Research article

Curvature estimation for point cloud 2-manifolds based on the heat kernel

  • Received: 30 July 2024 Revised: 24 September 2024 Accepted: 16 October 2024 Published: 15 November 2024
  • MSC : 53A45, 53A70

  • The geometry processing of a point cloud 2-manifold (or point cloud surface) heavily depends on the discretization of differential geometry properties such as Gaussian curvature, mean curvature, principal curvature, and principal directions. Most of the existing algorithms indirectly compute these differential geometry properties by seeking a local approximation surface or fitting point clouds with certain polynomial functions and then applying the curvature formulas in classical differential geometry. This paper initially proposed a new discretized Laplace-Beltrami operator by applying an inherent distance parameter, which acts as the foundation for precisely estimating the mean curvature. Subsequently, the estimated mean curvature was taken as a strong constraint condition for estimating the Gaussian curvatures, principal curvatures, and principal directions by determining an optimal ellipse. The proposed methods are mainly based on the heat kernel function and do not require local surface reconstruction, thus belonging to truly mesh-free methods. We demonstrated the correctness of the estimated curvatures in both analytic and non-analytic models. Various experiments indicated that the proposed methods have high accuracy. As an exemplary application, we utilized the mean curvature for detecting features of point clouds.

    Citation: Kai Wang, Xiheng Wang, Xiaoping Wang. Curvature estimation for point cloud 2-manifolds based on the heat kernel[J]. AIMS Mathematics, 2024, 9(11): 32491-32513. doi: 10.3934/math.20241557

    Related Papers:

  • The geometry processing of a point cloud 2-manifold (or point cloud surface) heavily depends on the discretization of differential geometry properties such as Gaussian curvature, mean curvature, principal curvature, and principal directions. Most of the existing algorithms indirectly compute these differential geometry properties by seeking a local approximation surface or fitting point clouds with certain polynomial functions and then applying the curvature formulas in classical differential geometry. This paper initially proposed a new discretized Laplace-Beltrami operator by applying an inherent distance parameter, which acts as the foundation for precisely estimating the mean curvature. Subsequently, the estimated mean curvature was taken as a strong constraint condition for estimating the Gaussian curvatures, principal curvatures, and principal directions by determining an optimal ellipse. The proposed methods are mainly based on the heat kernel function and do not require local surface reconstruction, thus belonging to truly mesh-free methods. We demonstrated the correctness of the estimated curvatures in both analytic and non-analytic models. Various experiments indicated that the proposed methods have high accuracy. As an exemplary application, we utilized the mean curvature for detecting features of point clouds.



    加载中


    [1] K. Wang, X. Wang, J. Gan, A general method of trajectory generation based on point-cloud structures in automatic fibre placement, Comp. Stru., 314 (2023), 116976. https://doi.org/10.1016/j.compstruct.2023.116976 doi: 10.1016/j.compstruct.2023.116976
    [2] X. Ji, X. Zhang, H. Hu, Point cloud segmentation for complex micro surfaces based on feature line fitting, Mult. Tools Appl., 80 (2021), 4553–4578. https://doi.org/10.1007/s11042-020-09910-6 doi: 10.1007/s11042-020-09910-6
    [3] L. Zhu, W. Chen, X. Lin, L. He, Curvature variation inspired sampling for point cloud classification and segmentation, IEEE Signal. Process. Lett., 29 (2022), 1868–1872. https://doi.org/10.1109/LSP.2022.3200585 doi: 10.1109/LSP.2022.3200585
    [4] A. Vo, L. Truong-Hong, Octree-based region growing for point cloud segmentation, ISPRS J. Photogramm. Remote Sens., 104 (2015), 88–100. https://doi.org/10.1016/j.isprsjprs.2015.01.011 doi: 10.1016/j.isprsjprs.2015.01.011
    [5] Y. Gao, C. Ping, A simplification method for point cloud of t-profile steel plate for shipbuilding, Algorithms, 14 (2002), 202. https://doi.org/10.3390/a14070202 doi: 10.3390/a14070202
    [6] Z. Yao, Q. Zhao, X. Li, Point cloud registration algorithm based on curvature feature similarity, Measurement, 177 (2021), 109274. https://doi.org/10.1016/j.measurement.2021.109274 doi: 10.1016/j.measurement.2021.109274
    [7] Y. He, S. Kang, H. Liu, Curvature regularized surface reconstruction from point clouds, SIAM J. Imaging Sci., 13 (2020), 1834–1859. https://doi.org/10.1137/20M1314525 doi: 10.1137/20M1314525
    [8] K. Wang, X. Wang, D. Zhang, Constructing continuous curves on point-cloud surfaces with directed projection operator, J. Comput. Sci., 79 (2020), 1877–7503. https://doi.org/10.1016/j.jocs.2023.102028 doi: 10.1016/j.jocs.2023.102028
    [9] X. Wang, H. Chen, L. Wu, Feature extraction of point clouds based on region clustering segmentation, Multimedia Tools Appl., 79 (2020), 1877–7503. https://doi.org/10.1007/s11042-019-08512-1 doi: 10.1007/s11042-019-08512-1
    [10] J. Nie, Extracting feature lines from point clouds based on smooth shrink and iterative thinning, Graph. Models, 84 (2016), 38–49. https://doi.org/10.1016/j.gmod.2016.04.001 doi: 10.1016/j.gmod.2016.04.001
    [11] T. Surazhsky, E. Magid, O. Soldea, A comparison of Gaussian and mean curvature estimation methods on triangular meshes of range image data, Comput. Vis. Image Underst., 107 (2007), 139–159. https://doi.org/10.1109/ROBOT.2003.1241726 doi: 10.1109/ROBOT.2003.1241726
    [12] G. Taubin, Estimating the tensor of curvature of a surface from a polyhedral approximation, Proc. IEEE Int. Conf. Comput. Vis., 1 (1995), 902–907. https://doi.org/10.1109/ICCV.1995.466840 doi: 10.1109/ICCV.1995.466840
    [13] X. Chen, F. Schmitt, Intrinsic surface properties from surface triangulation, Lect. Notes Comput. Sci., 588 (1992). https://doi.org/10.1007/3-540-55426-2_83 doi: 10.1007/3-540-55426-2_83
    [14] C. Dong, G. Wang, Curvatures estimation on triangular mesh, Proc. IEEE Int. Conf. Comput. Vis., 6 (2005), 128–136. https://doi.org/10.1631/jzus.2005.AS0128 doi: 10.1631/jzus.2005.AS0128
    [15] M. Meyer, M. Desbrun, P. Schröder, Discrete differential-geometry operators for triangulated 2-manifolds, 1 (2003), 35–57. https://doi.org/10.1007/978-3-662-05105-4_2
    [16] J. Goldfeather, V. Interrante, A novel cubic-order algorithm for approximating principal direction vectors, ACM Trans. Graph., 23 (2004), 45–63. https://doi.org/10.1145/966131.966134 doi: 10.1145/966131.966134
    [17] D. Fernando, B. Andrew, Discrete differential operators on polygonal meshes, ACM Trans. Graph., 39 (2020), 1–14. https://doi.org/10.1145/3386569.3392389 doi: 10.1145/3386569.3392389
    [18] M. Makovník, P. Chalmoviansky, Curvature estimation for meshes via algebraic quadric fitting, arXiv, 2023. https://doi.org/10.48550/arXiv.2304.08909
    [19] I. Douros, B. Buxton, Three-dimensional surface curvature estimation using quadric surface patches, Scanning, 44 (2002). Available from: https://api.semanticscholar.org/CorpusID: 14748373
    [20] S. Cheng, Y. Zhou, J. Shi, Curvature estimation to scattered point cloud, Appl. Mech. Mater., 29 (2010), 1263–1267. Available from: https://www.scientific.net/AMM.29-32.1263
    [21] A. Spek, W. Li, T. Drummond, A fast method for computing principal curvatures from range images, arXiv, 1 (2017), 33–41. https://doi.org/10.48550/arXiv.1707.00385 doi: 10.48550/arXiv.1707.00385
    [22] Y. Cheng, W. Li, C. Jiang, A novel point cloud simplification method using local conditional information, Meas. Sci. Technol., 33 (2022), 125203. https://doi.org/10.1088/1361-6501/ac8ac1 doi: 10.1088/1361-6501/ac8ac1
    [23] A. Yasuhiko, I. Yuichi, Curvature of point clouds through principal component analysis, CoRR, 1 (2021), 1–23. Available from: https://dblp.org/rec/journals/corr/abs-2106-09972
    [24] A. Foorginejad, K. Khalili, Umbrella curvature: A new curvature estimation method for point clouds, Procedia Tech., 12 (2014), 347–352. https://doi.org/10.1016/j.protcy.2013.12.497 doi: 10.1016/j.protcy.2013.12.497
    [25] N. Amenta, Defining point-set surfaces, ACM Trans. Graph., 23 (2004), 264–270. https://doi.org/10.1145/1015706.1015713 doi: 10.1145/1015706.1015713
    [26] N. Amenta, The domain of a point set surfaces, EG SPG, 1 (2004), 139–147. https://doi.org/10.2312/SPBG/SPBG04/139-147 doi: 10.2312/SPBG/SPBG04/139-147
    [27] P. Yang, X. Qian, Direct computing of surface curvatures for point-set surfaces, SPBG, 1 (2007), 139–147. https://doi.org/10.2312/SPBG/SPBG07/029-036 doi: 10.2312/SPBG/SPBG07/029-036
    [28] R. Goldman, Curvature formulas for implicit curves and surfaces, Comput. Aided Geom. Des., 22 (2005), 632–658. https://doi.org/10.1016/j.cagd.2005.06.005 doi: 10.1016/j.cagd.2005.06.005
    [29] M. Tian, J. Lu, L. Zhang, Curvature estimation on point cloud using an indicator function, HPCCT & BDAI '20, 1 (2020), 24–28. https://doi.org/10.1145/3409501.3409505 doi: 10.1145/3409501.3409505
    [30] Y. Miao, Curvature estimation of Point-Sampled surfaces and its applications, Computat. Sci. Appl., 3482 (1971), 1023–1032. https://doi.org/10.1007/11424857_110 doi: 10.1007/11424857_110
    [31] X. Zhang, H. Li, Robust curvature estimation and geometry analysis of 3D point cloud surfaces, J. Inf. Comput. Sci., 6 (2009), 1983–1990. Available from: https://api.semanticscholar.org/CorpusID:54773600
    [32] X. Zhang, Curvature estimation of 3D point cloud surfaces through the fitting of normal section curvatures, ASIAGRAPH 2008 Proc., 1 (2008), 1–10. Available from: https://api.semanticscholar.org/CorpusID:10468338
    [33] K. Wang, F. Chen, Y. Chen, Directly compute curvatures on Point-based surface, Mini-Micro Syst., 26 (2005), 813–817. Available from: https://api.semanticscholar.org/CorpusID:123831294
    [34] Q. Mérigot, M. Ovsjanikov, L. Guibas, Voronoi-Based curvature and feature estimation from point clouds, IEEE Trans. Vis. Comput. Graph., 26 (2005), 743–756. https://doi.org/10.1109/TVCG.2010.261 doi: 10.1109/TVCG.2010.261
    [35] J. Lachaud, D. Coeurjolly, C. Labart, Lightweight curvature estimation on point clouds with randomized corrected curvature measures, Comput. Graph. Forum, 42 (2023), e14910. https://doi.org/10.1111/cgf.14910 doi: 10.1111/cgf.14910
    [36] Y. Cao, D. Li, H. Sun, Efficient weingarten map and curvature estimation on manifolds, Mach. Learn., 110 (2021), 1319–1344. https://doi.org/10.1007/s10994-021-05953-4 doi: 10.1007/s10994-021-05953-4
    [37] C. Lange, K. Polthier, Anisotropic smoothing of point sets, Comput. Aided Geom. Des., 22 (2005), 680–692. https://doi.org/10.1016/j.cagd.2005.06.010 doi: 10.1016/j.cagd.2005.06.010
    [38] S. Rosenberg, The laplacian on a riemannian manifold: An introduction to analysis on manifolds, Cambridge: Rosenberg, 1997. https://doi.org/10.1017/cbo9780511623783
    [39] M. Ahmed, I. Eldesoky, The profound effect of heat transfer on magnetic peristaltic flow of a couple stress fluid in an inclined annular tube, Mod. Phys. Lett. B, 38 (2024), 2450233. https://doi.org/10.1142/S0217984924502336 doi: 10.1142/S0217984924502336
    [40] P. Kumar, S. Balakrishnan, A. Magesh, Numerical treatment of entropy generation and Bejan number into an electroosmotically-driven flow of Sutterby nanofluid in an asymmetric microchannel, Numer. Heat Tr. B-fund., 1 (2024), 1–20. https://doi.org/10.1080/10407790.2024.2329773 doi: 10.1080/10407790.2024.2329773
    [41] A. Grigoryan, Heat kernel and analysis on manifolds, Rhode Island: American mathematical society and international press, 2009. https://doi.org/10.1090/amsip/047
    [42] M. Belkin, P. Niyogi, Towards a theoretical foundation for Laplacian-based manifold methods, J. Comput. Syst. Sci., 74 (2008), 1289–1308. https://doi.org/10.1016/j.jcss.2007.08.006 doi: 10.1016/j.jcss.2007.08.006
    [43] M. Belkin, J. Sun, Y. Wang, Constructing Laplace operator from point clouds in Rd, Proc. 20th Annu. ACM-SIAM Symp. Discrete Algorithms, 2009, 1031–1040. Available from: https://dl.acm.org/doi/abs/10.5555/1496770.1496882
    [44] D. Ulrich, H. Stefan, K. Albrecht, Minimal surfaces, Berlin: Springer Berlin Heidelberg, 2010. https://doi.org/10.1007/978-3-642-11698-8
    [45] M. Pauly, Point primitives for interactive modeling and processing of 3D geometry, Germany: Hartung-Gorre, 2003. https://doi.org/10.3929/ETHZ-A-004612876
    [46] S. Gilbert, Introduction to linear algebra, 5 Eds., Wellesley: Wellesley-Cambridge Press, 2003. https://doi.org/10.1007/978-1-4612
    [47] C. Keenan, W. Clarisse, W. Max, Geodesics in heat: A new approach to computing distance based on heat flow, ACM Trans. Graph., 32 (2013), 1–13. https://doi.org/10.1145/2516971.2516977 doi: 10.1145/2516971.2516977
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(181) PDF downloads(40) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog