Research article Special Issues

Cumulative entropy properties of consecutive systems

  • Received: 21 September 2024 Revised: 30 October 2024 Accepted: 05 November 2024 Published: 07 November 2024
  • MSC : 94A17

  • We investigated certain properties of cumulative entropy related to the lifetime of consecutive $ k $-out-of-$ n $:F systems. First, we presented a technique to compute the cumulative entropy of the lifetimes of these systems and studied their preservation properties using the established stochastic orders. Furthermore, we derived valuable bounds applicable in cases where the distribution function of component lifetimes is complex or when systems consist of numerous components. To facilitate practical applications, we introduced two nonparametric estimators for the cumulative entropy of these systems. The efficiency and reliability of these estimators were demonstrated using simulated analysis and subsequently validated using real data sets.

    Citation: Mashael A. Alshehri, Mohamed Kayid. Cumulative entropy properties of consecutive systems[J]. AIMS Mathematics, 2024, 9(11): 31770-31789. doi: 10.3934/math.20241527

    Related Papers:

  • We investigated certain properties of cumulative entropy related to the lifetime of consecutive $ k $-out-of-$ n $:F systems. First, we presented a technique to compute the cumulative entropy of the lifetimes of these systems and studied their preservation properties using the established stochastic orders. Furthermore, we derived valuable bounds applicable in cases where the distribution function of component lifetimes is complex or when systems consist of numerous components. To facilitate practical applications, we introduced two nonparametric estimators for the cumulative entropy of these systems. The efficiency and reliability of these estimators were demonstrated using simulated analysis and subsequently validated using real data sets.



    加载中


    [1] K. H. Jung, H. Kim, Linear consecutive-k-out-of-n: F system reliability with common-mode forced outages, Reliab. Eng. Syst. Safe., 41 (1993), 49–55. https://doi.org/10.1177/1748006X221142815 doi: 10.1177/1748006X221142815
    [2] J. Shen, M. J. Zuo, Optimal design of series consecutive-k-out-of-n: G systems, Reliab. Eng. Syst. Safe., 45 (1994), 277–283. https://doi.org/10.1016/0951-8320(94)90144-9 doi: 10.1016/0951-8320(94)90144-9
    [3] P. J. Boland, F. J. Samaniego, Stochastic ordering results for consecutive k-out-of-n:F systems, IEEE T. Reliab., 53 (2004), 7–10. https://doi.org/10.1109/TR.2004.824830 doi: 10.1109/TR.2004.824830
    [4] S. Eryılmaz, Mixture representations for the reliability of consecutive-k systems, Math. Comput. Model., 51 (2010), 405–412. https://doi.org/10.1016/j.mcm.2009.12.007 doi: 10.1016/j.mcm.2009.12.007
    [5] W. Kuo, M. J. Zuo, Optimal reliability modeling: principles and applications, John Wiley and Sons, 2003.
    [6] C. In-Hang, L. Cui, F. K Hwang, Reliabilities of consecutive-k systems, Springer Science and Business Media, 2013.
    [7] S. Eryılmaz, Conditional lifetimes of consecutive k-out-of-n systems, IEEE T. Reliab., 59 (2010), 178–182. https://doi.org/10.1109/TR.2010.2040775 doi: 10.1109/TR.2010.2040775
    [8] S. Eryılmaz, Reliability properties of consecutive k-out-of-n systems of arbitrarily dependent components, Reliab. Eng. Syst. Safe., 94 (2009), 350–356. https://doi.org/10.1016/j.ress.2008.03.027 doi: 10.1016/j.ress.2008.03.027
    [9] J. Navarro, S. Eryılmaz, Mean residual lifetimes of consecutive-k-out-of-n systems, J. Appl. Probab., 44 (2007), 82–98. https://doi.org/10.1239/jap/1175267165 doi: 10.1239/jap/1175267165
    [10] N. Ebrahimi, E. S. Soofi, H. Zahedi, Information properties of order statistics and spacings, IEEE T. Reliab., 50 (2004), 177–183. https://doi.org/10.1109/TIT.2003.821973 doi: 10.1109/TIT.2003.821973
    [11] C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x doi: 10.1002/j.1538-7305.1948.tb01338.x
    [12] M. Rao, Y. Chen, B. C. Vemuri, F. Wang, Cumulative residual entropy: a new measure of information, IEEE T. Inform. Theory, 50 (2004), 1220–1228. https://doi.org/10.1109/TIT.2004.828057 doi: 10.1109/TIT.2004.828057
    [13] M. Asadi, N. Ebrahimi, Residual entropy and its characterizations in terms of hazard function and mean residual life function, Stat. Probabil. Lett., 49 (2000), 263–269. https://doi.org/10.1016/S0167-7152(00)00056-0 doi: 10.1016/S0167-7152(00)00056-0
    [14] N. Navarro, Y. del Aguila, M. Asadi, Some new results on the cumulative residual entropy, J. Stat. Plan. Infer., 140 (2010), 310–322. https://doi.org/10.1016/j.jspi.2009.07.015 doi: 10.1016/j.jspi.2009.07.015
    [15] A. Di Crescenzo, M. Longobardi, On cumulative entropies, J. Stat. Plan. Infer., 139 (2009), 4072–4087. https://doi.org/10.1016/j.jspi.2009.05.038 doi: 10.1016/j.jspi.2009.05.038
    [16] J. Ahmadi, A. Di Crescenzo, M. Longobardi, On dynamic mutual information for bivariate lifetimes, Adv. Appl. Probab., 47 (2015), 1157–1174. https://doi.org/10.1239/aap/1449859804 doi: 10.1239/aap/1449859804
    [17] A. Di Crescenzo, A. Toomaj, Extension of the past lifetime and its connection to the cumulative entropy, J. Appl. Probab., 52 (2015), 1156–1174. https://doi.org/10.1239/jap/1450802759 doi: 10.1239/jap/1450802759
    [18] S. Kayal, On generalized cumulative entropies, Probab. Eng. Inform. Sc., 30 (2016), 640–662. https://doi.org/10.1017/S0269964816000218 doi: 10.1017/S0269964816000218
    [19] S. Kayal, R. Moharana, A shift-dependent generalized cumulative entropy of order n, Commun. Stat.-Simul. C, 48 (2019), 1768–1783. https://doi.org/10.1080/03610918.2018.1423692 doi: 10.1080/03610918.2018.1423692
    [20] A. Di Crescenzo, M. Longobardi, On cumulative entropies and lifetime estimations, In International Work-Conference on the Interplay Between Natural and Artificial Computation, Berlin, Heidelberg: Springer, 2009,132–141.
    [21] C. Kundu, A. Di Crescenzo, M. Longobardi, On cumulative residual (past) inaccuracy for truncated random variables, Metrika, 79 (2016), 335–356.
    [22] A. Toomaj, M. Doostparast, A note on signature‐based expressions for the entropy of mixed r‐out‐of‐n systems, Nav. Res. Log., 61 (2014), 202–206. https://doi.org/10.1002/nav.21577 doi: 10.1002/nav.21577
    [23] A. Toomaj, S. M. Sunoj, J. Navarro, Some properties of the cumulative residual entropy of coherent and mixed systems, J. Appl. Probab., 54 (2017), 379–393. https://doi.org/10.1017/jpr.2017.6 doi: 10.1017/jpr.2017.6
    [24] G. Alomani, M. Kayid, Fractional survival functional entropy of engineering systems, Entropy, 24 (2022), 1275. https://doi.org/10.3390/e24091275 doi: 10.3390/e24091275
    [25] M. Shrahili, M. Kayid, Cumulative entropy of past lifetime for coherent systems at the system level, Axioms, 12 (2023), 899. https://doi.org/10.3390/axioms12090899 doi: 10.3390/axioms12090899
    [26] M. Kayid, M. Shrahili, Rényi entropy for past lifetime distributions with application in inactive coherent systems, Symmetry, 15 (2023), 1310. https://doi.org/10.3390/sym15071310 doi: 10.3390/sym15071310
    [27] S. Eryılmaz, J. Navarro, Failure rates of consecutive k-out-of-n systems, J. Korean Stat. Soc., 41 (2012), 1–11.
    [28] J. C. Chang, F. K. Hwang, Reliabilities of consecutive-k systems, In Handbook of Reliability Engineering, London: Springer, 2003.
    [29] M. Hashempour, M. Mohammadi, A new measure of inaccuracy for record statistics based on extropy, Probab. Eng. Inform. Sc., 38 (2024), 207–225. https://doi.org/10.1017/S0269964823000086 doi: 10.1017/S0269964823000086
    [30] S. Y. Lee, B. K. Mallick, Bayesian hierarchical modeling: Application towards production results in the eagle ford shale of south Texas, Sankhya Ser. B, 84 (2022), 1–43. https://doi.org/10.1007/s13571-020-00245-8 doi: 10.1007/s13571-020-00245-8
    [31] P. J. Bickel, E. L. Lehmann, Descriptive statistics for nonparametric models. III. Dispersion, In Selected works of EL Lehmann, Boston, MA: Springer US, 2011,499–518. https://doi.org/10.1007/978-1-4614-1412-4_44
    [32] I. Jewitt, Choosing between risky prospects: the characterization of comparative statics results, and location independent risk, Manag. Sci., 35 (1989), 60–70. https://doi.org/10.1287/mnsc.35.1.60 doi: 10.1287/mnsc.35.1.60
    [33] M. Shaked, J. G. Shanthikumar, Stochastic orders, New York: Springer, 2007.
    [34] M. Landsberger, I. Meilijson, The generating process and an extension of Jewitt's location independent risk concept, Manag. Sci., 40 (1994), 662–669. https://doi.org/10.1287/mnsc.40.5.662 doi: 10.1287/mnsc.40.5.662
    [35] I. A. Husseiny, H. M. Barakat, M. Nagy, A. H. Mansi, Analyzing symmetric distributions by utilizing extropy measures based on order statistics, J. Radiat. Res. Appl. Sc., 17 (2024), 101100. https://doi.org/10.1016/j.jrras.2024.101100 doi: 10.1016/j.jrras.2024.101100
    [36] N. Gupta, S. K. Chaudhary, Some characterizations of continuous symmetric distributions based on extropy of record values, Stat. Pap., 65 (2024), 291–308.
    [37] A. Di Crescenzo, A. Toomaj, Further results on the generalized cumulative entropy, Kybernetik, 53 (2017), 959–982. https://doi.org/10.14736/kyb-2017-5-0959 doi: 10.14736/kyb-2017-5-0959
    [38] O. Vasicek, A test for normality based on sample entropy, J. Roy. Stat. Soc. B, 38 (1976), 54–59. https://doi.org/10.1111/j.2517-6161.1976.tb01566.x doi: 10.1111/j.2517-6161.1976.tb01566.x
    [39] N. Balakrishnan, V. Leiva, A. Sanhueza, E. Cabrera, Mixture inverse Gaussian distributions and its transformations, moments and applications, Statistics, 43 (2009), 91–104. https://doi.org/10.1080/02331880701829948 doi: 10.1080/02331880701829948
    [40] D. K. Bhaumik, R. D. Gibbons, One-sided approximate prediction intervals for at least p of m observations from a gamma population at each of r locations, Technometrics, 48 (2006), 112–119. https://doi.org/10.1198/004017005000000355 doi: 10.1198/004017005000000355
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(152) PDF downloads(33) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog