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1. Introduction

Computer viruses are diminutive software programs clandestinely infiltrating computers, operating
surreptitiously to dismantle software and hardware components. Their proliferation accelerated,
particularly with rapid strains during the 1990s, they marked a notable surge post-mid-1980s. By the
close of the 1990s, the viral landscape had metamorphosed dramatically, boasting hundreds of
thousands of distinct strains, perpetually adapting and morphing to evade detection and
countermeasures. During the 1980s, computer viruses introduced various forms of malicious code,
inflicting harm upon small entities within systems unbeknownst to their operators. The detrimental
impacts of these agents were relatively mild at the time, and their propagation occurred at a slower
pace. In today’s interconnected global society, the proliferation of viruses has accelerated
significantly. Their unfair activities encompass a range of malicious actions, such as infiltrating email
addresses and bank accounts, stealing passwords, manipulating data, causing financial loss and
disrupting the basic operation of machines [1–3].

Computer virus epidemiological models utilize computational methods to simulate the propagation
of computer viruses within interconnected networks. These models incorporate factors such as
network topology, user behavior and virus characteristics to predict how malware spreads. By running
simulations, the models aid in understanding virus dynamics, evaluating the impact of cybersecurity
measures and guiding strategies for virus containment and prevention. These models are crucial tools
for cybersecurity experts, helping them anticipate and respond to evolving cyber threats, safeguarding
digital systems and data integrity. Kephart et al. [4] were pioneers in the initial exploration of
modeling analogies between computer viruses and biological diseases, incorporating topological
aspects. Billings et al. [5] examined the uniform prediction of computer virus propagation within
interconnected networks. To obtain more information on virus propagation, various epidemiological
models have been examined, such as SLBS [6, 7], SIRA [8, 9], SIRS [10, 11] and SIERS [12]. Han
and Tan [1] examined the dynamic behavior of computer viruses on the Internet. In exploring the
relationship between epidemiology and computer viruses, Murray [13] appears to be among the early
contributors and while he did not delve into specific models, his work focused on drawing analogies
between computer virus dynamics and epidemiological defense strategies employed in public health.
Nonlinear equations and systems find diverse applications across science and engineering, from
modeling physical phenomena to optimizing complex systems. The richness of approaches for
extracting solitary solutions, including numerical methods, analytical techniques and artificial
intelligence algorithms, underscores the versatility and importance of nonlinear systems in various
fields such as the KdV system [14], resonant wave equation [15], plasma [16], fuzzy fractional
PDEs [17] and Schrodinger model [18]. Chen et al. [19, 20] investigated a species interaction model
and spatiotemporal SI model.

Fractional calculus and fractional differential equations have garnered significant attention in
recent decades, owing to their promising applications in the realms of science and engineering.
Fractional derivatives enable the accurate representation of physical phenomena, incorporating both
present and past time dependencies. Furthermore, fractional calculus finds practical utility across
various scientific and engineering domains, offering versatile solutions and insights for real-world
challenges in these fields [21–24]. These fractional operators, characterized by their non-local nature,
inherently encapsulate the system’s historical information, leading to more realistic mathematical
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simulations. Additional information on daily life implementation of fractional calculus can be
acquired [25–28].

The operational matrix collocation techniques are a numerical scheme employed for solving
differential equations, particularly those of fractional order. This scheme offers an efficient approach
by transforming fractional differential equations into algebraic systems through the use of operational
matrices. These methods are known for their accuracy and versatility in modeling complex
phenomena, making it valuable in several areas such as physics, finance and engineering. By
discretizing fractional differential equations, the operational matrix collocation method facilitates the
solution of problems that involve fractional derivatives, contributing to a better understanding of
intricate processes. For a deeper understanding of the operational matrix collocation methods, one can
refer to its application with various orthogonal polynomials such as Bernoulli polynomials [29],
Genocchi polynomials [30], Laguerre polynomials [31] and Jacobi polynomials [32, 33]. These
polynomial functions play a significant role in the operational matrix collocation, helping to solve
differential equations efficiently and accurately by transforming them into algebraic systems.

The novelty of this article lies in the transformation of the conventional ordinary differential
equations into a fractional differential equation of a computer virus model and finds the solution of
governing model with the help of the Jacobi operational matrix with the collocation method. The
utilization of the operational matrix collocation method for solving these fractional differential
equations represents a significant enhancement to the existing SIRA model [8, 34], especially in the
context of countering computer virus propagation. This innovative approach opens new avenues for
understanding and addressing the dynamics of virus spread, contributing to the field of computer
security and virus containment strategies. In this paper, we use the advantages of the aforementioned
numerical algorithm to approximate solutions for our fractional SIRA model. By doing so, we aim to
analyze the dynamics of the model with the utmost precision, minimizing errors in our analysis. The
recommended approach combines the collocation method with the operational matrix of
differentiation method for Jacobi polynomials. We obtain a system of nonlinear algebraic equations
(NLAEs) whose approximate solutions provide results to combining the collocation approach with
the operational matrix of fractional differentiations. Behavior of the solution is presented for the
distinct fractional orders for the SIRA fractional model. We provide a comparative study with
solutions obtained by the Vieta Lucas polynomial. The organization of this study is as follows: In
Section 1, we describe the antidotal computer virus model. The basic definition of the calculus of
fractional order and properties of Jacobi and Vieta Lucas polynomial are discussed in Section 3. In
Section 4, we introduce the fractional SIRA model. In Section 5, a numerical scheme is discussed. we
demonstrate the Jacobi collocation method to find a solution of the arbitrary order SIRA model in
Section 6. Section 7 is dedicated to error and convergence analysis of the scheme. Numerical results
are discussed in Section 8. Concluding remarks are given in Section 9.

2. The SIRA computer virus model

In this section, we introduce a key component designed to prevent the propagation of computer
viruses across networks. Within our considered model, the total population N consists of four distinct
types of computers at time ξ, S (ξ) defines the numbers of susceptible computers but not those infected,
the numbers of infected computers and those removed from a network at time ξ, represented by I(ξ),
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and R(ξ) is the number of removed computers but not those infected at ξ in the network and computers
that equipped with antivirus programs denoted by A(ξ).
Our system modeling is predicated on the following assumptions [34]:

. The network expands by Ξ through the addition of new computers.

. The mortality rate for each group, excluding those attributed to virus causes, is represented as µ.

. Susceptible individuals represented by S (ξ) become infected as determined by the probability of
infection during interactions with infected individuals and the rate is proportional to S (ξ)I(ξ), by a
factor of β.

. At a rate α, the transfer of S (ξ) to antidotes occurs proportional to S (ξ)A(ξ). This implies that
susceptible computers establish effective communication with the antivirus, which subsequently
installs its protective software on the susceptible machine.

. An infected computer equipped with an antivirus program, effective against known viruses,
undergoes a transformation process. It either transitions to an antidotal state at a rate γ proportional to
A(ξ)I(ξ) or it becomes susceptible to additional infections at a rate δ.

. Because viruses are periodically detected and eliminated, infected computers are constantly
reverting to a susceptible state at a consistent rate denoted as c. However, it is important to note that
certain antivirus softwares may not possess the capability to completely eradicate all forms
of malware.

. At a rate of ε, machines that have been removed from the network can be restored and transformed
into a vulnerable ones.

Khanh [34] introduced the conventional SIRA computer virus propagation model with four types
of computers for a total population N expressed as follows:

dS
dξ

= Ξ − αS (ξ)A(ξ) − βS (ξ)I(ξ) + cI(ξ) + εR(ξ) − µS (ξ), (2.1)

dI
dξ

= βS (ξ)I(ξ) − γA(ξ)I(ξ) − (c + δ − µ)I(ξ), (2.2)

dR
dξ

= δI(ξ) − (ε + µ)R(ξ), (2.3)

dA
dξ

= αS (ξ)A(ξ) + γA(ξ)I(ξ) − µA(ξ). (2.4)

Also, at time ξ, N(ξ) = S (ξ) + I(ξ) + R(ξ) + A(ξ) and N(ξ) is constant and equal to N.

3. Preliminaries

We applied the Caputo type derivative of arbitrary order in this research paper. The Caputo
derivative of fractional order ρ ≥ 0 is provided [27] as

(Dρg( ξ)) =

 1
Γ(l−ρ)

∫ ξ

0
(ξ − t)l−ρ−1 dl

dtl g(t)dt, l − 1 < ρ < l,
dl

dξl g(ξ), ρ = l ∈ N.
(3.1)
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3.1. Jacobi polynomials

The analytical form of the shifted Jacobi polynomials on [0, 1] [35] is given as

Mk(z) =

k∑
l=0

(−1)k−l Γ(k + b + 1)Γ(1 + k + a + l + b)
Γ(l + b + 1)Γ(k + a + b + 1)(k − l)!l!

zl,

where a and b are Jacobi polynomial parameters [35].
The orthogonal property of Jacobi polynomials:∫ 1

0
M(a,b)

u (z)µ(a,b)(z)M(a,b)
v (z)dz = δuvφ

a,b
u ,

where δuv is the Kronecker delta function and µ(a,b)(z) is the weight function defined as

µ(a,b)(z) = (1 − z)azb,

and

φa,b
u =

Γ(u+a+1)Γ(u+b+1)
(2u+a+b+1)u!Γ(u+a+b+1) .

The function g defined in L2[0, 1], having |g
′′

(ξ)| ≤ K, can be expanded as an infinite sum of the shifted
Jacobi polynomials:

g(ξ) = lim
q→∞

q∑
i=0

ciMi(ξ), (3.2)

where

ci =
1

φ(a,b)
i

∫ 1

0
g(ξ)Mi(ξ)µ

(a,b)
i dξ; i = 0, 1, 2, . . . , . (3.3)

Taking finite dimension approximations in Eq (3.2), we find

g(ξ) �
n∑

i=0

ciMi(ξ) = ΠT Mn(ξ), (3.4)

where Π and Mn(ξ) are (n + 1) × 1 matrices represented by

Π = [Π0,Π1, . . . .,Πn]T and Mn(ξ) =
[
M0(ξ),M1(ξ), . . . .Mn(ξ)

]T . (3.5)

Theorem 3.1. If Mn(ξ) =
[
M0(ξ),M1(ξ), . . . . . . .,Mn(ξ)

]T is Jacobi polynomials vector and ρ > 0, then

DρMi(ξ) = D(ρ)Mn(ξ), (3.6)

where D(ρ) is (n + 1) × (n + 1) operational matrix of Caputo derivative of fractional order ρ and is
specified as [33, 35, 36]:

D(ρ) =

k∑
l=[ρ]

(−1)k−l Γ(1 + k + b)Γ(1 + a + k + b + l)
(k − l)!Γ(b + 1 + l)Γ(a + k + b + 1)Γ(1 − ρ + l)

∗

i∑
m=0

(−1)i−m i!Γ(1 + a)Γ(a + i + b + m + 1)Γ(1 + l − ρ + +mb)(2i + a + b + 1)
(i − m)!Γ(1 + i + a)Γ(a + m + 1)(m)!Γ(2 + l − ρ + a + b + m)

.

Proof. Please see [33, 35, 36].
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3.2. Vieta-Lucas polynomials

The analytical form of the shifted Vieta Lucas polynomials on [0, 1] [37] is given as

Yn(τ) = 2n
n∑

J=0

(−1)J4n−J(2n − J − 1)!
J!(2n − 2J)!

τn−J; n ≥ 1, (3.7)

with Y0(τ) = 2.
The function f defined in L2[0, 1], having | f

′′

(τ)| ≤ A, can be expanded as an infinite sum of the
shifted Vieta Lucas polynomials:

f (τ) = lim
r→∞

r∑
i=0

piYi(τ), (3.8)

where

pi =
1
θiπ

∫ 1

0
f (τ)yi(τ)u(τ)dτ; i = 0, 1, 2, . . . , u(τ) =

1
√
τ − τ2

, θ0 = 4 and θi = 2(i ≥ 1). (3.9)

Taking finite dimension approximations in Eq (3.8), we find

f (τ) �
n∑

i=0

aiYi(τ) = QT Yn(τ), (3.10)

where Q and Yn(τ) are (n + 1) × 1 matrices represented by

Q =
[
q0, q1, . . . ., qn

]T and Yn(τ) = [Y0(τ),Y1(τ), . . . .Yn(τ)]T . (3.11)

Theorem 3.2. If Yn(τ) = [Y0(τ),Y1(τ), . . . . . . .,Yn(τ)]T is Vieta Lucas polynomials vector and
γ > 0, then

DγYi(τ) = D(γ)Yn(τ), (3.12)

where D(γ) is (n + 1) × (n + 1) operational matrix of Caputo derivative of fractional order γ and is
specified as [37]:

D(γ) =



0 0 · · · 0
...

... · · ·
...

0 0 · · · 0∑i−dγe
k=0 Ωi,0,k

∑i−dγe
k=0 Ωi,1,k · · ·

∑i−dγe
k=0 Ωi,m,k

...
... · · ·

...∑m−dγe
k=0 Ωm,0,k

∑m−dγe
k=0 Ωm,1,k · · ·

∑m−dγe
k=0 Ωm,m,k


and Ωi, j,k is given by

Ωi, j,k =


i
∑i−dγe

k=0 (−1)k 4i−kΓ(2i−k)Γ(i−k+1)Γ(i−k−γ+1/2)
√
πΓ(k+1)Γ(2i−2k+1)Γ(i−k−γ+1)2 , j = 0,

2i
∑i−dγe

k=0

∑ j
r=0

(−1)k+r
√
π

4i−kΓ(2i−k)Γ(i−k+1)
Γ(k+1)Γ(2i−2k+1)Γ(i−k−γ+1)

×
4 j−rΓ(2 j−r)Γ(i+ j−k−r−γ+1/2)

Γ(r+1)Γ(2 j−2r+1)Γ(i+ j+k−r−γ+1) , j = 1, 2, 3, . . .

Proof. Please see [37].
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4. Fractional SIRA computer virus model

The fractional SIRA model in the Caputo sense [8, 34] with the arbitrary order ρ is expressed as

DρS (ξ) = Ξ − αS (ξ)A(ξ) − βS (ξ)I(ξ) + cI(ξ) + εR(ξ) − µS (ξ), (4.1)

DρI(ξ) = βS (ξ)I(ξ) − γA(ξ)I(ξ) − (c + δ − µ)I(ξ), (4.2)

DρR(ξ) = δI(ξ) − (ε + µ)R(ξ), (4.3)

DρA(ξ) = αS (ξ)A(ξ) + γA(ξ)I(ξ) − µA(ξ). (4.4)

5. Numerical scheme

Let S (ξ), I(ξ), R(ξ) and A(ξ) be defined as square summable function in L2[0, 1]. Thus, by Eq (3.4),
they can be approximated subsequently:

S (ξ) =

n∑
i=0

ciMi(ξ) = ΠT
1 Mn(ξ), (5.1)

I(ξ) =

n∑
i=0

ciMi(ξ) = ΠT
2 Mn(ξ), (5.2)

R(ξ) =

n∑
i=0

ciMi(ξ) = ΠT
3 Mn(ξ), (5.3)

A(ξ) =

n∑
i=0

ciMi(ξ) = ΠT
4 Mn(ξ). (5.4)

Now, by applying ρ order Caputo derivative in Eqs (5.1)–(5.4), we get

DρS (ξ) = ΠT
1 DρMn(ξ) � ΠT

1 D(ρ)Mn(ξ), (5.5)

DρI(ξ) = ΠT
2 DρMn(ξ) � ΠT

2 D(ρ)Mn(ξ), (5.6)

DρR(ξ) = ΠT
3 DρMn(ξ) � ΠT

3 D(ρ)Mn(ξ), (5.7)

DρA(ξ) = ΠT
4 DρMn(ξ) � ΠT

4 D(ρ)Mn(ξ), (5.8)

where D(ρ) is an operational matrix of the Caputo derivative for the Jacobi polynomial of arbitrary
order ρ.

Also, from Eqs (5.1) to (5.4), we obtain

S (0) = ΠT
1 Mn(0), (5.9)

I(0) = ΠT
2 Mn(0), (5.10)

R(0) = ΠT
3 Mn(0), (5.11)

A(0) = ΠT
4 Mn(0). (5.12)
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6. Numerical simulation of the arbitrary order SIRA model

Grouping Eqs (4.1) and (5.5) with use of Eqs (5.1)–(5.4), we obtain

ΠT
1 D(ρ)Mn(ξ) − Ξ + α[(ΠT

1 Mn(ξ))(ΠT
4 Mn(ξ))] + β[(ΠT

1 Mn(ξ))ΠT
2 Mn(ξ)] − c(ΠT

2 Mn(ξ))

− ε(ΠT
4 Mn(ξ)) + µ(ΠT

1 Mn(ξ)) = 0. (6.1)

Grouping Eqs (4.2) and (5.6) with use of Eqs (5.1)–(5.4), we get

ΠT
2 D(ρ)Mn(ξ) − β[(ΠT

1 Mn(ξ))(ΠT
2 Mn(ξ))] + γ[(ΠT

4 Mn(ξ))(ΠT
2 Mn(ξ))] + (c + δ − µ)ΠT

2 Mn(ξ) = 0. (6.2)

Grouping Eqs (4.3) and (5.7) with use of Eqs (5.1)–(5.4), we obtain

ΠT
3 D(ρ)Mn(ξ) − δ(ΠT

2 Mn(ξ)) + (ε + µ)ΠT
3 Mn(ξ) = 0. (6.3)

Grouping Eqs (4.4) and (5.8) with use of Eqs (5.1)–(5.4), we obtain

ΠT
4 D(ρ)Mn(ξ) − α[(ΠT

1 Mn(ξ))(ΠT
4 Mn(ξ))] − γ[(ΠT

4 Mn(ξ))(ΠT
2 Mn(ξ))] + µ(ΠT

4 Mn(ξ)) = 0. (6.4)

The residual for Eqs (6.1)–(6.4) are given as

R1n(ξ) = ΠT
1 D(ρ)Mn(ξ) − Ξ + α[(ΠT

1 Mn(ξ))(ΠT
4 Mn(ξ))] + β[(ΠT

1 Mn(ξ))ΠT
2 Mn(ξ)] − c(ΠT

2 Mn(ξ))

− ε(ΠT
4 Mn(ξ)) + µ(ΠT

1 Mn(ξ)), (6.5)

R2n(ξ) = ΠT
2 D(ρ)Mn(ξ)−β[(ΠT

1 Mn(ξ))(ΠT
2 Mn(ξ))]+γ[(ΠT

4 Mn(ξ))(ΠT
2 Mn(ξ))]+(c+δ−µ)ΠT

2 Mn(ξ), (6.6)

R3n(ξ) = ΠT
3 D(ρ)Mn(ξ) − δ(ΠT

2 Mn(ξ)) + (ε + µ)ΠT
3 Mn(ξ), (6.7)

R4n(ξ) = ΠT
4 D(ρ)Mn(ξ) − α[(ΠT

1 Mn(ξ))(ΠT
4 Mn(ξ))] − γ[(ΠT

4 Mn(ξ))(ΠT
2 Mn(ξ))] + µ(ΠT

4 Mn(ξ)). (6.8)

Now, we collocate at n − 1 points presented as ξi = i
n , i = 0, 1, ..., n − 2; in Eqs (6.5)–(6.8), we obtain

R1n(ξi) = ΠT
1 D(ρ)Mn(ξi) − Ξ + α[(ΠT

1 Mn(ξi))(ΠT
4 Mn(ξi))] + β[(ΠT

1 Mn(ξi))ΠT
2 Mn(ξi)]

− c(ΠT
2 Mn(ξi)) − ε(ΠT

4 Mn(ξi)) + µ(ΠT
1 Mn(ξi)), (6.9)

R2n(ξi) = ΠT
2 D(ρ)Mn(ξi) − β[(ΠT

1 Mn(ξi))(ΠT
2 Mn(ξi))] + γ[(ΠT

4 Mn(ξi))(ΠT
2 Mn(ξi))] + (c + δ − µ)ΠT

2 Mn(ξi),
(6.10)

R3n(ξi) = ΠT
3 D(ρ)Mn(ξi) − δ(ΠT

2 Mn(ξi)) + (ε + µ)ΠT
3 Mn(ξi), (6.11)

R4n(ξi) = ΠT
4 D(ρ)Mn(ξi)−α[(ΠT

1 Mn(ξi))(ΠT
4 Mn(ξi))]−γ[(ΠT

4 Mn(ξi))(ΠT
2 Mn(ξi))]+µ(ΠT

4 Mn(ξi)). (6.12)

Furthermore, we can write from Eqs (5.1) to (5.4)

ΠT
1 Mn(0) − S (0) = 0, (6.13)

ΠT
2 Mn(0) − I(0) = 0, (6.14)

ΠT
3 Mn(0) − R(0) = 0, (6.15)

ΠT
4 Mn(0) − A(0) = 0. (6.16)

Using the collocation points in Eqs (6.9)–(6.12) along with Eqs (6.13)–(6.16), we obtain a set of
equations with a similar number of unknowns. The approximated solution of the fractional SIRA
model is obtained by solving this system.
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7. Analysis of the scheme

Theorem 7.1. Consider the functions Ψ : [0, 1] → R and Ψ ∈ C(n+1)[0, 1], where Ψn(t) is the nth

approximation acquired by utilizing Jacobi polynomials. Then, we have

Fh
Ψ,n = ‖Ψ − Ψn‖L2

δ[0,1] , (7.1)

and the error vector in Eq (7.1) tending to 0 as n→ ∞.

Proof. Please refer the work [38, 39].

Theorem 7.2. If Fρ,h
D,n is the error vector for the ρ order operational matrix of differentiation, that is

acquired by utilizing (n + 1) Jacobi polynomials. in this situation, we have

Fρ,h
D,n = D(ρ)Mn(ξ) − DρMn(ξ), (7.2)

tending to 0 as n→ ∞.
Proof. Please see [40].

Suppose that Vn is the n-dimensional subspace generated by (Mi)0≤i≤n for L2
h[0, 1]. Consider ψn as

infimum of the functional on the space Vn. Then, it can be written as

Vn ⊂ Vn+1 and ψn+1 ≥ ψn.

Theorem 7.3. Suppose the functional L. Then,

lim
n→∞

ψn(ξ) = ψ(ξ) = inf
ξ∈[0,1]

L(ξ).

Proof. See [41].
Functional for Eq (4.1) is

L(ξ) = DρS (ξ) − Ξ + αS (ξ)A(ξ) + βS (ξ)I(ξ) − cI(ξ) − εR(ξ) + µS (ξ) = 0. (7.3)

using Eqs (5.1) and (5.4), we get

L(E)(ξ) = ΠT
1 D(ρ)(Mn(ξ) + Fρ,h

D,n) − Ξ + α[(ΠT
1 (Mn(ξ) + Fh

D,n))(ΠT
4 (Mn(ξ) + Fh

D,n0)]+

β[(ΠT
1 (Mn(ξ)+Fh

D,n)ΠT
2 (Mn(ξ)+Fh

D,n)−c(ΠT
2 Mn(ξ)+Fh

D,n)−ε(ΠT
4 Mn(ξ)+Fh

D,n)+µ(ΠT
1 Mn(ξ)+Fh

D,n), (7.4)

where

Fh
D,n = ΠT M(ξ) − ΠT Mn(ξ), (7.5)

Fρ,h
D,n = D(ρ)Mn(ξ) − DρS n(ξ). (7.6)

Residual for Eq (7.4)

R1n(E)(ξ) = ΠT
1 D(ρ)(Mn(ξ) + Fρ,h

D,n) − Ξ + α[(ΠT
1 (Mn(ξ) + Fh

D,n))(ΠT
4 (Mn(ξ) + Fh

D,n0)]
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+β[(ΠT
1 (Mn(ξ)+ Fh

D,n)ΠT
2 (Mn(ξ)+ Fh

D,n)−c(ΠT
2 Mn(ξ)+ Fh

D,n)−ε(ΠT
4 Mn(ξ)+ Fh

D,n)+µ(ΠT
1 Mn(ξ)+ Fh

D,n).
(7.7)

Now, colocating n − 1 points in Eq (7.7) by ξi = i
n , i = 0, 1, 2, . . . , n − 2, we find

R(E)
n (ξi) = 0. (7.8)

Combining Eqs (6.13) to (6.16) and the collocation points in Eq (7.8), we attain a system of NLAEs.
The result for SIRA of the fractional order is provided by this system’s solution. Consider this solution
to be presented by ψ∗n(ξ). With the help of results 7.1, 7.2 and n→ ∞,

ψ∗n(ξ)→ ψn(ξ). (7.9)

From result 7.3 and Eq (7.9), we obtain

lim
n→∞

ψ∗n(ξ) = ψ(ξ).

The same proof can be formed for Eqs (4.2)–(4.4).

8. Numerical results and discussion

In this part, we applied our suggested technique to a numerical simulation of the arbitrary order
antidotal computer virus model with a starting value as S (0) = 0.15, I(0) = 0.25, A(0) = 0.5 and
R(0) = 0.5 with value of various parameters Ξ = 0.5, α = 0.1, γ = 0.01, β = 0.5, δ = 0.1, µ = 0.035
and ε = 0.009. We obtained results for the Jacobi Collocation method (JCM) as well as the Vieta
Lucas collocation method (VLCM) for arbitrary order ρ = 0.7, ρ = 0.8, ρ = 0.9 and ρ = 1. From
Figures 1–4, it is observed that the solution changes regularly from arbitrary order to classical order.
For ρ = 1, obtained results for S (ξ), I(ξ), R(ξ) and (ξ) are presented by tabular form for various
values of ξ. The behavior of the solution S (ξ) is shown in Figure 1 at various values of different
parameters and ρ . From Figure 1, we observe that the suspected machine S (ξ) decreases as the time
derivative order ρ increases and as time ξ increases, suspected computer increases. The comparative
analysis of the obtained results for S (ξ) by utilizing distinct techniques is shown in Table 1. From
Table 1, we can observe that outcomes from the presented techniques are in a good agreement for
practical implementations. The response of the solution I(ξ) is shown in Figure 2 at various values
of the parameters and ρ . From Figure 2, we observe that infected machines I(ξ) enhance as the time
derivative order ρ increases and as time ξ increases, the infected computers decrease. The comparative
analysis of the acquired results for I(ξ) by utilizing both techniques is shown in Table 2, which are in
good agreement. The behavior of the solution R(ξ) is shown in Figure 3 at distinct value of ρ. From
Figure 3, we observe that the removed machine R(ξ) increases as the time derivative order ρ increases
and when time ξ increases, the removed computers decreases. The comparative analysis of the obtained
results for R(ξ) by utilizing JCM and VLCM is shown in Table 3. The response of the solution A(ξ)
is shown in Figure 4 at distinct values of various parameters and ρ. From Figure 4, we observe that
A(ξ) decreases as the time derivative order ρ increases. As time ξ increases, A(ξ) decreases initially
and increases after some time. The comparative analysis of the acquired results for A(ξ) by utilizing
distinct techniques is shown in Table 4.
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Figure 1. Plot of S (ξ) with respect to ξ for distinct value of ρ.
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Figure 2. The response of I(ξ) with respect to time ξ for distinct value of ρ.
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Figure 3. The response of solution R(ξ) with respect to ξ for distinct value of ρ.

AIMS Mathematics Volume 9, Issue 2, 3195–3210.



3206
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Figure 4. The behavior of A(ξ) with respect to time ξ for distinct value of ρ.

Table 1. Analysis between obtained solutions for S (ξ) by JCM and VLCM when ρ = 1.

ξ JCM VLCM
0.0 0.15 0.15
0.1 0.1990325248 0.1975906395
0.2 0.2470553771 0.2446003537
0.3 0.2940870100 0.2910559541
0.4 0.3401301272 0.3369814909
0.5 0.3851731501 0.3823973678
0.6 0.4291925157 0.4273203404
0.7 0.4721548196 0.4717635179
0.8 0.5140188299 0.5157363618
0.9 0.5547373901 0.5592446871
1.0 0.5942592167 0.6022906612

Table 2. Analysis between obtained solutions for I(ξ) by JCM and VLCM when ρ = 1.

ξ JCM VLCM
0.0 0.25 0.25
0.1 0.2402530314 0.2412089787
0.2 0.2314469362 0.2330196999
0.3 0.2234947441 0.2253965391
0.4 0.2163200810 0.2183060971
0.5 0.2098559901 0.2117171136
0.6 0.2040436907 0.2056004677
0.7 0.1988315292 0.1999291775
0.8 0.1941740904 0.1946784005
0.9 0.1900314437 0.1898254336
1.0 0.1863684903 0.1853497128
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Table 3. Analysis between obtained solutions for R(ξ) by JCM and VLCM when ρ = 1.

ξ JCM VLCM
0.0 0.5 0.5
0.1 0.4981759351 0.4981771325
0.2 0.4963571199 0.4963492400
0.3 0.4945469086 0.4945170834
0.4 0.4927486700 0.4926811502
0.5 0.4909655233 0.4908419282
0.6 0.4892003515 0.4889999050
0.7 0.4874558102 0.4871555681
0.8 0.4857343370 0.4853094055
0.9 0.4840381578 0.4834619045
1.0 0.4823692952 0.4816135528

Table 4. Analysis between obtained solutions for A(ξ) by JCM and VLCM when ρ = 1.

ξ JCM VLCM
0.0 0.5 0.5
0.1 0.4992475202 0.4997353336
0.2 0.4987372610 0.4995822083
0.3 0.4984644860 0.4995398331
0.4 0.4984251515 0.4996084505
0.5 0.4986153142 0.4997892670
0.6 0.4990311170 0.5000844538
0.7 0.4996687841 0.5004971474
0.8 0.5005246269 0.5010314475
0.9 0.5005246269 0.5016924198
1.0 0.5028766090 0.5024860939

9. Conclusions

In this study, our primary objective is to explore the potential advantages of fractional derivatives in
enhancing memory and addressing computer virus-related issues and computing the numerical results
for a fractional model. Mathematical models serve as pivotal tools in computer network security,
offering valuable insights and early detection capabilities for viruses. In this context, the concept of
kill signals becomes invaluable as it empowers users to pro actively safeguard their systems against
virus threats. We have suggested a computational scheme for the fractional model of a computer virus
model. The arbitrary order SIRA model is solved using the collocation operational matrix method of
Jacobi polynomials. The obtained solution is also compared by the results computed using Vieta Lucas
polynomials. Also, it is noticeable that the implemented techniques are much easier and user friendly
in comparison to other methods. The numerical simulation for S (ξ), I(ξ), R(ξ) and A(ξ) are shown
graphically. We obtaine the behavior of S (ξ), I(ξ), R(ξ) and A(ξ) for different arbitrary orders ρ = 0.7,
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ρ = 0.8, ρ = 0.9 and ρ = 1. We observe that at ρ = 1, the solutions of the computer virus model by
applying both operational matrix techniques with collocation are in a great agreement. The outcomes
indicate that proposed techniques are quite suitable and accurate to examine arbitrary order models
with the Caputo operator.
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