Research article Special Issues

Analytical and numerical techniques for solving a fractional integro-differential equation in complex space

  • Received: 26 July 2024 Revised: 29 October 2024 Accepted: 01 November 2024 Published: 13 November 2024
  • MSC : 26A33, 34A34, 34D05, 34K20, 65L05

  • In this article, we describe the existence and uniqueness of a solution to the nonlinear fractional Volterra integro differential equation in complex space using the fixed-point theory. We also examine the remarkably effective Euler wavelet method, which converts the model to a matrix structure that lines up with a system of algebraic linear equations; this method then provides approximate solutions for the given problem. The proposed technique demonstrates superior accuracy in numerical solutions when compared to the Euler wavelet method. Although we provide two cases of computational methods using MATLAB R2022b, which could be the final step in confirming the theoretical investigation.

    Citation: Amnah E. Shammaky, Eslam M. Youssef. Analytical and numerical techniques for solving a fractional integro-differential equation in complex space[J]. AIMS Mathematics, 2024, 9(11): 32138-32156. doi: 10.3934/math.20241543

    Related Papers:

  • In this article, we describe the existence and uniqueness of a solution to the nonlinear fractional Volterra integro differential equation in complex space using the fixed-point theory. We also examine the remarkably effective Euler wavelet method, which converts the model to a matrix structure that lines up with a system of algebraic linear equations; this method then provides approximate solutions for the given problem. The proposed technique demonstrates superior accuracy in numerical solutions when compared to the Euler wavelet method. Although we provide two cases of computational methods using MATLAB R2022b, which could be the final step in confirming the theoretical investigation.



    加载中


    [1] R. W. Ibrahim, D. Baleanu, Symmetry breaking of a time-2D space fractional wave equation in a complex domain, Axioms, 10 (2021), 141. https://doi.org/10.3390/axioms10030141 doi: 10.3390/axioms10030141
    [2] S. K. Panda, T. Abdeljawad, A. M. Nagy, On uniform stability and numerical simulations of complex valued neural networks involving generalized Caputo fractional order, Sci. Rep., 14 (2024), 4073. https://doi.org/10.1038/s41598-024-53670-4 doi: 10.1038/s41598-024-53670-4
    [3] J. E. Macías-Díaz, Fractional calculus theory and applications, Axioms, 11 (2022), 43. https://doi.org/10.3390/axioms11020043 doi: 10.3390/axioms11020043
    [4] R. E. Alsulaiman, M. A. Abdou, E. M. Youssef, M. Taha, Solvability of a nonlinear integro-differential equation with fractional order using the Bernoulli matrix approach, AIMS Math., 8 (2023), 7515–7534. https://doi.org/10.3934/math.2023377 doi: 10.3934/math.2023377
    [5] S. Chasreechai, S. Poornima, P. Karthikeyann, K. Karthikeyan, A. Kumar, K. Kaushik, et al., A study on the existence results of boundary value problems of fractional relaxation integro-differential equations with impulsive and delay conditions in Banach spaces, AIMS Math., 9 (2024), 11468–11485. https://doi.org/10.3934/math.2024563M doi: 10.3934/math.2024563M
    [6] M. Sarwar, N. Jamal, K. Abodayeh, C. Promsakon, T. Sitthiwirattham, Existence and uniqueness result for fuzzy fractional order goursat partial differential equations, Fractal Fract., 8 (2024), 250. https://doi.org/10.3390/fractalfract8050250 doi: 10.3390/fractalfract8050250
    [7] S. Shahid, S. Saifullah, U. Riaz, A. Zada, S. B. Moussa, Existence and stability results for nonlinear implicit Random fractional integro-differential equations, Qual. Theory Dyn. Syst., 22 (2023), 81. https://doi.org/10.1007/s12346-023-00772-5 doi: 10.1007/s12346-023-00772-5
    [8] A. E. Shammaky, E. M. Youssef, M. A. Abdou, M. M. ElBorai, W. G. ElSayed, M. Taha, A new technique for solving a nonlinear integro-differential equation with fractional order in complex space, Fractal Fract., 7 (2023), 11. https://doi.org/10.3390/fractalfract7110796 doi: 10.3390/fractalfract7110796
    [9] S. Maji, S. Natesan, Analytical and numerical solution techniques for a class of time-fractional integro-partial differential equations, Numer. Algor., 94 (2023), 229–256. https://doi.org/10.1007/s11075-023-01498-w doi: 10.1007/s11075-023-01498-w
    [10] R. E. Alsulaiman, M. A. Abdou, M. M. ElBorai, W. G. El-Sayed, E. M. Youssef, M. Taha, Qualitative analysis for solving a fractional integro-differential equation of hyperbolic type with numerical treatment using the Lerch matrix collocation method, Fractal Fract., 7 (2023), 599. https://doi.org/10.3390/fractalfract7080599 doi: 10.3390/fractalfract7080599
    [11] M. Bohner, O. Tunç, C. Tunç, Qualitative analysis of Caputo fractional integro-differential equations with constant delays, Comp. Appl. Math., 40 (2021), 214. https://doi.org/10.1007/s40314-021-01595-3 doi: 10.1007/s40314-021-01595-3
    [12] H. M. Srivastava, R. Shah, H. Khan, M. Arif, Some analytical and numerical investigation of a family of fractional-order Helmholtz equations in two space dimensions, Math. Method. Appl. Sci., 43 (2020), 199–212. https://doi.org/10.1002/mma.5846 doi: 10.1002/mma.5846
    [13] S. Saratha, M. Bagyalakshmi, G. Sai Sundara Krishnan, Fractional generalised homotopy analysis method for solving nonlinear fractional differential equations, Comput. Appl. Math., 39 (2020), 112. https://doi.org/10.1007/s40314-020-1133-9 doi: 10.1007/s40314-020-1133-9
    [14] P. Pandey, S. Kumar, J. F. Gómez-Aguilar, D. Baleanu, An efficient technique for solving the space-time fractional reaction-diffusion equation in porous media, Chinese J. Phys., 68 (2020), 483–492. https://doi.org/10.1016/j.cjph.2020.09.031 doi: 10.1016/j.cjph.2020.09.031
    [15] A. Arikoglu, I. Ozkol, Solution of fractional differential equations by using differential transform method, Chaos Soliton. Fract., 34 (2007), 1473–1481. https://doi.org/10.1016/j.chaos.2006.09.004 doi: 10.1016/j.chaos.2006.09.004
    [16] K. Mamehrashi, Ritz approximate method for solving delay fractional optimal control problems, J. Comput. Appl. Math., 417 (2023), 114606. https://doi.org/10.1016/j.cam.2022.114606 doi: 10.1016/j.cam.2022.114606
    [17] M. H. Heydari, Chebyshev cardinal wavelets for nonlinear variable-order fractional quadratic integral equations, Appl. Numer. Math., 144 (2019), 190–203. https://doi.org/10.1016/j.apnum.2019.04.019 doi: 10.1016/j.apnum.2019.04.019
    [18] R. Amin, K. Shah, M. Awais, I. Mahariq, K. S. Nisar, W. Sumelka, Existence and solution of third-order integro-differential equations via Haar wavelet method, Fractals, 31 (2023), 2340037. https://doi.org/10.1142/S0218348X23400376 doi: 10.1142/S0218348X23400376
    [19] U. Saeed, A wavelet method for solving Caputo-Hadamard fractional differential equation, Eng. Computation., 39 (2022), 650–671. https://doi.org/10.1108/EC-03-2021-0165 doi: 10.1108/EC-03-2021-0165
    [20] M. Riahi Beni, Legendre wavelet method combined with the Gauss quadrature rule for numerical solution of fractional integro-differential equations, Iran. J. Numer. Anal. Optimiz., 12 (2022), 229–249. https://doi.org/10.22067/ijnao.2021.73189.1070 doi: 10.22067/ijnao.2021.73189.1070
    [21] Y. Yang, M. Heydari, Z. Avazzadeh, A. Atangana, Chebyshev wavelets operational matrices for solving nonlinear variable-order fractional integral equations, Adv. Differ. Equ., 20 (2020), 611. https://doi.org/10.1186/s13662-020-03047-4 doi: 10.1186/s13662-020-03047-4
    [22] F. Saemi, H. Ebrahimi, M. Shafiee, An effective scheme for solving system of fractional Volterra-Fredholm integro-differential equations based on the Müntz-Legendre wavelets, J. Comput. Appl. Math., 374 (2020), 112773. https://doi.org/10.1016/j.cam.2020.112773 doi: 10.1016/j.cam.2020.112773
    [23] T. Abdeljawad, R. Amin, K. Shah, Q. Al-Mdallal, F. Jarad, Efficient sustainable algorithm for numerical solutions of systems of fractional order differential equations by Haar wavelet collocation method, Alex. Eng. J., 59 (2020), 2391–2400. https://doi.org/10.1016/j.aej.2020.02.035 doi: 10.1016/j.aej.2020.02.035
    [24] Y. H. Youssri, A. G. Atta, Fejér-quadrature collocation algorithm for solving fractional integro-differential equations via Fibonacci polynomials, Contemp. Math., 5 (2024), 296–308. https://doi.org/10.37256/cm.5120244054 doi: 10.37256/cm.5120244054
    [25] A. G. Atta, Y. H. Youssri, Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel, Comp. App. Math., 41 (2022), 381. https://doi.org/10.1007/s40314-022-02096-7 doi: 10.1007/s40314-022-02096-7
    [26] N. Attia, A. Akgül, D. Seba, A. Nour, An efficient numerical technique for a biological population model of fractional order, Chaos Soliton. Fract., 141 (2020), 110349. https://doi.org/10.1016/j.chaos.2020.110349 doi: 10.1016/j.chaos.2020.110349
    [27] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud., 204 (2006). https://doi.org/10.1016/S0304-0208(06)80001-0 doi: 10.1016/S0304-0208(06)80001-0
    [28] V. Berinde, M. Păcurar, Approximating fixed points of enriched contractions in Banach spaces, J. Fixed Point Theory Appl., 22 (2020), 38. https://doi.org/10.1007/s11784-020-0769-9 doi: 10.1007/s11784-020-0769-9
    [29] S. Rezabeyk, S. Abbasbandy, E. Shivanian, Solving fractional-order delay integro-differential equations using operational matrix based on fractional-order Euler polynomials, Math. Sci., 14 (2020), 97–107. https://doi.org/10.1007/s40096-020-00320-1 doi: 10.1007/s40096-020-00320-1
    [30] D. S. Kim, T. Kim, H. Lee, A note on degenerate Euler and Bernoulli polynomials of complex variable, Symmetry, 11 (2019), 1168. https://doi.org/10.3390/sym11091168 doi: 10.3390/sym11091168
    [31] M. Erfanian, H. Zeidabadi, R. Mehri, Solving two-dimensional nonlinear volterra integral equations using rationalized haar functions in the complex plane, Adv. Sci. Eng. Med., 12 (2020), 409–415. https://doi.org/10.1166/asem.2020.2538 doi: 10.1166/asem.2020.2538
    [32] M. Awadalla, M. Murugesan, M. Kannan, J. Alahmadi, F. AlAdsani, Utilizing Schaefer's fixed point theorem in nonlinear Caputo sequential fractional differential equation systems, AIMS Math., 9 (2024), 14130–14157. https://doi.org/10.3934/math.2024687 doi: 10.3934/math.2024687
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(148) PDF downloads(26) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog