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1. Introduction 

Numerous researchers have used Shannon’s information theory to evaluate systems based on their 

uncertainty and available data to predict their lifetime. Over the last three decades, intensive research 

has been conducted on 𝑘-out-of-𝑛 systems with consecutive structures and various configurations. 

These systems can be classified on the basis of their component arrangement (linear or circular) and 

their operational state (failure or function). A linear consecutive 𝑘-out-of-𝑛:F system, which consists 

of 𝑛  components with independent and identically distributed (iid) lifetimes arranged in a linear 
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sequence, fails when at least 𝑘  components fail. To illustrate this concept, let us consider an oil 

pipeline as a representative case. This pipeline consists of 𝑛 pumping stations evenly spaced at 100 km 

intervals, each capable of transporting up to 400 km of oil. The system fails if four stations fail. This 

scenario illustrates a linear, consecutive 4 -out-of- 𝑛 :F system. A conventional parallel system 

corresponds to a consecutive 𝑛-out-of-𝑛:F system in which all 𝑛 components fail. Conversely, a series 

system corresponds to a 1-out-of-𝑛:F system in which at least one component fails. Derive analytically 

the mean operating time between failures for a non-repairable component system studied in [1]. Optimal 

designs of series consecutive k-out-of-n: G systems when 𝑘 < 𝑛 ≤ 2𝑘 is obtained in [2]. To show that 

for any fixed 𝑘 the lifetime of a (linear or circular) consecutive k-out-of-n:F system is stochastically 

decreasing in 𝑛, Boland [3] used recursive relations for the reliability of such systems with independent, 

identically distributed components. Representations for the reliability of systems with consecutive types 

as a mixture of the reliability of order statistics when the systems consist of interchangeable components 

were obtained in [4]. Comprehensive reviews of previous studies in this area can be found in several 

publications, including [5–7]. 

The distribution of the lifetimes of linear, consecutive 𝑘-out-of-𝑛 systems is simple if 2𝑘 ≥ 𝑛 

has shown the determination in [8]. Therefore, we focus on scenarios where 2𝑘 ≥ 𝑛 holds, because 

this condition simplifies the mathematical analysis and facilitates the derivation of various results. 

These systems consist of components with lifetimes denoted by 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑛, each characterized by 

a probability density function (pdf) 𝑓(𝑥) and a cumulative distribution function (cdf) 𝐹(𝑥). The total 

lifetime of the system is represented by the random variable (rv) 𝑇𝑘|𝑛:𝐹. The cdf of the consecutive 𝑘-

out-of-𝑛:F system for 2𝑘 ≥ 𝑛 can be expressed as (see e.g., Lemma 2.1 in [9]) 

𝐹𝑘|𝑛:𝐹(𝑥) = (𝑛 − 𝑘 + 1)𝐹𝑘(𝑥) − (𝑛 − 𝑘)𝐹𝑘+1(𝑥), 𝑥 > 0.     (1) 

An important contribution to the relationship between information theory and reliability by 

investigating the information properties of order statistics was made in [10]. Shannon’s differential 

entropy, which refers to Shannon’s pioneering work [11], has gained widespread adoption as a measure 

of uncertainty and has become a fundamental concept in probability theory. It is defined by 𝐻(𝑋) =
−𝔼[log𝑓(𝑋)]  for a non-negative continuous rv 𝑋  with pdf 𝑓(𝑥) , such that log(⋅)  means natural 

logarithm and 𝔼[⋅]  stands for the expectation. Although Shannon’s differential entropy offers 

numerous advantages, an alternative measure of uncertainty, the cumulative residual entropy (CRE), 

was proposed by [12]. In contrast to traditional entropy, CRE utilizes 𝑆(𝑥) = 1 − 𝐹(𝑥) instead of 

𝑓(𝑥), as follows:  

ℰ(𝑋) = − ∫
∞

0
𝑆(𝑥) log 𝑆(𝑥) 𝑑𝑥.        (2) 

For a detailed study of the preliminary aspects of (2), the associated dynamical form, and its 

various generalizations, we refer the readers to [13,14]. In the spirit of (2), the cumulative entropy (CE) 

introduced in [15] by replacing 𝑆(𝑥) with the cdf 𝐹(𝑥), as  

𝒞ℰ(𝑋) = − ∫
∞

0

𝐹(𝑥)log𝐹(𝑥)𝑑𝑥 

= ∫
1

0

𝜉(𝑢)

𝑓(𝐹−1(𝑢))
𝑑𝑢,         (3) 

where 𝐹−1(𝑢) = inf{𝑥; 𝐹(𝑥) ≥ 𝑢} and 𝜉(𝑢) = −𝑢log 𝑢, 0 ≤ 𝑢 ≤ 1.  

A key advantage of the CE measure is its connection to the mean inactivity time (MIT) function, 

given by �̃�(𝑥) = 𝔼(𝑥 − 𝑋|𝑋 ≤ 𝑥) . Moreover, the CE is the expected value of the MIT function, 
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expressed as 𝔼(�̃�(𝑋)) = 𝒞ℰ(𝑋) , as [15] shows. This relationship underscores the CE’s utility in 

reliability theory, given that the MIT function is commonly used to characterize the aging properties 

of systems or components. CE fulfills the condition 0 ≤ 𝒞ℰ(𝑋) ≤ ∞ , since the argument of the 

logarithm is a probability measure. Moreover, CE is zero only if 𝑋 is a degenerate random variable. 

It is worth noting that if 𝑌 =  𝑎𝑋 +  𝑏, with 0 ≠ 𝑎 ∈  𝑅, and 𝑏 ∈  𝑅, then 𝒞ℰ(𝑌) = 𝑎𝒞ℰ(𝑋) 

if 𝑎 >  0  and 𝒞ℰ(𝑌) = 𝑎ℰ(𝑋)  if 𝑎 <  0 . Consequently, CE acts as a dispersion measure. 

Ahmadi et al. [16] investigated the properties of CE in two dimensions. Di Crescenzo and Toomaj [17] 

have defined the reversed relevation transform as a dual to the relevance transformation for two 

absolutely continuous, non-negative, independent random variables and apply such transformations to 

the lifetimes of the components of parallel and series systems under suitable proportionality 

assumptions for the hazard rates. Kayal [18] introduced a generalization of the proposed CE. In 

addition, CE has been extended to more general cases, as shown in [19–21] and related studies. 

Several studies have investigated the information properties of order statistics and coherent 

systems. Recently, Toomaj and Doostparast [22] integrated the concepts of reliability theory and 

information theory and used a system signature to analyze the entropy criteria of mixed systems. The 

CRE of mixed systems under the assumption that the lifetimes of the components are iid was 

investigated in [23]. A system signature to study the fractional cumulative residual entropy of coherent 

systems was used in [24]. In a separate study, the CRE of a coherent system with multiple components 

under the assumption that all components fail at a given time was investigated in [25]. They presented 

several properties, including formulations, bounds, and orderings for this measure, as well as a method 

for evaluating a superior system based on the cumulative Kullback-Leibler information set, which 

serves as a discriminating feature. Moreover, the Rényi entropy for coherent systems with 𝑛 

components assuming that all components fail at a given time 𝑡  has been studied by [26]. They 

presented numerous results showing computational formulas for this entropic measure and establishing 

certain bounds on this measure as well as stochastic order results.  

We build on this research to carry out existing research on information measures in reliability. We 

investigate the uncertainty properties of CE, particularly in the context of consecutive 𝑘-out-of-𝑛: F 

systems. The simple and adaptable nature of the reliability function for these systems has led us to 

investigate their CE further.  

The remainder of this article is organized as follows. In Section 2, we derive a representation of 

the CE for successive 𝑘-out-of-𝑛: F systems with lifetime 𝑇𝑘|𝑛:𝐹 based on samples from an arbitrary 

continuous distribution function 𝐹. This representation is related to the CE of samples from a uniform 

distribution. We also analyze the preservation of the stochastic order properties of this system. This 

section provides useful bounds for the CE of consecutive 𝑘-out-of-𝑛: F systems. In Section 3, we 

present several characterization results, and in Section 4, we present computational results that confirm 

our derived results. To this end, we present two non-parametric estimators for the CE of consecutive 

systems and demonstrate their effectiveness using real and simulated data. In Section 5, we conclude 

the study by summarizing the major results and contributions. 

2. CE of consecutive 𝒌-out-of-𝒏:F System 

This section is divided into two parts. First, we derive a mathematical expression for the CE of a 

consecutive 𝑘-out-of-𝑛:F system and analyze the preservation properties of its stochastic order. Then, 

we establish a set of essential bounds to study consecutive 𝑘-out-of-𝑛:F systems. 
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2.1. Expression and stochastic orders 

In the following, we derive an explicit expression for the CE of a consecutive 𝑘 -out-of-𝑛 :F 

system with a lifetime 𝑇𝑘|𝑛:𝐹 , where the lifetime of the components follows a joint continuous 

distribution function 𝐹. We use the probability integral transformation 𝑈𝑘|𝑛:𝐹 = 𝐹(𝑇𝑘|𝑛:𝐹) to obtain 

a useful formula. The transformations of the system components, 𝑈𝑖 = 𝐹(𝑋𝑖) for 𝑖 = 1, … , 𝑛, are iid 

random rvs uniformly distributed on [0, 1]. Using (1), if 2𝑘 ≥ 𝑛, the cdf of 𝑈𝑘|𝑛:𝐹 is given by 

𝐺𝑘|𝑛:𝐹(𝑢) = (𝑛 − 𝑘 + 1)𝑢𝑘 − (𝑛 − 𝑘)𝑢𝑘+1,      (4) 

for all 0 < 𝑢 < 1. We are now prepared to present the following theorem based on these transformations.  

Theorem 2.1. For 2𝑘 ≥ 𝑛, the CE of 𝑇𝑘|𝑛:𝐹 , can be expressed as follows: 

𝒞ℰ(𝑇𝑘|𝑛:𝐹) = ∫
1

0

𝜉(𝐺𝑘|𝑛:𝐹(𝑢))

𝑓(𝐹−1(𝑢))
𝑑𝑢,       (5) 

where 𝜉(𝑥) = −𝑥log𝑥, 0 < 𝑥 < 1, and 𝐺𝑘|𝑛:𝐹(𝑢) is define in (4).  

Proof. Note that, since 𝜉(𝑥) = −𝑥log𝑥, 0 < 𝑥 < 1, we have 

𝜉 (𝐹𝑘|𝑛:𝐹(𝑥)) = −𝐹𝑘|𝑛:𝐹(𝑥)log𝐹𝑘|𝑛:𝐹(𝑥)  

= −((𝑛 − 𝑘 + 1)𝐹𝑘(𝑥)  

− (𝑛 − 𝑘)𝐹𝑘+1(𝑥)) log((𝑛 − 𝑘 + 1)𝐹𝑘(𝑥) − (𝑛 − 𝑘)𝐹𝑘+1(𝑥))

= 𝜉((𝑛 − 𝑘 + 1)𝐹𝑘(𝑥) − (𝑛 − 𝑘)𝐹𝑘+1(𝑥)), 

for all 𝑥 > 0. By employing the change of 𝑢 = 𝐹(𝑥) and referring to (1) and (3), we can derive 

𝒞ℰ(𝑇𝑘|𝑛:𝐹) = ∫
∞

0

𝜉 (𝐹𝑘|𝑛:𝐹(𝑥)) 𝑑𝑥                                

= ∫
∞

0

𝜉((𝑛 − 𝑘 + 1)𝐹𝑘(𝑥) − (𝑛 − 𝑘)𝐹𝑘+1(𝑥))𝑑𝑥 

           = ∫
1

0

𝜉((𝑛 − 𝑘 + 1)𝑢𝑘 − (𝑛 − 𝑘)𝑢𝑘+1)

𝑓(𝐹−1(𝑢))
𝑑𝑢, (taking 𝑢 = 𝐹(𝑥)) 

= ∫
1

0

𝜉(𝐺𝑘|𝑛:𝐹(𝑢))

𝑓(𝐹−1(𝑢))
𝑑𝑢,                       

where  

𝜉 (𝐺𝑘|𝑛:𝐹(𝑢)) = −𝐺𝑘|𝑛:𝐹(𝑥) log𝐺𝑘|𝑛:𝐹(𝑥)

= −((𝑛 − 𝑘 + 1)𝑢𝑘 − (𝑛 − 𝑘)𝑢𝑘+1) log((𝑛 − 𝑘 + 1)𝑢𝑘 − (𝑛 − 𝑘)𝑢𝑘+1)

= 𝜉((𝑛 − 𝑘 + 1)𝑢𝑘 − (𝑛 − 𝑘)𝑢𝑘+1), 

for all 0 < 𝑢 < 1, and this completes the proof. 

Following Eq (5), we present the following illustrative example. 

Example 2.1. Consider a linear consecutive 3-out-of-5:F system with a lifetime 𝑇3|5:𝐹 =

min(max(𝑋1, 𝑋2, 𝑋3), max(𝑋2, 𝑋3, 𝑋4), max(𝑋3, 𝑋4, 𝑋5)) as shown in Figure 1.  
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Figure 1. A linear consecutive 3-out-of-5:F system. 

As shown in Figure 1, this system can be considered a hybrid system with shared components. This 

concept is further explored in Sections 5 and 6 of [27] and [28]. The precise value of CE of the lifetime 

of the linear consecutive 3-out-of-5:G system can be calculated using Eq (5) for certain standard 

component lifetime distributions. For instance, consider the following models: 

 Consider that the lifetimes of the components are iid having the common exponential distribution 

characterized by the cdf a 

𝐹(𝑥) = 1 − 𝑒−𝜆𝑥 , 𝑥, 𝜆 > 0. 

The exponential distribution plays a vital role in reliability and survival analysis, commonly used to 

represent the lifetimes of components in systems that do not exhibit aging over time due to its 

memoryless property. Therefore, by assuming an exponential distribution for the lifetimes of 

components, there is no benefit in replacing components that have been used, as they continue to 

perform reliably. Since 𝑓(𝐹−1(𝑢)) = 𝜆(1 − 𝑢) for 0 < 𝑢 < 1, recalling (5), we get 

𝒞ℰ(𝑇𝑘|6:𝐹) = ∫
𝜉(𝐺𝑘|𝑛:𝐹(𝑢))

λ(1−𝑢)

1

0
𝑑𝑢. 

It is evident that the CE decreases as the parameter λ increases. Therefore, an increase in λ leads to a 

decrease in the uncertainty of the system’s lifetime in terms of cumulative entropy. 

 Assume further that the lifetimes of the components are iid following the common Fréchet 

distribution, also known as inverse Weibull distribution, with the cdf as  

𝐹(𝑥) = 𝑒−𝑥−𝛼
,    𝑥 > 0, 

where 𝛼 > 0 is a shape parameter. It is worth noting that Fréchet distribution is a special case of the 

generalized extreme value distribution. Moreover, it is utilized to analyze extreme events, including 

the highest one-day rainfall amounts and peak river discharges recorded annually in hydrology. In 

decline curve analysis, the decreasing trend in the time series data of oil or gas production rates for a 

well can be modeled using the Fréchet distribution [29,30]. The pdf of this distribution is 𝑓(𝑥) =

𝛼𝑥−(𝛼+1)𝑒−𝑥−𝛼
, 𝑥 > 0. It is not hard to see that 𝑓(𝐹−1(𝑢)) = 𝛼𝑢(−log(𝑢))

𝛼+1

𝛼  for all 0 < 𝑢 < 1. 

Thus, from Eq (5), we can derive the following expression: 

𝒞ℰ(𝑇𝑘|6:𝐹) = ∫
𝜉(𝐺𝑘|𝑛:𝐹(𝑢))

𝛼𝑢(−log (𝑢))
𝛼+1

𝛼

1

0
𝑑𝑢.       (6) 

It is worth mentioning that, since it is difficult to obtain an explicit analytical expression, we 

used a computational approach to study the relationship between 𝒞ℰ(𝑇3|5:𝐹) and the parameter 

𝛼 > 1 (for 𝛼 < 1 the integral is divergent). This method provides information on how the parameters 
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of the Fréchet distribution influence the CE of a consecutive 3 -out-of- 5 :F system. Figure 2 

summarizes the numerical analysis and shows the relationship between 𝒞ℰ(𝑇3|5:𝐹)  and 𝛼 . As the 

shape parameter 𝛼 increases, the system uncertainty with respect to the CE decreases. These results 

show the significant influence of the Fréchet distribution parameter 𝛼 on the CE and uncertainty of 

the consecutive 3-out-of-5:F system. 

In what follows, we show that the CE of the consecutive 𝑘-out-of-𝑛:F system retains both the 

dispersive order and the location-independent riskier order. Before discussing these peculiarities, we 

introduce the definitions for these stochastic orders. In this discussion, ℜ+ = {𝑋; 𝑋 ≥ 0} stands for 

the collection of all non-negative random variables with support (0, ∞)  that have an absolutely 

continuous distribution. 

 

Figure 2. The plot of 𝒞ℰ(𝑇3|5:𝐹) with respect to 𝛼 as demonstrated in Example 2.1. 

Definition 2.1. Let 𝑋 ∈ ℜ+  and 𝑌 ∈ ℜ+  with pdfs 𝑓𝑋  and 𝑓𝑌,  cdfs 𝐹𝑋  and 𝐹𝑌,  survival 

functions 𝑆𝑋 and 𝑆𝑌 and hazard rate (hr) functions 𝜆𝑋(𝑥) =
𝑓𝑋(𝑥)

𝑆𝑋(𝑥)
 and 𝜆𝑌(𝑥) =

𝑓𝑌(𝑥)

𝑆𝑌(𝑥)
, respectively. 

Then, 

1) 𝑋 belongs to increasing [resp. decreasing] failure rate (abbreviated by IFR [resp. DFR]) if 𝜆𝑋 is 

an increasing (a decreasing) function; 

2) 𝑋 is said to be less than or equal with 𝑌 in the hazard rate order (written as 𝑋 ≤ℎ𝑟 𝑌) whenever 

𝜆𝑋(𝑡) ≥ 𝜆𝑌(𝑡) for all 𝑡 > 0; 

3) 𝑋 is said to be less than or equal with 𝑌 in the dispersive order (written as 𝑋 ≤𝑑 𝑌) whenever 

𝐹𝑋
−1(𝑣) − 𝐹𝑋

−1(𝑢) ≤ 𝐹𝑌
−1(𝑣) − 𝐹𝑌

−1(𝑢), 0 < 𝑢 ≤ 𝑣 < 1; 

4) 𝑋 is said to be less than or equal with 𝑌 in the location-independent riskier order (written as 

𝑋 ≤𝑙𝑖𝑟 𝑌) whenever ∫
𝐹𝑋

−1(𝑝)

0
𝐹𝑋(𝑥)𝑑𝑥 ≤ ∫

𝐹𝑌
−1(𝑝)

0
𝐹𝑌(𝑥)𝑑𝑥, 𝑝 ∈ (0,1). 

It is important to note that Bickel and Lehmann [31] first used the order ≤𝑑 for certain non-parametric 

inferences, while Jewiitt [32] introduced the order ≤𝑙𝑖𝑟  for use in expected utility theory and its 

insurance-related applications. According to [33], 𝑋 ≤𝑑 𝑌 if, and only if, 

𝑓𝑌(𝐹𝑌
−1(𝑣)) ≤ 𝑓𝑋(𝐹𝑋

−1(𝑣)), 𝑓𝑜𝑟 𝑎𝑙𝑙 0 < 𝑣 < 1.     (7) 
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The following implications are known: 

If X ≤hr Y and either X or Y is DFR ⟹ 𝑋 ≤𝑑 𝑌 ⟹ 𝑋 ≤𝑙𝑖𝑟 𝑌.   (8) 

Taking into account Eqs (3) and (8) and the fact that 𝜉(𝑢) is non-negative for all 0 ≤ 𝑢 ≤ 1, it follows 

that 𝒞ℰ(𝑋) ≤ 𝒞ℰ(𝑌), if 𝑋 ≤𝑑 𝑌. This conclusion can be further substantiated by applying (7).  

Corollary 2.1. If 𝑋 ≤ℎ𝑟 𝑌 and 𝑋 or 𝑌 is DFR, then 𝒞ℰ(𝑋) ≤ 𝒞ℰ(𝑌).  

Assume that 𝑍 be a random variable with cdf H. Then, the cumulative reversed hazard function 

is defined as 

𝜂𝑍(𝑥) = ∫
𝑥

0

𝐻(𝑧)𝑑𝑧, 𝑥 > 0. 

Landsberger and Meilijson [34] showed that  

𝑋 ≤𝑙𝑖𝑟 𝑌 ⟺ 𝜂𝑌
−1(𝑥) − 𝜂𝑋

−1(𝑥) is increasing in x > 0.    (9) 

In the following, we consider 𝑇𝑘|𝑛:𝐹
𝑋  and 𝑇𝑘|𝑛:𝐹

𝑌  as the lifetimes of two consecutive 𝑘-out-of-

𝑛:F systems with iid absolutely continuous component lifetimes with the common pdfs 𝑓𝑋 and 𝑓𝑌 

and cdfs 𝐹𝑋 and 𝐹𝑌, respectively. We present a theorem that shows that the CE of a series system 

with 𝑘 components is smaller than that of a consecutive 𝑘-out-of-𝑛:F system, provided that both 

have components with the DFR property. 

Theorem 2.2. Let 𝑍1:𝑚 be the lifetime of a series system consisting of iid components with common 

hr function ℎ.  Let 𝑙𝑖𝑚𝑡→∞𝑟(𝑡) = 𝜆  and 1 ≤ 𝑘 ≤ 𝑛 , where 𝑟  is the common hr of 𝑋  and let 

𝑇𝑘|𝑛:𝐹 belong to IFR class such that ℎ(𝑡) ≥ 𝜆 [
𝑛

𝑘
] /𝑚 for all 𝑡 ≥ 0. If 𝑍 belongs to DFR class, then 

𝒞ℰ(𝑍1:𝑚) ≤ 𝒞ℰ(𝑇𝑘|𝑛:𝐹). 

Proof. Since 𝑍 is DFR, then 𝑍1:𝑚 is also DFR. Moreover, under the conditions 𝑇𝑘|𝑛:𝐹 is IFR such 

that ℎ(𝑡) ≥ 𝜆[𝑛/𝑘]/𝑚 for all 𝑡 ≥ 0, we have 𝑍1:𝑚 ≤ℎ𝑟 𝑇𝑘|𝑛:𝐹 due to Theorem 3.2 of [27]. Thus, 

Corollary 2.1 concludes the proof. 

The next example illustrates the application of Theorem 2.2.  

Example 2.2. Consider a Gamma distribution whose cdf is given by 𝐹(𝑡) = 1 − 𝜆𝑡𝑒−𝜆𝑡 − 𝑒−𝜆𝑡. We 

find that 𝑟(𝑡) =
𝜆2𝑡

1+𝜆𝑡
→ 𝜆  as 𝑡 → ∞ . With 𝑛 = 4  and 𝑘 = 2 , since 𝑋  is IFR and a linear 

consecutive 2-out-of-4:F system preserves the IFR property (see Theorem 4.3.13 of [5]), we conclude 

that 𝑍1:4 ≤ℎ𝑟 𝑇2|4:𝐹  for ℎ(𝑡) ≥
𝜆

2
  for all 𝑡 ≥ 0.  So, Theorem 2.2 thus implies that 𝒞ℰ(𝑍1:𝑚) ≤

𝒞ℰ(𝑇𝑘|𝑛:𝐹) provided that ℎ(𝑡) is a decreasing function in 𝑡.  

The following theorem outlines the conditions under which the dispersive order is preserved 

under the formation of consecutive systems.  

Theorem 2.3. If 𝑋 ≤𝑑 𝑌, then 𝒞ℰ(𝑇𝑘|𝑛:𝐹
𝑋 ) ≤ 𝒞ℰ(𝑇𝑘|𝑛:𝐹

𝑌 ).  

Proof. The result can be easily derived from Eqs (5) and (7). 

As an application of Theorem 2.3, consider the following example.  

Example 2.3. Let us consider two consecutive 4-out-of-5:F systems with lifetimes 𝑇4|5:𝐹
𝑋  and 𝑇4|5:𝐹

𝑌 . 

System 𝑇4|5:𝐹
𝑋  has iid component lifetimes 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, which follow the Makeham distribution 

with cdf 𝐹(𝑥) = 1 − 𝑒−2𝑥+𝑒−𝑥−1  for 𝑥 > 0 . Moreover, system 𝑇4|5:𝐹
𝑌   consists of iid component 

lifetimes 𝑌1, 𝑌2, 𝑌3, 𝑌4 that follow an exponential distribution with cdf 𝐹𝑌(𝑥) = 1 − 𝑒−𝑥 for 𝑥 > 0. 

The hr functions are 𝜆𝑋(𝑥) = 2 − 𝑒−𝑥 and 𝜆𝑌(𝑥) = 1, showing that 𝜆𝑋(𝑥) > 𝜆𝑌(𝑥) for 𝑥 > 0 i.e., 

𝑋 ≤ℎ𝑟 𝑌.  Since 𝑌  possesses the DFR property, relation (8) indicates 𝑋 ≤𝑑 𝑌 . Consequently, by 

Theorem 2.3, we have 𝒞ℰ(𝑇4|5:𝐹
𝑋 ) ≤ 𝒞ℰ(𝑇4|5:𝐹

𝑌 ) , meaning the uncertainty associated with 𝑇4|5:𝐹
𝑋   is 
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less than or equal to that of 𝑇4|5:𝐹
𝑌  in terms of the CE measure.  

The next theorem outlines the conditions for the preservation of the location-independent riskier 

order in consecutive systems. 

Theorem 2.4. If 𝑋 ≤𝑙𝑖𝑟 𝑌, and  

𝜉(𝐺𝑘|𝑛:𝐹(𝑡))

𝑡
, 0 ≤ 𝑡 ≤ 1 

is a decreasing function of 𝑡, then 𝒞ℰ(𝑇𝑘|𝑛:𝐹
𝑋 ) ≤ 𝒞ℰ(𝑇𝑘|𝑛:𝐹

𝑌 ).  

Proof. First note that Eq (1) can be rewritten as 𝐹𝑘|𝑛:𝐹(𝑥) = 𝐺𝑘|𝑛:𝐹(𝐹(𝑥)).  Assumption 𝑋 ≤𝑙𝑖𝑟 𝑌 

and Eq (9) imply  

𝑑

𝑑𝑥
(𝜂𝑌

−1(𝑥) − 𝜂𝑋
−1(𝑥)) =

1

𝐹𝑌(𝜂𝑌
−1(𝑥))

−
1

𝐹𝑋(𝜂𝑋
−1(𝑥))

≥ 0, 

which means  

𝐹𝑋(𝑥) ≥ 𝐹𝑌 (𝜂𝑌
−1(𝜂𝑋(𝑥)))        (10) 

for all 𝑥 > 0. Now, we get  

− ∫
∞

0

𝐹𝑘|𝑛:𝐹
𝑋 (𝑥)log𝐹𝑘|𝑛:𝐹

𝑋 (𝑥)𝑑𝑥 = − ∫
∞

0

𝐹𝑘|𝑛:𝐹
𝑋 (𝑥)log𝐹𝑘|𝑛:𝐹

𝑋 (𝑥)

𝐹𝑋(𝑥)
𝐹𝑋(𝑥)d𝑥 

                = ∫
∞

0

𝜉(𝐹𝑘|𝑛:𝐹
𝑋 (𝑥))

𝐹𝑋(𝑥)
𝐹𝑋(𝑥)d𝑥 

                    = ∫
∞

0

𝜉(𝐺𝑘|𝑛:𝐹(𝐹𝑋(𝑥)))

𝐹𝑋(𝑥)
𝐹𝑋(𝑥)d𝑥 

      ≤ ∫
∞

0

𝜉(𝐺𝑘|𝑛:𝐹(𝐹𝑌(𝜂𝑌
−1(𝜂𝑋(𝑥)))))

𝐹𝑌(𝜂𝑌
−1(𝜂𝑋(𝑥)))

𝐹𝑋(𝑥)d𝑥,   (11) 

where the inequality arises from the fact that 𝜉(𝐺𝑘|𝑛:𝐹(𝑡))/𝑡 decreases for 0 ≤ 𝑡 ≤ 1 and using (10). 

Setting 𝑢 = 𝜂𝑌
−1(𝜂𝑋(𝑥)), we have  

𝑑𝑥 =
𝐹𝑌(𝑢)

𝐹𝑋(𝜂𝑋
−1(𝜂𝑌(𝑢)))

𝑑𝑢. 

Upon using this, (11) reduces to  

∫
∞

𝜂𝑌
−1(𝜂𝑋(0))

𝜉 (𝐺𝑘|𝑛:𝐹(𝐹𝑌(𝑢)))

𝐹𝑌(𝑢)

𝐹𝑋 (𝜂𝑋
−1(𝜂𝑌(𝑢))) 𝐹𝑌(𝑢)

𝐹𝑋 (𝜂𝑋
−1(𝜂𝑌(𝑢)))

d𝑢 

  = ∫
∞

𝜂𝑌
−1(𝜂𝑋(0))

𝜉(𝐺𝑘|𝑛:𝐹(𝐹𝑌(𝑢)))d𝑢    

= − ∫
∞

0

𝐹𝑘|𝑛:𝐹
𝑌 (𝑢)log𝐹𝑘|𝑛:𝐹

𝑌 (𝑢)𝑑𝑢. 

The final equality in the above relation is derived by observing that 𝜂𝑌
−1(𝜂𝑋(0)) = 0, which implies 

𝒞ℰ(𝑇𝑘|𝑛:𝐹
𝑋 ) ≤ 𝒞ℰ(𝑇𝑘|𝑛:𝐹

𝑌 ). Thus, the proof is finished.  
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2.2. Bounds 

Since there are no closed-form expressions for the CE of consecutive systems in different 

distributions with complex distribution functions or multiple components, it is crucial to establish 

certain bounds for these scenarios. Given this problem, we investigated the effectiveness of these 

bounds in describing the CE of consecutive systems. Our initial results showed that the CE of the 

system is bounded by the joint CE of its components. 

Theorem 2.5. For 2𝑘 ≥ 𝑛, the CE of 𝑇𝑘|𝑛:𝐹 are bounded as follows:  

𝔅1𝒞ℰ(𝑋1) ≤ 𝒞ℰ(𝑇𝑘|𝑛:𝐹) ≤ 𝔅2𝒞ℰ(𝑋1), 

where 𝔅1 = inf𝑢∈(0,1)
𝜉(𝐺𝑘|𝑛:𝐹(𝑢))

𝜉(𝑣)
, 𝔅2 = sup𝑢∈(0,1)

𝜉(𝐺𝑘|𝑛:𝐹(𝑢))

𝜉(𝑢)
.  

Proof. The upper bound can be determined from (5) as shown below  

𝒞ℰ(𝑇𝑘|𝑛:𝐹) = ∫
1

0

𝜉 (𝐺𝑘|𝑛:𝐹(𝑢))

𝑓(𝐹−1(𝑢))
𝑑𝑢                   

= ∫
1

0

𝜉(𝐺𝑘|𝑛:𝐹(𝑢))

𝜉(𝑢)

𝜉(𝑢)

𝑓(𝐹−1(𝑢))
𝑑𝑢 

      ≤ sup
𝑢∈(0,1)

𝜉 (𝐺𝑘|𝑛:𝐹(𝑢))

𝜉(𝑢)
∫

1

0

𝜉(𝑢)

𝑓(𝐹−1(𝑢))
𝑑𝑢 

= 𝔅2𝒞ℰ(𝑋1).                 

The lower bound can be derived using a similar approach. 

The following theorem provides further simple and practical bounds for the function 𝜉(𝑢) and 

the pdf extremes. 

Theorem 2.6. Let 𝑇𝑘|𝑛:𝐹 be the lifetime of consecutive 𝑘-out-of-𝑛:F system having the common pdf 

𝑓𝑋(𝑥) and cdf 𝐹𝑋(𝑥). If 𝑆 is the support of 𝑓, 𝑚 = 𝑖𝑛𝑓𝑥∈𝑆𝑓(𝑥) and 𝑀 = 𝑠𝑢𝑝𝑥∈𝑆𝑓(𝑥), then  

𝒞ℰ(𝑈𝑘|𝑛:𝐹)

𝑀
≤ 𝒞ℰ(𝑇𝑘|𝑛:𝐹) ≤

𝒞ℰ(𝑈𝑘|𝑛:𝐹)

𝑚
,       (12) 

where 𝒞ℰ(𝑈𝑘|𝑛:𝐹) = ∫
1

0
𝜉(𝐺𝑘|𝑛:𝐹(𝑢))𝑑𝑢 and 𝜉(𝑢) = −𝑢log𝑢.  

Proof. Since 𝑚 ≤ 𝑓(𝐹−1(𝑢)) ≤ 𝑀, 0 < 𝑢 < 1, from (5), we have  

𝒞ℰ(𝑇𝑘|𝑛:𝐹) = ∫
1

0

𝜉(𝐺𝑘|𝑛:𝐹(𝑢))

𝑓(𝐹−1(𝑢))
𝑑𝑢 ≥

1

𝑀
∫

1

0

𝜉(𝐺𝑘|𝑛:𝐹(𝑢))𝑑𝑢. 

The upper bound can be obtained similarly. 

It is important to realize that 𝒞ℰ(𝑈𝑘|𝑛:𝐹) represents the cumulative entropy of a consecutive 𝑘-

out-of-𝑛:F system with a joint uniform distribution on (0,1). The constraints in Eq (12) depend on the 

extremes of the pdf 𝑓. If the lower bound m is zero, there is no upper bound. If the upper bound 𝑀 

is infinite, there is no lower bound either. The bounds in Theorems 2.5 and 2.6 are particularly useful 

when the cumulative distribution function does not have a closed form, which makes it difficult to 

evaluate the cumulative distribution function in (1). For many known distributions, the CE expressions 

simplify the calculation of the bounds in Theorem 2.5. In cases with complex cumulative distribution 

functions, such as mixed distributions or systems with multiple components, Theorems 2.5 and 2.6 can 
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help predict the uncertainty in the lifetime of the system using cumulative entropy. If both theorems 

provide computable bounds, then the maximum of the two lower bounds can be used.  

To demonstrate the application of the bounds from Theorems 2.6 and 2.7, we consider an example 

with a consecutive 𝑘-out-of-𝑛:F system. 

Example 2.4. Assume a linear consecutive 6 -out-of- 12 :F system with lifetime 𝑇6|12:𝐹 =

max(𝑋[1:6], 𝑋[2:7], … , 𝑋[6:12]),  where 𝑋[𝑗:𝑚] = min(𝑋𝑗, … , 𝑋𝑚)  for 1 ≤ 𝑗 < 𝑚 ≤ 12.  It is 

straightforward to calculate that 𝒞ℰ(𝑈6|12:𝐹) = 0.1386067  and 𝔅1 = 0, 𝔅2 = 1.783154.  The 

bounds in Theorems 2.5 and 2.6 can be calculated for common component lifetime distributions. To 

illustrate, we consider the following models as examples: 

1) Assuming a half-normal distribution with pdf  

𝑓𝑋(𝑥) =
√2

𝜎√𝜋
𝑒

−
𝑥2

2𝜎2 , 𝑥 > 0, 𝜎 > 0. 

It is easy to see that 𝑚 = 0 and 𝑀 =
√2

𝜎√𝜋
. Applying the result from Theorem 2.6, we can obtain the 

lower bound 𝒞ℰ(𝑇6|12:𝐹) ≥
0.1960195

𝜎√𝜋
. Furthermore, using the bound provided in Theorem 2.5, we can 

derive 𝒞ℰ(𝑇6|12:𝐹) ≤ 1.783154𝒞ℰ(𝑋1) . By combining these two bounds, we can conclude that 
0.1960195

𝜎√𝜋
≤ 𝒞ℰ(𝑇6|12:𝐹) ≤ 1.783154𝒞ℰ(𝑋1). 

2) Suppose that 𝑋 follows a Fréchet distribution with cdf given in (6). Then 𝑚 = 0 and  

𝑀 = 𝛼 (
𝛼

𝛼 + 1
)

−
𝛼+1

𝛼
𝑒−(1+

1
𝛼

). 

Furthermore, using the bound provided in Theorem 2.5, we can derive 𝒞ℰ(𝑇6|12:𝐹) ≤

1.783154𝒞ℰ(𝑋1). By combining these two bounds, we can conclude that  

0.1386067𝛼 (
𝛼

𝛼 + 1
)

−
𝛼+1

𝛼
𝑒−(1+

1
𝛼

) ≤ 𝒞ℰ(𝑇6|12:𝐹) ≤ 1.783154𝒞ℰ(𝑋1). 

3. Characterization results 

In this section, we present characterization results related to the cumulative entropy of consecutive 

𝑘 -out-of-𝑛 : F systems. Characterizations of symmetric continuous distributions using extropy and 

related measures, such as cumulative residual extropy and cumulative past extropy, have been studied 

in [35,36]. These researchers found that a key feature of symmetric distributions is the equality of these 

measures for upper and lower order statistics. Additionally, using concomitants of order statistics from 

the Farlie-Gumbel-Morgenstern family, they demonstrated that this characteristic holds for these 

measures as well. We now demonstrate that the cumulative entropy of the lifetime of consecutive 𝑘-

out-of-𝑛:G system uniquely characterizes the parent distribution of the component lifetime. 

Theorem 3.1. Let 𝑇𝑘|𝑛:𝐹
𝑋  and 𝑇𝑘|𝑛:𝐹

𝑌  be lifetimes of two consecutive 𝑘-out-of-𝑛:G systems having the 

common pdfs 𝑓𝑋(𝑥)  and 𝑓𝑌(𝑥)  and cdfs 𝐹𝑋(𝑥)  and 𝐹𝑌(𝑥),  respectively. Then, 𝐹𝑋  and 𝐹𝑌 

belong to the same family of distributions if and only if 𝑋 ≤𝑑 𝑌 and 

𝒞ℰ(𝑇𝑘|𝑛:𝐹
𝑋 ) = 𝒞ℰ(𝑇𝑘|𝑛:𝐹

𝑌 ), 

for all k and n such that 2𝑘 ≥ 𝑛. 
Proof. The necessity is trivial, so we must demonstrate the sufficiency. First, observe that Eq (5) can 



31780 

 

AIMS Mathematics  Volume 9, Issue 11, 31770–31789. 

be rewritten as follows:  

𝒞ℰ(𝑇𝑘|𝑛:𝐹
𝑋 ) = ∫

1

0

𝜙(𝑢)

𝑓𝑋(𝐹𝑋
−1(𝑢))

𝑑𝑢,       (13) 

where 𝜙(𝑢) = −𝐺𝑘|𝑛:𝐹(𝑢)log (𝐺𝑘|𝑛:𝐹(𝑢)) , for all 0 < 𝑢 < 1.  The same argument applies to 

𝒞ℰ(𝑇𝑘|𝑛:𝐹
𝑌 ). From (13) and by the assumption that 𝒞ℰ(𝑇𝑘|𝑛:𝐹

𝑋 ) = 𝒞ℰ(𝑇𝑘|𝑛:𝐹
𝑌 ), one can write  

∫ 𝜙(𝑢)
1

0
[

1

𝑓𝑌(𝐹𝑌
−1(𝑢))

−
1

𝑓𝑋(𝐹𝑋
−1(𝑢))

] 𝑑𝑢 = 0.      (14) 

When 2𝑘 ≥ 𝑛,  we find that 0 < 𝐺𝑘|𝑛:𝐹(𝑢) < 1,  for all 0 < 𝑢 < 1,  so it follows that 

−𝐺𝑘|𝑛:𝐹(𝑢) log (𝐺𝑘|𝑛:𝐹(𝑢)) > 0,  leading to the conclusion that 𝜙(𝑢) > 0,  for 0 < 𝑢 < 1. 

Assumption 𝑋 ≤𝑑 𝑌  implies 𝑓𝑋(𝐹𝑋
−1(𝑢)) ≥ 𝑓𝑌(𝐹𝑌

−1(𝑢))  for all 0 < 𝑢 < 1  due to relation (7). 

Thus, the expression within the brackets in the integrand (14) becomes positive. This implies 

𝑓𝑋(𝐹𝑋
−1(𝑢)) = 𝑓𝑌(𝐹𝑌

−1(𝑢)), 𝑎. 𝑒.    𝑢 ∈ (0,1). 

It follows that 𝐹𝑋
−1(𝑢) = 𝐹𝑌

−1(𝑢) + 𝑑,  where 𝑑  is a constant. Since lim𝑢→0𝐹𝑋
−1(𝑢) =

lim𝑢→0𝐹𝑌
−1(𝑢) = 0  for all 𝑢 ∈ (0,1) , we conclude that 𝐹𝑋

−1(𝑢) = 𝐹𝑌
−1(𝑢) . This indicates that 𝐹𝑋 

and 𝐹𝑌 have the same family of distributions. 

As mentioned, a sequential 𝑛-out-of-𝑛:F system is a series system. The properties of this system 

are described in the following corollary. 

Corollary 3.1. Under the conditions of Theorem 3.1, 𝐹𝑋  and 𝐹𝑌  belong to the same family of 

distributions if and only if 𝑋 ≤𝑑 𝑌 and 

𝒞ℰ(𝑇𝑛|𝑛:𝐹
𝑋 ) = 𝒞ℰ(𝑇𝑛|𝑛:𝐹

𝑌 ), for all 𝑛 ≥ 1. 

The subsequent theorem provides a further characterization.  

Theorem 3.2. Under the conditions of Theorem 3.1, 𝐹𝑋  and 𝐹𝑌  belong to the same family of 

distributions, but for a change in scale, if and only if 𝑋 ≤𝑑 𝑌 and 

𝒞ℰ(𝑇𝑘|𝑛:𝐹
𝑋 )

𝒞ℰ(𝑌)
=

𝒞ℰ(𝑇𝑘|𝑛:𝐹
𝑌 )

𝒞ℰ(𝑋)
,        (15) 

for all k and n such that 2𝑘 ≥ 𝑛. 
Proof. The necessity is trivial and hence it remains to prove the sufficiency. From (15), we can write  

𝒞ℰ(𝑇𝑘|𝑛:𝐹
𝑋 )

𝒞ℰ(𝑌)
= ∫

1

0

𝜙(𝑢)

𝒞ℰ(𝑌)𝑓𝑋(𝐹𝑋
−1(𝑢))

𝑑𝑢,       (16) 

where 𝜙(𝑢)  is defined as in the proof of Theorem 3.1. The same argument applies to 

𝒞ℰ(𝑇𝑘|𝑛:𝐹
𝑌 )/𝒞ℰ(𝑋). From (15) and (16), we have 

∫
1

0

𝜙(𝑢)

𝒞ℰ(𝑌)𝑓𝑋(𝐹𝑋
−1(𝑢))

𝑑𝑢 = ∫
1

0

𝜙(𝑢)

𝒞ℰ(𝑋)𝑓𝑌(𝐹𝑌
−1(𝑢))

𝑑𝑢.     (17) 

Let us set 𝑐 = 𝒞ℰ(𝑌)/𝒞ℰ(𝑋). By assumption 𝑋 ≤𝑑 𝑌, from Theorem 3.1 of [37], it holds that 𝑐 ≥ 1. 
Moreover, relation (17) can be expressed as  

∫
1

0
[

1

𝑓𝑌(𝐹𝑌
−1(𝑢))

−
1

𝑐𝑓𝑋(𝐹𝑋
−1(𝑢))

] 𝜙(𝑢)𝑑𝑢 = 0.     (18) 
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The assumption 𝑋 ≤𝑑 𝑌 implies that 
𝑓𝑋(𝐹𝑋

−1(𝑢))

𝑓𝑌(𝐹𝑌
−1(𝑢)) 

≥ 1, or equivalently 
𝑐𝑓𝑋(𝐹𝑋

−1(𝑢))

𝑓𝑌(𝐹𝑌
−1(𝑢)) 

≥ 1, for all 0 <

𝑢 < 1, since 𝑐 ≥ 1. Consequently, the expression within the brackets in the integrand (18) is positive. 

This implies that 

𝑓𝑋(𝐹𝑋
−1(𝑢)) = 𝑐𝑓𝑌(𝐹𝑌

−1(𝑢)),    𝑎. 𝑒.    𝑧 ∈ (0,1). 

Thus, it follows that 𝐹𝑋
−1(𝑢) = 𝑐𝐹𝑌

−1(𝑢) + 𝑑 , where 𝑑  is a constant. Since lim𝑢→0𝐹𝑋
−1(𝑢) =

lim𝑢→0𝐹𝑌
−1(𝑢) = 0 for all 𝑢 ∈ (0,1), we conclude that 𝐹𝑋

−1(𝑢) = 𝑐𝐹𝑌
−1(𝑢). This indicates that 𝐹𝑋 

and 𝐹𝑌 belong to the same family of distributions but for a change of scale. 

Using Theorem 3.2, we get the following corollary. 

Corollary 3.2. Suppose the assumptions of Theorem 3.2 hold. Then, 𝐹𝑋 and 𝐹𝑌 belong to the same 

family of distributions, but for a change in scale, if and only if 𝑋 ≤𝑑 𝑌 and 

𝒞ℰ(𝑇𝑛|𝑛:𝐹
𝑋 )

𝒞ℰ(𝑌)
=

𝒞ℰ(𝑇𝑛|𝑛:𝐹
𝑌 )

𝒞ℰ(𝑋)
, 

for all 𝑛 ≥ 1. 

4. Nonparametric estimation 

In this section, we develop two non-parametric methods for estimating the cumulative entropy of 

consecutive 𝑘 -out-of-𝑛 :F systems. Let us assume a sequence of iid continuous, non-negative rvs 

𝑋1, 𝑋2, … , 𝑋𝑁, where 𝑋1:𝑁 ≤ 𝑋2:𝑁 ≤ ⋯ ≤ 𝑋𝑁:𝑁 denotes their order statistics. Applying Eq (5), the CE 

of 𝑇𝑘|𝑛:𝐹 can be reformulated for the case 2𝑘 ≥ 𝑛 as follows:  

𝒞ℰ(𝑇𝑘|𝑛:𝐹) = ∫
1

0

𝜉(𝐺𝑘|𝑛:𝐹(𝑢))

𝑓(𝐹−1(𝑢))
𝑑𝑢 = ∫

1

0

𝜉(𝐺𝑘|𝑛:𝐹(𝑢)) [
𝑑𝐹−1(𝑢)

𝑑𝑢
] 𝑑𝑢 

= ∫
1

0
𝜉((𝑛 − 𝑘 + 1)𝑢𝑘 − (𝑛 − 𝑘)𝑢𝑘+1) [

𝑑𝐹−1(𝑢)

𝑑𝑢
] 𝑑𝑢.    (18) 

Using Eq (18), we estimate 𝒞ℰ(𝑇𝑘|𝑛:𝐹) by approximating the derivative of the inverse distribution 

function at sample points. Following [38], we estimate this derivative as  

𝑑𝐹−1(𝑢)

𝑑𝑢
=

𝑁(𝑋𝑖+𝑚:𝑁 − 𝑋𝑖−𝑚:𝑁)

2𝑚
, 

where 𝑋𝑖:𝑁 = 𝑋1:𝑁  for 𝑖 < 1  and 𝑋𝑖:𝑁 = 𝑋𝑁:𝑁  for 𝑖 > 𝑁,  𝑁  is the sample size and 𝑚  is a 

positive integer referred to as the window size, satisfying 𝑚 ≤ 𝑁/2. Consequently, an estimator for 

𝒞ℰ(𝑇𝑘|𝑛:𝐹) is obtained as follows:  

𝒞ℰ̂1(𝑇𝑘|𝑛:𝐹) =
1

𝑁
∑

𝑁

𝑖=1

𝜉 (𝐺𝑘|𝑛:𝐹 (
𝑖

𝑁 + 1
)) (

𝑁(𝑋𝑖+𝑚:𝑁 − 𝑋𝑖−𝑚:𝑁)

2𝑚
) 

                =
1

𝑁
∑

𝑁

𝑖=1

𝜉 ((𝑛 − 𝑘 + 1) (
𝑖

𝑁 + 1
)

𝑘

− (𝑛 − 𝑘) (
𝑖

𝑁 + 1
)

𝑘+1

) 

× (
𝑁(𝑋𝑖+𝑚:𝑁−𝑋𝑖−𝑚:𝑁)

2𝑚
).           (19) 

The second estimator is constructed using the empirical cumulative distribution function associated 
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with 𝐹(𝑥) of the sample, as follows:  

𝐹𝑁(𝑥) = ∑𝑁−1
𝑖=1

𝑖

𝑁
𝐼[𝑥𝑖:𝑁,𝑥(𝑖+1)], 𝑥 ≥ 0, 

where 𝐼𝐴(𝑥) = 1 if 𝑥 ∈ 𝐴. Based on Eq (5), the empirical CE estimator for the consecutive 𝑘-out-

of-𝑛:F system is given by  

𝒞ℰ̂2(𝑇𝑘|𝑛:𝐹) = ∫
∞

0

𝜉((𝑛 − 𝑘 + 1)𝐹𝑁
𝑘(𝑥) − (𝑛 − 𝑘)𝐹𝑁

𝑘+1(𝑥))𝑑𝑥 

                 = ∑

𝑁−1

𝑖=1

∫
𝑋(𝑖+1)

𝑋𝑖:𝑁

𝜉 ((𝑛 − 𝑘 + 1)𝐹𝑁
𝑘(𝑥) − (𝑛 − 𝑘)𝐹𝑁

𝑘+1(𝑥)) 𝑑𝑥 

= ∑𝑁−1
𝑖=1 𝜉 ((𝑛 − 𝑘 + 1) (

𝑖

𝑁
)

𝑘

− (𝑛 − 𝑘) (
𝑖

𝑁
)

𝑘+1

) 𝐷𝑖+1,   (20) 

where 𝐷𝑖+1 = 𝑋𝑖+1:𝑁 − 𝑋𝑖:𝑁, 𝑖 = 1,2, … , 𝑁 − 1, denotes the sample spacings. 

In the following, we examine Monte Carlo simulations to evaluate the performance of the 

proposed estimators 𝒞ℰ̂1(𝑇𝑘|𝑛:𝐹) and 𝒞ℰ̂2(𝑇𝑘|𝑛:𝐹) defined in (19) and (20), respectively. Conducted 

using R software, the simulation is repeated 5,000 times across sample sizes N=20, 30, 40, 50, and 

100, utilizing a conventional exponential distribution. We calculate the average bias and root mean 

square error (RMSE) for different sample sizes N and parameter combinations (k, n). The smoothing 

parameter m can be determined using the heuristic formula 𝑚 = [√𝑁 + 0.5], where [𝑥] is the integer 

part of 𝑥. The bias and RMSE of the estimators 𝒞ℰ̂1(𝑇𝑘|𝑛:𝐹) and 𝒞ℰ̂2(𝑇𝑘|𝑛:𝐹) are given in Tables 1 

and 2 for 5,000 times. After examining these tables, we arrive at the following conclusions: 

1) For all 𝑘 and 𝑛, as the sample size 𝑁 increases, the RMSE of the estimators decreases while 

the bias has an opposite manner.  

2) For fixed 𝑛 and 𝑁, as the number of consecutive working components 𝑘 increases, the RMSE 

of the estimators decreases while the bias has an opposite manner. 

3) For fixed 𝑘 and 𝑁, as the number of components of the system n increases, the RMSE of the 

estimators decreases. 

Generally, the second estimator has better performance with respect to the first estimator. Thus, the 

results show that the efficiency of the estimator is influenced by the number of components 𝑛 and the 

number of consecutive working components 𝑘. 
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Table 1. The Bias and RMSE of the first estimator 𝒞ℰ̂1(𝑇𝑘|𝑛:𝐹) for different choices of 𝑘 and 𝑛. 

  N = 20 N = 30 N = 40 N = 50 N = 100 

n k Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

5 3 –0.124138 0.230344 –0.100742 0.191860 –0.095708 0.171305 –0.093843 0.160603 -0.094036 0.131869 

 4 –0.038756 0.263316 0.000577 0.231150 0.036344 0.218155 0.051543 0.201405 0.093028 0.173277 

 5 –0.091323 0.287947 –0.009914 0.253112 0.038630 0.247169 0.066143 0.237489 0.147523 0.237116 

6 3 0.072069 0.167615 0.070267 0.138012 0.066130 0.124728 0.061647 0.109277 0.040760 0.075014 

 4 –0.031567 0.239911 0.010755 0.209871 0.022254 0.184367 0.035022 0.174554 0.055193 0.134261 

 5 –0.151385 0.310038 –0.079245 0.260249 –0.048472 0.232668 –0.015527 0.219851 0.041610 0.175196 

 6 –0.272339 0.380990 –0.184579 0.315350 –0.127539 0.277684 –0.088733 0.253952 0.009005 0.199077 

7 4 0.021823 0.208960 0.042960 0.183286 0.054940 0.161538 0.054626 0.150306 0.057243 0.113776 

 5 –0.092157 0.269532 –0.034616 0.238141 –0.008311 0.214772 0.008427 0.198731 0.051931 0.159579 

 6 –0.213470 0.350137 –0.135670 0.289292 –0.086826 0.260511 –0.055488 0.242480 0.031440 0.186683 

 7 –0.331163 0.417481 –0.230386 0.349043 –0.161969 0.305570 –0.130153 0.279632 -0.007831 0.216406 

8 4 0.075346 0.191621 0.080118 0.161910 0.074436 0.143996 0.076248 0.134626 0.059875 0.092973 

 5 –0.035972 0.244008 0.000687 0.214961 0.023995 0.194971 0.038143 0.183108 0.061133 0.145446 

 6 –0.168064 0.312048 –0.088598 0.260961 –0.048191 0.238333 –0.020311 0.224606 0.037779 0.178471 

 7 –0.291871 0.384639 –0.185520 0.314696 –0.129251 0.281766 –0.093509 0.254625 0.004763 0.198204 

 8 –0.385751 0.455766 –0.276726 0.378007 –0.211355 0.332942 –0.163147 0.300208 –0.034566 0.218227 
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Table 2. The Bias and RMSE of the second estimator 𝒞ℰ̂2(𝑇𝑘|𝑛:𝐹) for different choices of 𝑘 and 𝑛. 

  N = 20 N = 30 N = 40 N = 50 N = 100 

n k Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

5 3 –0.025125 0.175512 –0.014116 0.141257 –0.015236 0.123774 –0.012079 0.109911 –0.005279 0.078412 

 4 –0.072958 0.267537 –0.050056 0.219368 –0.029108 0.190125 –0.032334 0.172732 –0.012504 0.123541 

 5 –0.123044 0.332033 –0.084990 0.272151 –0.055920 0.239984 –0.048001 0.219015 –0.023000 0.156351 

6 3 –0.001871 0.132976 0.000809 0.109061 0.000794 0.092947 –0.000688 0.082732 –0.000010 0.058974 

 4 –0.045391 0.228448 –0.028728 0.182676 –0.024040 0.157982 –0.016516 0.145011 –0.011101 0.102678 

 5 –0.100189 0.299852 –0.064542 0.250162 –0.049838 0.217331 –0.038395 0.195598 –0.018189 0.139785 

 6 –0.131134 0.357338 –0.099022 0.297588 –0.077961 0.262055 –0.057160 0.238616 –0.028988 0.170018 

7 4 –0.026347 0.182529 –0.018355 0.150178 –0.011043 0.133090 –0.010400 0.117107 –0.006821 0.083850 

 5 –0.075611 0.266131 –0.041516 0.221699 –0.037394 0.192767 –0.029404 0.171981 –0.014986 0.122495 

 6 –0.124722 0.331439 –0.081209 0.278495 –0.064191 0.245961 –0.050115 0.219265 –0.026817 0.155459 

 7 –0.169382 0.377862 –0.106689 0.319331 –0.086256 0.286752 –0.068001 0.256148 –0.032641 0.182052 

8 4 –0.002768 0.152239 –0.003317 0.119965 0.000883 0.106233 0.001972 0.094212 –0.000304 0.066692 

 5 –0.052062 0.233434 –0.032683 0.190547 –0.027234 0.163031 –0.021617 0.147743 –0.008801 0.104927 

 6 –0.096677 0.298313 –0.065127 0.255635 –0.048338 0.221591 –0.041602 0.196996 –0.019996 0.140928 

 7 –0.141255 0.362541 –0.094531 0.302222 –0.081784 0.265432 –0.062192 0.240006 –0.026913 0.168080 

 8 –0.181689 0.401899 –0.131193 0.343492 –0.091136 0.300505 –0.070395 0.267088 –0.035192 0.200356 
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4.1. Real data analysis 

To determine how well the CE estimators of the successive 𝑘 -out-of-𝑛 :F systems match the 

theoretical entropy value, we applied the estimator to the actual data.  

Example 4.1. The data are the active repair times (in hours) given in [39] for an airborne 

communication device. The observations are listed below: 

Dataset: 0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 

1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.3, 

22, 24.5. This data is modeled using the Weibull distribution with the pdf  

𝑓(𝑥) = 𝜆𝛽𝑥𝛽−1𝑒−𝜆𝑥𝛽
, 𝑥 > 0, 

where 𝜆 > 0 and 𝛽 > 0 are scale and shape parameters, respectively. As noted in [29], the datasets 

were fitted using the Weibull distribution via the maximum likelihood method for parameter estimation. 

The resulting parameters are �̂� = 3.391  and �̂� = 0.899 . The Kolmogorov-Smirnov statistic is 

0.120  with a p-value of 0.517 , confirming a good fit between the observed data and the fitted 

exponential distribution. 

Table 3 lists the different combinations of 𝑘 and 𝑛. The results show that there is a correlation 

between the theoretical entropy value and its estimate when the functional components make up more 

than half of the total (𝑛). 

Table 3. Comparison of theoretical values and estimates of CE of 𝑇𝑘|𝑛:𝐹 based on Weibull 

distribution for active repair times (in hours) for an airborne communication transceiver. 

k 𝒞ℰ(𝑇𝑘|5:𝐹) 𝒞ℰ̂1(𝑇𝑘|5:𝐹) 𝒞ℰ̂2(𝑇𝑘|5:𝐹) 𝒞ℰ(𝑇𝑘|6:𝐹) 𝒞ℰ̂2(𝑇𝑘|6:𝐹) 𝒞ℰ̂2(𝑇𝑘|6:𝐹) 

3 0.188772 3.202371 2.708464 0.139103 2.307699 1.786721 

4 0.252975 4.412466 4.098577 0.225504 3.978375 3.511787 

5 0.282173 4.786405 4.098577 0.267998 4.650849 4.532230 

6    0.289143 4.779245 5.167557 

k 𝒞ℰ(𝑇𝑘|7:𝐹) 𝒞ℰ̂1(𝑇𝑘|7:𝐹) 𝒞ℰ̂2(𝑇𝑘|7:𝐹) 𝒞ℰ(𝑇𝑘|8:𝐹) 𝒞ℰ̂1(𝑇𝑘|8:𝐹) 𝒞ℰ̂2(𝑇𝑘|8:𝐹) 

4 0.191428 3.414607 2.827453 0.151613 2.737446 2.057078 

5 0.247997 4.397852 4.073618 0.223027 4.043979 3.538539 

6 0.278365 4.738680 4.867858 0.263090 4.605239 4.497665 

7 0.294482 4.708580 5.384117 0.285978 4.731164 5.137700 

8    0.298730 4.597261 5.563095 

Example 4.2 Let us now analyze the data from [40], which pertains to vinyl chloride measurements 

collected from monitoring wells during cleanup gradient assessments. The data sets are presented 

as follows: 

Dataset: 5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 

2.3, 1.0, 0.2, 0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4, 0.2. 

In Table 4, we present the log-likelihood, AIC, BIC, and results from the K-S goodness of fit test. 

The findings indicate that the exponential distribution, with a maximum likelihood estimate of 0.53, 

closely aligns with the actual data distribution. We further examine the proximity of the CE estimators 

for consecutive k-out-of-8:G systems to the theoretical CE value, assuming an exponential distribution 

for component lifetimes with a rate parameter of �̂� = 0.53. 
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Table 4. Criteria for selecting models for the vinyl chloride data. 

Distribution Log-likelihood AIC BIC K-S P-value 

Exponential –55.452 112.905 114.431 0.088 0.950 

Weibull –55.449 114.899 117.952 0.091 0.936 

Log-normal –55.204 114.408 117.461 0.086 0.959 

Gamma –55.413 114.826 117.879 0.097 0.904 

Log-logistic –55.945 115.891 118.943 0.086 0.959 

Table 5 illustrates various combinations of of 𝑘  and 𝑛 . The results show that there is a 

correlation between the theoretical entropy value and its estimate when the functional components 

make up more than half of the total (𝑛). 

Table 5. Comparison of theoretical values and estimates of CE of 𝑇𝑘|𝑛:𝐹  based on 

exponential distribution for vinyl chloride measurements collected from monitoring wells 

during cleanup gradient assessments. 

k 𝒞ℰ(𝑇𝑘|5:𝐹) 𝒞ℰ̂1(𝑇𝑘|5:𝐹) 𝒞ℰ̂2(𝑇𝑘|5:𝐹) 𝒞ℰ(𝑇𝑘|6:𝐹) 𝒞ℰ̂2(𝑇𝑘|6:𝐹) 𝒞ℰ̂2(𝑇𝑘|6:𝐹) 

3 0.188772 3.202371 1.279895 0.139103 2.307699 0.96451 

4 0.252975 4.412466 1.667539 0.225504 3.978375 1.51285 

5 0.282173 4.786405 1.793849 0.267998 4.650849 1.736112 

6    0.289143 4.779245 1.800122 

k 𝒞ℰ(𝑇𝑘|7:𝐹) 𝒞ℰ̂1(𝑇𝑘|7:𝐹) 𝒞ℰ̂2(𝑇𝑘|7:𝐹) 𝒞ℰ(𝑇𝑘|8:𝐹) 𝒞ℰ̂1(𝑇𝑘|8:𝐹) 𝒞ℰ̂2(𝑇𝑘|8:𝐹) 

4 0.191428 3.414607 1.311014 0.151613 2.737446 1.068160 

5 0.247997 4.397852 1.636633 0.223027 4.043979 1.501486 

6 0.278365 4.73868 1.768091 0.263090 4.605239 1.703695 

7 0.294482 4.70858 1.793099 0.285978 4.731164 1.778476 

8    0.298730 4.597261 1.777036 

5. Conclusions 

We investigate the application of the CE concept to consecutive 𝑘 -out-of-𝑛 :F systems. An 

important finding is the strong correlation between the CE of these systems derived from continuous 

and uniform distributions. This finding simplifies CE calculations in numerous practical scenarios. 

However, deriving CE expressions in closed form remains a challenge for systems with large or 

complex component distributions. To solve this problem, we establish advantageous bounds on the CE 

of consecutive 𝑘 -out-of-𝑛 :F systems. These bounds serve as important tools for researchers and 

practitioners to analyze CE behavior. In addition, we present two non-parametric estimators developed 

specifically for consecutive 𝑘-out-of-𝑛:F systems and demonstrate their practical utility using real 

data applications. Furthermore, CE estimation provides valuable insights into system uncertainty and 

facilitates informed decision-making and meaningful data analysis. Our results can also be applied to 

other measures of information, such as fractional cumulative entropy, cumulative residual Tsallis 

entropy, and cumulative Tsallis entropy. To summarize, this study provides expressions for the system 

lifetimes of consecutive 𝑘-out-of-𝑛:F systems and CE preservation of the stochastic order. Moreover, 

we have developed useful bounds that are particularly important when the cdf does not have a closed 

form, as in the case of complex cumulative distribution functions, including mixed distributions or 
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multicomponent systems. Additionally, we present several valuable characterization results and 

propose two non-parametric estimators for the CE of the system lifetime. 
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