Research article

Conditions for extinction and ergodicity of a stochastic Mycobacterium tuberculosis model with Markov switching

  • Received: 16 July 2024 Revised: 07 October 2024 Accepted: 21 October 2024 Published: 29 October 2024
  • MSC : 37H05, 37H30, 60H10

  • This paper is concerned with a stochastic Mycobacterium tuberculosis model, which is perturbed by both white noise and colored noise. First, we prove that the stochastic model has a unique global positive solution. Second, we derive an important condition $ R_0^* $ depending on environmental noise for this stochastic model. We construct an appropriate Lyapunov function, and show that the model possesses a unique ergodic stationary distribution when $ R_0^* < 0 $, in other words, it indicates the long-term persistence of the disease. Finally, we investigate the related conditions of extinction.

    Citation: Ying He, Bo Bi. Conditions for extinction and ergodicity of a stochastic Mycobacterium tuberculosis model with Markov switching[J]. AIMS Mathematics, 2024, 9(11): 30686-30709. doi: 10.3934/math.20241482

    Related Papers:

  • This paper is concerned with a stochastic Mycobacterium tuberculosis model, which is perturbed by both white noise and colored noise. First, we prove that the stochastic model has a unique global positive solution. Second, we derive an important condition $ R_0^* $ depending on environmental noise for this stochastic model. We construct an appropriate Lyapunov function, and show that the model possesses a unique ergodic stationary distribution when $ R_0^* < 0 $, in other words, it indicates the long-term persistence of the disease. Finally, we investigate the related conditions of extinction.



    加载中


    [1] World Health Organization, Global tuberculosis report, 2019. Available from: http://www.who.int/publications/i/item/9789241565714.
    [2] C. Gong, J. J. Linderman, D. Kirschner, A population model capture dynamics of tuberculosis granulomas predicts host infection outcomes, Math. Biosci. Eng., 12 (2015), 625–642. http://dx.doi.org/10.3934/mbe.2015.12.625 doi: 10.3934/mbe.2015.12.625
    [3] J. L. Flynn, Immunology of tuberculosis and implications in vaccine development, Tuberculosis, 84 (2004), 93–101. http://dx.doi.org/10.1016/j.tube.2003.08.010 doi: 10.1016/j.tube.2003.08.010
    [4] L. Ramakrishnan, Revisiting the role of the granuloma in tuberculosis, Nat. Rev. Immunol., 12 (2012), 352–366. http://dx.doi.org/10.1038/nri3211 doi: 10.1038/nri3211
    [5] E. Ibargüen-Mondragón, L. Esteva, E. M. Burbano-Rosero, Mathematical model for the growth of Mycobacterium tuberculosis in the granuloma, Math. Biosci. Eng., 15 (2018), 407–428. http://dx.doi.org/10.3934/mbe.2018018 doi: 10.3934/mbe.2018018
    [6] K. K. Wang, D. C. Zong, Y. Zhou, J. C. Wu, Stochastic dynamical features for a time-delayed ecological system of vegetation subjected to correlated multiplicative and additive noises, Chaos Solitons Fract., 91 (2016), 490–502. http://dx.doi.org/10.1016/j.chaos.2016.07.011 doi: 10.1016/j.chaos.2016.07.011
    [7] H. Zhang, W. Xu, Y. Lei, Y. Qiao, Early warning and basin stability in a stochastic vegetation-water dynamical system, Commun. Nonlinear Sci. Numer. Simul., 77 (2019), 258–270. http://dx.doi.org/10.1016/j.cnsns.2019.05.001 doi: 10.1016/j.cnsns.2019.05.001
    [8] H. Zhang, X. Liu, W. Xu, Threshold dynamics and pulse control of a stochastic ecosystem with switching parameters, J. Franklin. Inst., 358 (2020), 516–532. http://dx.doi.org/10.1016/j.jfranklin.2020.10.035 doi: 10.1016/j.jfranklin.2020.10.035
    [9] H. Qi, X. Meng, Threshold behavior of a stochastic predator–prey system with prey refuge and fear effect, Appl. Math. Lett., 113 (2021), 106846. http://dx.doi.org/10.1016/j.aml.2020.106846 doi: 10.1016/j.aml.2020.106846
    [10] Q. Liu, D. Jiang, Influence of the fear factor on the dynamics of a stochastic predator–prey model, Appl. Math. Lett., 112 (2021), 106756. http://dx.doi.org/10.1016/j.aml.2020.106756 doi: 10.1016/j.aml.2020.106756
    [11] N. H. Dang, N. H. Du, G. Yin, Existence of stationary distributions for Kolmogorov systems of competitive type under telegraph noise, J. Differ. Equations, 257 (2014), 2078–2101. http://dx.doi.org/10.1016/j.jde.2014.05.029 doi: 10.1016/j.jde.2014.05.029
    [12] N. H. Du, R. Kon, K. Sato, Y. Takeuchi, Dynamical behavior of Lotka–Volterra competition systems: non-autonomous bistable case and the effect of telegraph noise, J. Comput. Appl. Math., 170 (2004), 399–422. http://dx.doi.org/10.1016/j.cam.2004.02.001 doi: 10.1016/j.cam.2004.02.001
    [13] N. Bacaër, M. Khaladi, On the basic reproduction number in a random environment, J. Math. Biol., 67 (2013), 1729–1739. http://dx.doi.org/10.1007/s00285-012-0611-0 doi: 10.1007/s00285-012-0611-0
    [14] Y. Takeuchi, N. H. Du, N. T. Hieu, K. Sato, Evolution of predator–prey systems described by a Lotka–Volterra equation under random environment, J. Math. Anal. Appl., 323 (2006), 938–957. http://dx.doi.org/10.1016/j.jmaa.2005.11.009 doi: 10.1016/j.jmaa.2005.11.009
    [15] L. Wang, D. Jiang, Ergodicity and threshold behaviors of a predator–prey model in stochastic chemostat driven by regime switching, Math. Methods Appl. Sci., 44 (2021), 325–344. http://dx.doi.org/10.1002/mma.6738 doi: 10.1002/mma.6738
    [16] R. Z. Has'miniskii, Stochastic stability of differential equations, Alphen aan den Rijn, The Netherlands, 1980.
    [17] X. Mao, C. Yuan, Stochastic differential equations with Markovian switching, 2 Eds., London: Imperial College Press, 2006.
    [18] Q. Liu, The threshold of a stochastic susceptible-infective epidemic model under regime switching, Nonlinear Anal.: Hybrid Syst., 21 (2016), 49–58. http://dx.doi.org/10.1016/j.nahs.2016.01.002 doi: 10.1016/j.nahs.2016.01.002
    [19] L. Zu, D. Jiang, D. O'Regan, T. Hayat, B. Ahmad, Ergodic property of a lotka-volterra predator-prey model with white noise higher order perturbation under regime switching, Appl. Math. Comput., 330 (2018), 93–102. http://dx.doi.org/10.1016/j.amc.2018.02.035 doi: 10.1016/j.amc.2018.02.035
    [20] K. Qi, D. Jiang, The impact of virus carrier screening and actively seeking treatment on dynamical behavior of a stochastic HIV/AIDS infection model, Appl. Math. Model., 85 (2020), 378–404. http://dx.doi.org/10.1016/j.apm.2020.03.027 doi: 10.1016/j.apm.2020.03.027
    [21] X. Li, D. Jiang, X. Mao, Population dynamical behavior of lotka-Volterra system under regime switching, J. Comput. Appl. Math., 232 (2009), 427–448. http://dx.doi.org/10.1016/j.cam.2009.06.021 doi: 10.1016/j.cam.2009.06.021
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(252) PDF downloads(39) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog