.cam.2011.01.011 doi: 10.1016/j.cam.2011.01.011
    [26] J. S. Duan, T. Chaolu, R. Rach, Solutions of the initial value problem for nonlinear fractional ordinary differential equations by the Rach-Adomian-Meyers modified decomposition method, Appl. Math. Comput., 218 (2012), 8370–8392. https://doi.org/10.1016/j.amc.2012.01.063 doi: 10.1016/j.amc.2012.01.063
    [27] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [28] R. Özarslan, Dünya bankası reel verileri İle gayri safi yurtiçi hasıla modeline conformable türev yaklaşımı, Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7 (2020), 640361. https://doi.org/10.35193/bseufbd.640361 doi: 10.35193/bseufbd.640361
    [29] M. Bilal, J. Iqbal, R. Ali, F. A. Awwad, E. A. A. Ismail, Establishing breather and N-soliton solutions for conformable Klein-Gordon equation, Open Phys., 22 (2024), 20240044. https://doi.org/10.1515/phys-2024-0044 doi: 10.1515/phys-2024-0044
    [30] L. Gelens, G. A. Anderson, J. E. Ferrell, Spatial trigger waves: positive feedback gets you a long way, Mol. Biol. Cell, 25 (2014), 3437–3716. https://doi.org/10.1091/mbc.e14-08-1306 doi: 10.1091/mbc.e14-08-1306
    [31] M. Bilal, J. Iqbal, R. Ali, F. A. Awwad, E. A. A. Ismail, Exploring families of solitary wave solutions for the fractional coupled higgs system using modified extended direct algebraic method, Fractal Fract., 7 (2023), 653. https://doi.org/10.3390/fractalfract7090653 doi: 10.3390/fractalfract7090653
    [32] B. Elma, E. Misirli, Two reliable techniques for solving conformable space-time fractional PHI-4 model arising in nuclear physics via \beta-derivative, Rev. Mex. Fís., 67 (2021), 050707. https://doi.org/10.31349/RevMexFis.67.050707 doi: 10.31349/RevMexFis.67.050707
    [33] I. Ullah, K. Shah, T. Abdeljawad, Study of traveling soliton and fronts phenomena in fractional Kolmogorov-Petrovskii-Piskunov equation, Phys. Scr., 99 (2024), 055259. https://doi.org/10.1088/1402-4896/ad3c7e doi: 10.1088/1402-4896/ad3c7e
    [34] M. Bilal, J. Iqbal, K. Shah, B. Abdalla, T. Abdeljawad, I. Ullah, Analytical solutions of the space-time fractional Kundu-Eckhaus equation by using modified extended direct algebraic method, Partial Differential Equations in Applied Mathematics, 11 (2024), 100832. https://doi.org/10.1016/j.padiff.2024.100832 doi: 10.1016/j.padiff.2024.100832
  • This article has been cited by:

    1. Gerardo Sánchez Licea, Weak Measurable Optimal Controls for the Problems of Bolza, 2021, 9, 2227-7390, 191, 10.3390/math9020191
    2. Gerardo Sánchez Licea, Sufficiency for Purely Essentially Bounded Optimal Controls, 2020, 12, 2073-8994, 238, 10.3390/sym12020238
    3. Gerardo Sánchez Licea, A Straightforward Sufficiency Proof for a Nonparametric Problem of Bolza in the Calculus of Variations, 2022, 11, 2075-1680, 55, 10.3390/axioms11020055
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(542) PDF downloads(31) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog