Research article

A reliable numerical algorithm based on an operational matrix method for treatment of a fractional order computer virus model

  • Received: 22 October 2023 Revised: 16 November 2023 Accepted: 28 November 2023 Published: 03 January 2024
  • MSC : 26A33, 33C45, 65L05, 92D30

  • A computer network can detect potential viruses through the use of kill signals, thereby minimizing the risk of virus propagation. In the realm of computer security and defensive strategies, computer viruses play a significant role. Understanding of their spread and extension is a crucial component. To address this issue of computer virus spread, we employ a fractional epidemiological SIRA model by utilizing the Caputo derivative. To solve the fractional-order computer virus model, we employ a computational technique known as the Jacobi collocation operational matrix method. This operational matrix transforms the problem of arbitrary order into a system of nonlinear algebraic equations. To analyze this system of arbitrary order, we derive an approximate solution for the fractional computer virus model, also considering the Vieta Lucas polynomials. Numerical simulations are performed and graphical representations are provided to illustrate the impact of order of the fractional derivative on different profiles.

    Citation: Jagdev Singh, Jitendra Kumar, Devendra kumar, Dumitru Baleanu. A reliable numerical algorithm based on an operational matrix method for treatment of a fractional order computer virus model[J]. AIMS Mathematics, 2024, 9(2): 3195-3210. doi: 10.3934/math.2024155

    Related Papers:

  • A computer network can detect potential viruses through the use of kill signals, thereby minimizing the risk of virus propagation. In the realm of computer security and defensive strategies, computer viruses play a significant role. Understanding of their spread and extension is a crucial component. To address this issue of computer virus spread, we employ a fractional epidemiological SIRA model by utilizing the Caputo derivative. To solve the fractional-order computer virus model, we employ a computational technique known as the Jacobi collocation operational matrix method. This operational matrix transforms the problem of arbitrary order into a system of nonlinear algebraic equations. To analyze this system of arbitrary order, we derive an approximate solution for the fractional computer virus model, also considering the Vieta Lucas polynomials. Numerical simulations are performed and graphical representations are provided to illustrate the impact of order of the fractional derivative on different profiles.



    加载中


    [1] X. Han, Q. Tan, Dynamical behavior of computer virus on Internet, Appl. Math. Comput., 217 (2010), 2520–2526. https://doi.org/10.1016/j.amc.2010.07.064 doi: 10.1016/j.amc.2010.07.064
    [2] J. Kim, S. Radhakrishnan, J. Jang, Cost optimization in SIS model of worm infection, ETRI J., 28 (2006), 692–695. https://doi.org/10.4218/etrij.06.0206.0026 doi: 10.4218/etrij.06.0206.0026
    [3] J. R. C. Piqueira, V. O. Araujo, A modified epidemiological model for computer viruses, Appl. Math. Comput., 213 (2009), 355–360. https://doi.org/10.1016/j.amc.2009.03.023 doi: 10.1016/j.amc.2009.03.023
    [4] J. O. Kephart, S. R. White, D. M. Chess, Computers and epidemiology, IEEE Spectr., 30 (1993), 20–26. https://doi.org/10.1109/6.275061 doi: 10.1109/6.275061
    [5] L. Billings, W. M. Spears, I. B. Schwartz, A unified prediction of computer virus spread in connected networks, Phys. Lett. A, 297 (2002), 261–266. https://doi.org/10.1016/S0375-9601(02)00152-4 doi: 10.1016/S0375-9601(02)00152-4
    [6] J. Ren, X. Yang, Q. Zhu, L. X. Yang, C. Zhang, A novel computer virus model and its dynamics, Nonlinear Anal. Real, 13 (2012), 376–384. https://doi.org/10.1016/j.nonrwa.2011.07.048 doi: 10.1016/j.nonrwa.2011.07.048
    [7] L. X. Yang, X. Yang, The spread of computer viruses under the influence of removable storage devices, Appl. Math. Comput., 219 (2012), 3914–3922. https://doi.org/10.1016/j.amc.2012.10.027 doi: 10.1016/j.amc.2012.10.027
    [8] R. Zarin, H. Khaliq, A. Khan, I. Ahmed, U. W. Humphries, A numerical study based on haar wavelet collocation methods of fractional-order antidotal computer virus model, Symmetry, 15 (2023), 621. https://doi.org/10.3390/sym15030621 doi: 10.3390/sym15030621
    [9] J. Singh, D. Kumar, Z. Hammouch, A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., 316 (2018), 504–515. https://doi.org/10.1016/j.amc.2017.08.048 doi: 10.1016/j.amc.2017.08.048
    [10] C. Gan, X. Yang, W. Liu, Q. Zhu, A propagation model of computer virus with nonlinear vaccination probability, Commun. Nonlinear Sci., 19 (2014), 92–100. https://doi.org/10.1016/j.cnsns.2013.06.018 doi: 10.1016/j.cnsns.2013.06.018
    [11] Y. Muroya, Y. Enatsu, H. Li, Global stability of a delayed SIRS computer virus propagation model, Int. J. Comput. Math., 91 (2014), 347–367. https://doi.org/10.1080/00207160.2013.790534 doi: 10.1080/00207160.2013.790534
    [12] B. K. Mishra, S. K. Pandey, Dynamic model of worms with vertical transmission in computer network, Appl. Math. Comput., 217 (2011), 8438–8446. https://doi.org/10.1016/j.amc.2011.03.041 doi: 10.1016/j.amc.2011.03.041
    [13] W. H. Murray, The application of epidemiology to computer viruses, Comput. Secur., 7 (1988), 139–145. https://doi.org/10.1016/0167-4048(88)90327-6 doi: 10.1016/0167-4048(88)90327-6
    [14] J. Wang, K. Shehzad, A. R. Seadawy, M. Arshad, F. Asmat, Dynamic study of multi-peak solitons and other wave solutions of new coupled KdV and new coupled Zakharov-Kuznetsov systems with their stability, J. Taibah Univ. Sci., 17 (2023), 2163872. https://doi.org/10.1080/16583655.2022.2163872 doi: 10.1080/16583655.2022.2163872
    [15] U. Younas, A. R. Seadawy, M. Younis, S. T. R. Rizvi, Optical solitons and closed form solutions to the (3+1)-dimensional resonant Schrödinger dynamical wave equation, Int. J. Mod. Phys. B, 34 (2020), 2050291.
    [16] A. R. Seadawy, Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma, Comput. Math. Appl., 67 (2014), 172–180. https://doi.org/10.1016/j.camwa.2013.11.001 doi: 10.1016/j.camwa.2013.11.001
    [17] K. Shah, A. R. Seadawy, M. Arfan, Evaluation of one dimensional fuzzy fractional partial differential equations, Alex. Eng. J., 59 (2020), 3347–3353. https://doi.org/10.1016/j.aej.2020.05.003 doi: 10.1016/j.aej.2020.05.003
    [18] R. A. El-Nabulsi, W. Anukool, A family of nonlinear Schrodinger equations and their solitons solutions, Chaos Soliton. Fract., 166 (2023), 112907. https://doi.org/10.1016/j.chaos.2022.112907 doi: 10.1016/j.chaos.2022.112907
    [19] M. Chen, R. Wu, X. Wang, Non-constant steady states and Hopf bifurcation of a species interaction model, Commun. Nonlinear Sci., 116 (2023), 106846. https://doi.org/10.1016/j.cnsns.2022.106846 doi: 10.1016/j.cnsns.2022.106846
    [20] M. Chen, Z. Hu, Q. Zheng, H. M. Srivastava, Dynamics analysis of a spatiotemporal SI model, Alex. Eng. J., 74 (2023), 705–714. https://doi.org/10.1016/j.aej.2023.05.044 doi: 10.1016/j.aej.2023.05.044
    [21] S. Kumar, A. Ahmadian, R. Kumar, D. Kumar, J. Singh, D. Baleanu, et al., An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein wavelets, Mathematics, 8 (2020), 558. https://doi.org/10.3390/math8040558 doi: 10.3390/math8040558
    [22] J. Singh, A. M. Alshehri, Sushila, D. Kumar, Computational analysis of fractional Liénard's equation with exponential memory, J. Comput. Nonlinear Dynam., 18 (2023), 041004. https://doi.org/10.1115/1.4056858 doi: 10.1115/1.4056858
    [23] H. M. Srivastava, D. Kumar, J. Singh, An efficient analytical technique for fractional model of vibration equation, Appl. Math. Model., 45 (2017), 192–204. https://doi.org/10.1016/j.apm.2016.12.008 doi: 10.1016/j.apm.2016.12.008
    [24] J. Singh, A. Gupta, D. Kumar, Computational analysis of the fractional Riccati differential equation with Prabhakar-type memory, Mathematics, 11 (2023), 644. https://doi.org/10.3390/math11030644 doi: 10.3390/math11030644
    [25] D. Kumar, J. Singh, D. Baleanu, A fractional model of convective radial fins with temperature-dependent thermal conductivity, Rom. Rep. Phys., 69 (2017), 103.
    [26] I. Podlubny, Fractional differential equations, mathematics in science and engineering, Academic Press, 1993.
    [27] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley Sons, 1993.
    [28] D. L. Suthar, S. D. Purohit, A. M. Khan, S. Dave, Impacts of environmental pollution on the growth and conception of biological populations involving incomplete I-function, Intell. Learn. Comput. Vision, 2020,567–575. https://doi.org/10.1007/978-981-33-4582-9_44 doi: 10.1007/978-981-33-4582-9_44
    [29] E. Tohidi, A. H. Bhrawy, K. Erfani, A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation, Appl. Math. Modell., 37 (2013), 4283–4294. https://doi.org/10.1016/j.apm.2012.09.032 doi: 10.1016/j.apm.2012.09.032
    [30] A. Isah, C. Phang, P. Phang, Collocation method based on Genocchi operational matrix for solving generalized fractional pantograph equations, Int. J. Differ. Equ., (2017), 1–10. https://doi.org/10.1155/2017/2097317 doi: 10.1155/2017/2097317
    [31] P. Pandey, S. Kumar, H. Jafari, S. Das, An operational matrix for solving time-fractional order Cahn-Hilliard equation, Serb. Soc. Heat Transf. Eng., 2019.
    [32] A. H. Bhrawy, A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations, Numer. Algorithms, 73 (2016), 91–113. https://doi.org/10.1007/s11075-015-0087-2 doi: 10.1007/s11075-015-0087-2
    [33] A. H. Bhrawy, M. M. Tharwat, M. A. Alghamdi, A new operational matrix of fractional integration for shifted Jacobi polynomials, Bull. Malays. Math. Sci. Soc., 37 (2014), 983–995.
    [34] N. H. Khanh, Dynamical analysis and approximate iterative solutions of an antidotal computer virus model, Int. J. Appl. Comput. Math., 3 (2017), 829–841. https://doi.org/10.1007/s40819-017-0385-6 doi: 10.1007/s40819-017-0385-6
    [35] E. H. Doha, A. H. Bhrawy, D. Baleanu, S. S. Ezz-Eldien, The operational matrix formulation of the Jacobi tau approximation for space fractional diffusion equation, Adv. Differ. Equ., (2014), 1–14. https://doi.org/10.1186/1687-1847-2014-231 doi: 10.1186/1687-1847-2014-231
    [36] A. Ahmadian, M. Suleiman, S. Salahshour, D. Baleanu, A Jacobi operational matrix for solving a fuzzy linear fractional differential equation, Adv. Differ. Equ., (2013), 1–29. https://doi.org/10.1186/1687-1847-2013-104 doi: 10.1186/1687-1847-2013-104
    [37] Z. A. Noor, I. Talib, T. Abdeljawad, M. A. Alqudah, Numerical study of caputo Fractional-Order differential equations by developing new operational matrices of Vieta-Lucas polynomials, Fractal Fract., 6 (2022), 79. https://doi.org/10.3390/fractalfract6020079 doi: 10.3390/fractalfract6020079
    [38] E. Kreyszig, Introductory functional analysis with applications, New York: JohnWiley Sons Inc., 1991.
    [39] T. J. Rivlin, An introduction to the approximation of functions, Courier Corporation, 1981.
    [40] S. S. Ezz-Eldien, A. A. El-Kalaawy, Numerical simulation and convergence analysis of fractional optimization problems with right-si ded Caputo fractional derivative, J. Comput. Nonlin. Dyn., 13 (2018). https://doi.org/10.1115/1.4037597 doi: 10.1115/1.4037597
    [41] S. S. Ezz-Eldien, New quadrature approach based on operational matrix for solving a class of fractional variational problems, J. Comput. Phys., 317 (2017), 362–381. https://doi.org/10.1016/j.jcp.2016.04.045 doi: 10.1016/j.jcp.2016.04.045
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(815) PDF downloads(99) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog