Processing math: 55%
Research article

Conditions for extinction and ergodicity of a stochastic Mycobacterium tuberculosis model with Markov switching

  • Received: 16 July 2024 Revised: 07 October 2024 Accepted: 21 October 2024 Published: 29 October 2024
  • MSC : 37H05, 37H30, 60H10

  • This paper is concerned with a stochastic Mycobacterium tuberculosis model, which is perturbed by both white noise and colored noise. First, we prove that the stochastic model has a unique global positive solution. Second, we derive an important condition R0 depending on environmental noise for this stochastic model. We construct an appropriate Lyapunov function, and show that the model possesses a unique ergodic stationary distribution when R0<0, in other words, it indicates the long-term persistence of the disease. Finally, we investigate the related conditions of extinction.

    Citation: Ying He, Bo Bi. Conditions for extinction and ergodicity of a stochastic Mycobacterium tuberculosis model with Markov switching[J]. AIMS Mathematics, 2024, 9(11): 30686-30709. doi: 10.3934/math.20241482

    Related Papers:

    [1] Yue Dong, Xinzhu Meng . Stochastic dynamic analysis of a chemostat model of intestinal microbes with migratory effect. AIMS Mathematics, 2023, 8(3): 6356-6374. doi: 10.3934/math.2023321
    [2] Jean Luc Dimi, Texance Mbaya . Dynamics analysis of stochastic tuberculosis model transmission withimmune response. AIMS Mathematics, 2018, 3(3): 391-408. doi: 10.3934/Math.2018.3.391
    [3] Ruoyun Lang, Yuanshun Tan, Yu Mu . Stationary distribution and extinction of a stochastic Alzheimer's disease model. AIMS Mathematics, 2023, 8(10): 23313-23335. doi: 10.3934/math.20231185
    [4] Yuanfu Shao . Dynamics and optimal harvesting of a stochastic predator-prey system with regime switching, S-type distributed time delays and Lévy jumps. AIMS Mathematics, 2022, 7(3): 4068-4093. doi: 10.3934/math.2022225
    [5] Lin Xu, Linlin Wang, Hao Wang, Liming Zhang . Optimal investment game for two regulated players with regime switching. AIMS Mathematics, 2024, 9(12): 34674-34704. doi: 10.3934/math.20241651
    [6] Xiaodong Wang, Kai Wang, Zhidong Teng . Global dynamics and density function in a class of stochastic SVI epidemic models with Lévy jumps and nonlinear incidence. AIMS Mathematics, 2023, 8(2): 2829-2855. doi: 10.3934/math.2023148
    [7] Hong Qiu, Yanzhang Huo, Tianhui Ma . Dynamical analysis of a stochastic hybrid predator-prey model with Beddington-DeAngelis functional response and Lévy jumps. AIMS Mathematics, 2022, 7(8): 14492-14512. doi: 10.3934/math.2022799
    [8] Chuangliang Qin, Jinji Du, Yuanxian Hui . Dynamical behavior of a stochastic predator-prey model with Holling-type III functional response and infectious predator. AIMS Mathematics, 2022, 7(5): 7403-7418. doi: 10.3934/math.2022413
    [9] Ahmed Ghezal, Mohamed balegh, Imane Zemmouri . Markov-switching threshold stochastic volatility models with regime changes. AIMS Mathematics, 2024, 9(2): 3895-3910. doi: 10.3934/math.2024192
    [10] Yuhuai Zhang, Xinsheng Ma, Anwarud Din . Stationary distribution and extinction of a stochastic SEIQ epidemic model with a general incidence function and temporary immunity. AIMS Mathematics, 2021, 6(11): 12359-12378. doi: 10.3934/math.2021715
  • This paper is concerned with a stochastic Mycobacterium tuberculosis model, which is perturbed by both white noise and colored noise. First, we prove that the stochastic model has a unique global positive solution. Second, we derive an important condition R0 depending on environmental noise for this stochastic model. We construct an appropriate Lyapunov function, and show that the model possesses a unique ergodic stationary distribution when R0<0, in other words, it indicates the long-term persistence of the disease. Finally, we investigate the related conditions of extinction.



    Tuberculosis (TB), caused by mycobacterium tuberculosis (Mtb), remains one of the leading causes of death worldwide, surpassing even acquired immune deficiency syndrome (AIDS) [1,2]. Approximately 25% of the global population carries Mtb, with most progressing to latent infection. This latent state can persist for life or re-emerge as active disease, underscoring the need to understand Mtb-host dynamics. As a result, many studies were dedicated to exploring these interactions [3,4]. For instance, Ibarguen-Mondragon et al. [5] proposed a mathematical model describing the growth of Mtb populations:

    {dˉMUdt=ΛUμUˉMUˉβˉBˉMU,dˉMIdt=ˉβˉBˉMUˉαTˉMIˉTμIˉMI,dˉBdt=ˉrμIˉMI+υ(1ˉBK)ˉBˉγUˉMUˉBμBˉB,dˉTdt=ˉkI(1ˉTTmax)ˉMIμTˉT. (1.1)

    Here, ˉMU(t),ˉMI(t),ˉB(t) and ˉT(t) represent the population densities of normal macrophages, infected macrophages, extracellular Mtb and T cells, respectively. Some main parameters of system (1.1) are summarized in Table 1.

    Table 1.  Some main parameters of system (1.2).
    Parameter Description
    ΛU The recruitment rate of normal macrophages
    K The carrying capacity
    υ The intrinsic reproduction rate of Mtb population
    μU The death rate of normal macrophages,
    μI The death rate of infected macrophages
    μB The death rate of Mtb
    μT The death rate of T cells
    ˉr The average number of bacilli produced by an infected macrophage
    ˉβ The infected rate of normal macrophages by Mtb
    ˉαT The eliminated rate of infected macrophages by T cells
    ˉγU The eliminated rate of Mtb by normal macrophages
    ˉkI The recruited rate of T cells
    Tmax The maximum T cell population

     | Show Table
    DownLoad: CSV

    To simplify the model, they introduce the following change of variables:

    MU=ˉMUΛU/μU,MI=ˉMIΛU/μU,B=ˉBK,T=ˉTTmax.

    Replacing the new variables, the system (1.1) becomes

    {dMUdt=μUμUMUβBMU,dMIdt=βBMUαTMITμIMI,dBdt=rMI+υ(1B)BγUMUBμBB,dTdt=kI(1T)MIμTT, (1.2)

    where

    αT=ˉαTTmax,β=ˉβK,γU=ˉγUΛUμU,r=ˉrKμIΛUμU,kI=ˉkIΛUμU.

    In ecosystems, many of the main parameters are affected by environmental white noises such as drought-fire interactions and species invasions, and therefore should generally display stochastic disturbances [6,7,8,9,10]. Stochastic models have been widely employed to capture the dynamics of various infectious diseases, including measles, malaria, tuberculosis, smallpox, and AIDS. However, few stochastic models have explored the impact of Mtb growth on infection outcomes.

    However, the majority of ecosystems will eventually change due to many natural elements like temperature, precipitation, and PH. Furthermore, we see that during the warm season, the recruitment and death rates of both healthy and infected macrophages will change significantly from those during the cold season. Similarly, changes in nutrition or food resources commonly impact the intrinsic reproduction rate. Colored noise (or telegraph noise) is often used to describe the transition between different environmental states, such as from the rainy season to the dry season. The switching is memoryless and the waiting time for the next switching is exponentially distributed. Therefore, a continuous-time Markov chain ϖ(t),t0 with finite-state space S={1,2,,N} is used to represent random switches between environmental states [11,12,13,14,15]. Taking into account the sensitivity to environmental states, let us investigate time-varying parameters with various discrete values affected by colored noises. We will consider time-varying parameters influenced by both white and colored noise and introduce this noise into system (1.2) as follows:

    {dMU=[μU(ϖ(t))μU(ϖ(t))MUβ(ϖ(t))BMU]dt+σ1(ϖ(t))MUdB1(t),dMI=[β(ϖ(t))BMUαT(ϖ(t))MITμI(ϖ(t))MI]dt+σ2(ϖ(t))MIdB2(t),dB=[r(ϖ(t))MI+υ(ϖ(t))(1B)BγU(ϖ(t))MUBμB(ϖ(t))B]dt+σ3(ϖ(t))BdB3(t),dT=[kI(ϖ(t))(1T)MIμT(ϖ(t))T]dt+σ4(ϖ(t))TdB4(t), (1.3)

    where B1(t),B2(t),B3(t)andB4(t) are mutually independent standard Brownian motions and the Markov chain ϖ(t),t0 with values in a finite state space S={1,2,,N}. We assume that Brownian motion and Markov chain are independent. The generator matrix Γ=(γij)N×N of the Markov chain is given by

    P{ζ(t+t)=j|ϖ(t)=i}={γijt+o(t),ifij,1+γiit+o(t)ifi=j,

    where t>0,γij>0 denotes the transition rate from i to j if ij while Nj=1γij=0. In addition (ϖ(t))t0 is irreducible and has a unique stationary distribution π=(π1,π2,,πN) satisfying the conditions πΓ=0,Nk=1πk=0.

    This paper aims at establishing some criteria for the existence of ergodic stationary distribution and extinction of mycobacterium tuberculosis model, which is almost a void in this area. As far as we know, this type of model has received little attention. There is not much research on the stochastic epidemic model in the literature because of how difficult it is to handle discrete Markov switching and remove linear perturbation terms. Unlike deterministic models, it is difficult to analyze the disease persistence and extinction of system (1.3) because of the stochastic fluctuations of each compartment in disease transmission; the stable equilibrium of system (1.3) will no longer exist. In this way, analyzing the persistence and extinction of tuberculosis disease is a challenging task. We will provide the relevant threshold dynamics and ergodic properties of the system (1.3) to the best of our ability.

    The structure of the paper is organized as follows: Section 2 introduces necessary notations and auxiliary lemmas. Section 3 investigates the conditions for the existence and uniqueness of a global positive solution to system (1.3). Section 4 applies stochastic Lyapunov methods to establish the ergodicity and positive recurrence of the stochastic Mtb model under regime switching. Finally, we derive the sufficient condition for extinction.

    In this section, we will introduce three important lemmas for the subsequent dynamical analyses.

    Lemma 2.1. (Has'minskii [16]) Assume that for any ijS, such that γij>0. If the following conditions are satisfied:

    (I) For any kS and for all YRn, C(Y,k) is symmetric and

    ρ|η|2ζTC(Y,k)ηρ1|η|2for all ζRn

    with some constant ρ(0,1].

    (II) There exists a nonempty bounded open set URn with compact closure, satisfying that, for each kS, there exists a nonnegative function V(,k):Uc×SR such that V(,k) is twice continuously differentiable and for some ϱ>0,

    LV(Y,k)ϱ(Y,k)Uc×S,

    then the solution (Y(t),ϖ(t)) of system (2.1) is positive recurrent and ergodic. It shows that (Y(t),ϖ(t)) has a unique stationary density μ(,), and for any Borel measurable function φ(,):Rn×SRn such that kSRn|φ(y,k)|μ(dy,k)<, we have

    P{limt1tt0φ(Y(s),ϖ(s))ds=kSRnφ(y,k)μ(dy,k)}=1.

    Then, the ergodicity of Markov chain ϖ() implies that limt1tt0φ(ϖ(s))ds=kSπkφ(k)a.s.

    Lemma 2.2. The following linear system

    {β(k)+c2υ(k)g1(k)μB(k)+Nl=1γklg1(l)=0,γU(k)g2(k)μU(k)+Nl=1γklg2(l)=0,αT(k)g3(k)μT(k)+Nl=1γklg3(l)=0,k=1,,N, (2.2)

    where

    c2=(Nk=1πk(μU(k)β(k)r(k))13)3(Nk=1πk(μI(k)+12σ22(k)))(Nk=1πk(μB(k)+12σ23(k)))2,

    then (2.2) has a unique solution (g1(1),,g1(N),g2(1),,g2(N),g3(1),,g3(N))T0.

    Proof. System (2.2) can be rewritten in the following form,

    AG=H,

    where GR3N, H=(β(1)+c2υ(1),,β(N)+c2υ(N),γU(1),,γU(N),αT(1),,αT(N))T and

    A=(μB(1)γ11γ1N0000γN1μB(N)γNN000000μU(1)γ11γ1N0000γN1μU(N)γNN000000μT(1)γ11γ1N0000γN1μT(N)γNN).

    Clearly, AZ3N×3N. For each k=1,,N, consider the leading principal submatrix

    Ak=(μB(1)γ11γ12γ1kγ21μB(2)γ22γ2kγk1γk2μB(k)γkk),
    AN+k=(μB(1)γ11γ1N00γN1μB(N)γNN0000μU(1)γ11γ1k00γk1μU(k)γkk),

    and

    A2N+k=(μB(1)γ11γ1N0000γN1μB(N)γNN000000μU(1)γ11γ1N0000γN1μU(N)γNN000000μT(1)γ11γ1k0000γk1μT(k)γkk).

    Obviously, Ak,AN+k,A2N+kZk×k. Additionally, each row of submatrix Ak has the sum

    μB(i)kj=1γij=μB(i)+Nj=k+1γijμB(i)>0,i=1,,k.

    For submatrix AN+k,

    the sum of its  ith row={μB(i)Nj=1γij=μB(i)>0,if1iN,μU(i)kj=1γijμU(i)>0,ifN<iN+k.

    And for submatrix A2N+k,

    the sum of its  ith row={μB(i)Nj=1γij=μB(i)>0,if1iN,μU(i)Nj=1γij=μU(i)>0,ifN<i2N,μT(i)kj=1γijμT(i)>0,if2N<i2N+k.

    By applying Lemma 5.3 of [17], we get detAk>0,k=1,3N. In other words, we've shown that all the leading principal minors of A are positive. Using Theorem 2.10 in [16] indicates that A is a nonsingular M-matrix and for the vector H0R3N, the linear Eq (2.2) has a unique solution G=(g1(1),,g1(N),g2(1),,g2(N),g3(1),,g3(N))T0. On the other hand, by system (2.2), we can easily observe that g1(k),g2(k) and g3(k) should be positive, k=1,,N.

    Lemma 2.3. ([18]) Let Z(t) be the solution of the auxiliary stochastic differential equation

    dZ(t)=[μU(ϖ(t))μU(ϖ(t))Z(t)]dt+σ1(ϖ(t))Z(t)dB1(t),

    with the initial value Z(0)=MU(0)>0, Then MU(t)Z(t) for any t0, a.s. Moreover, (Z(t),ϖ(t)) is positive recurrent and has the following property:

    limt1tt0(β(ζ(s))+c2υ(ζ(s)))Z(s)ds=Nk=1πkμU(k)g1(k)a.s.

    where

    c2=(Nk=1πk(μU(k)β(k)r(k))13)3(Nk=1πk(μI(k)+12σ22(k)))(Nk=1πk(μB(k)+12σ23(k)))2, g1(k)=(g1(1),,g1(N))T

    is determined by the following linear equation

    β(k)+c2υ(k)=g1(k)μU(k)Nl=1γklg1(l),k=1,,N.

    When studying the dynamical behavior of an epidemic model, it is important to consider whether the solution is global and positive.

    Theorem 3.1. For any initial value (MU(0),MI(0),B(0),T(0),ζ(0))R4+×S, there exists a unique solution (MU(t),MI(t),B(t),T(t),ϖ(t)) to system (1.3) on t0 and the solution will remain in R4+×S with probability one (a.s.).

    Proof. Since the coefficients of (1.3) satisfy the locally Lipschitz continuous condition, thus the system (1.3) has a unique local solution (MU(t),MI(t),B(t),T(t),ϖ(t))R4+×S on t[0,τe], where τe is an exposure time. Next, we claim that the solution is global, i.e τe=+. Similar to the proof of Zu et al. [19] and Liu et al. [20], we will only show the key step is to construct a nonnegative Lyapunov function Q0:R4+R+ satisfying

    LQ0(MU,MI,B,T)Θ,

    where Θ is a positive constant. Define

    Q0(MU,MI,B,T)=aMUblnMUb(1+lnab)+aMIdlnMId(1+lnad)+B1lnB+T1lnT,

    where a,band d are positive constants to be defined later. Based on the basic inequality u1lnu0, for any u>0, we have

    aMUblnMUb(1+lnab)=b(aMUb1lnaMUb)0,for anya,b>0.

    Making use of Itô's formula to Q0, we obtain

    dQ0(MU,MI,B,T)=LQ0dt+(aMUb)σ1(ϖ(t))dB1(t)+(aMId)σ2(ϖ(t))dB2(t)+(B1)σ3(ϖ(t))dB3(t)+(T1)σ4(ϖ(t))dB4(t),

    where LQ0:R4+R is defined by

    LQ0(MU,MI,B,T)=aμU(k)aμU(k)MU+b2σ21(k)bμU(k)MU+bμU(k)+bβ(k)BaαT(k)MITaμI(k)MI+d2σ22(k)dβ(k)BMUMI+dαT(k)T+dμI(k)+r(k)MI+υ(k)Bυ(k)B2γU(k)MUBμB(k)B+12σ23(k)r(k)MIBυ(k)+υ(k)B+γU(k)MU+μB(k)+kI(k)MIkI(k)TMIμT(k)T+12σ24(k)kI(k)MIT+kI(k)MI+μT(k)(bˇβˆμB)B+supBR+{ˆυB2+2ˇυˇB}+(aˆμI+ˇr+2ˇkI)MI+(aˆμU+ˇγU)MU+(dˇαTˆμT)T+(a+b)ˇμU+dˇμI+ˇμB+ˇμT+12(bˇσ21+dˇσ22+ˇσ23+ˇσ24).

    Choose a=max{ˇr+2ˇkI^μI,ˇγUˆμU},b=ˆμBˇβ,d=ˆμTˇαT, such that aˆμI+ˇr+2ˇkI0,aˆμU+ˇγU0, then,

    LQ0supBR+{ˆυB2+2ˇυˇB}+(a+b)ˇμU+dˇμI+ˇμB+ˇμT+12(bˇσ21+dˇσ22+ˇσ23+ˇσ24):=Θ,

    where Θ is a positive constant. The following proof is almost the same as those in Theorem 2.1 of Li et al. [21]. Hence, we omit it here.

    In this part, we demonstrate the existence of a unique ergodic stationary distribution, which suggests that the virus is widespread, based on the theory presented in Lemma 2.1.

    Define the critical condition

    R0=(Nk=1πk(μU(k)β(k)r(k))13)3(Nk=1πk(μI(k)+12σ22(k)))(Nk=1πk(μB(k)+12σ23(k)))+Nk=1πk(μU(k)+12σ21(k))+14Nk=1πkυ(k)g1(k)+c2Nk=1πkμU(k)g2(k),

    where g(k)=(g1(k),g2(k),g3(k))T is the solution of the linear system (2.2) and c2 is defined in Lemma 2.2.

    Theorem 4.1. If R0<0 and ˇσ21<2ˆμU, ˇσ22<ˆμI, ˇσ24<2ˆμT are satisfied, then for any initial value (MU(0),MI(0),B(0),T(0),ζ(0))R4+×S, the solution (MU(t),MI(t),B(t),T(t)) of system (1.3) is positive recurrent and has a unique ergodic stationary distribution ϕ(,).

    Proof. Since the diffusion matrix

    C(Y,k)=G(Y,k)GT(Y,k)=diag(σ21(k)M2U,σ22(k)M2I,σ23(k)B2,σ24(k)T2)

    is positive definite, which implies that condition (I) in Lemma 2.1 is satisfied. Next we will prove the condition (II) holds. Define a C2function ˜Q:R4+×SR as follows:

    ˜Q(MU,MI,B,T,k)=M0(lnMUc1lnMIc2lnB+g1(k)B+c2g2(k)MU+c1g3(k)T+ω(k))lnMUlnBlnT+12(MU+MI+ˆμI4ˇrB+ˆμI4ˇkIT)2.

    It is clear that there is a unique point (ˉMU(k),ˉMI(k),ˉB(k),ˉT(k),k), which is the minimum value of ˜Q(MU,MI,B,T,k). Define a nonnegative C2 function Q:R4+×SR in the following from

    Q(MU,MI,B,T,k)=M0(lnMUc1lnMIc2lnB+g1(k)B+c2g2(k)MU+c1g3(k)T+ω(k))lnMUlnBlnT+12(MU+MI+ˆμI4ˇrB+ˆμI4ˇkIT)2˜Q(ˉMU(k),ˉMI(k),ˉB(k),ˉT(k),k):=M0(Q1+Q2+ω(k))+Q3+Q4˜Q(ˉMU(k),ˉMI(k),ˉB(k),ˉT(k),k),

    where (MU,MI,B,T,k)(1n,n)×(1n,n)×(1n,n)×(1n,n)×S, and n>1 is a sufficiently large integer, Q1=lnMUc1lnMIc2lnB, Q2=g1(k)B+c2g2(k)MU+c1g3(k)T, Q3=lnMUlnBlnT, Q4=12(MU+MI+ˆμI4ˇrB+ˆμI4ˇkIT)2 and

    c1=(Nk=1πk(μU(k)β(k)r(k))13)3(Nk=1πk(μI(k)+12σ22(k)))2(Nk=1πk(μB(k)+12σ23(k))), (4.2)
    c2=(Nk=1πk(μU(k)β(k)r(k))13)3(Nk=1πk(μI(k)+12σ22(k)))(Nk=1πk(μB(k)+12σ23(k)))2, (4.3)

    g(k):=(g1(1),,g1(N),g2(1),,g2(N),g3(1),,g3(N))T, is the unique solution of system (2.2), ω(k):=(ω(1),,ω(N))T will be determined later and M0>0 is a sufficiently large number satisfying the following condition,

    M0R0+C2, (4.4)

    where

    C=sup(MU,MI,B,T)R4+{(ˇβ+ˇυ)B+ˇγUMUˆυ2(ˆμI4ˇr)B314(2ˆμUˇσ21)M2U14(ˆμIˇσ22)M2I14(2ˆμTˇσ24)(ˆμIT4ˇkI)2+E+ˇμU+ˇμB+ˇμT+12(ˇσ21+ˇσ23+ˇσ24)}.

    Applying the Itô's formula to Q1 and Q2, we have

    LQ1=μU(k)MU+μU(k)+β(k)B+12σ21(k)c1β(k)BMUMI+c1αT(k)T+c1(μI(k)+12σ22(k))c2r(k)MIBc2υ(k)+c2υ(k)B+c2γU(k)MU+c2(μB(k)+12σ23(k))33c1c2μU(k)β(k)r(k)+c1(μI(k)+12σ22(k))+c2(μB(k)+12σ23(k))+μU(k)+12σ21(k)+(β(k)+c2υ(k))B+c1αT(k)T+c2γU(k)MU (4.5)

    and

    LQ2=g1(k)[r(k)MI+υ(k)(1B)BγU(k)MUBμB(k)B]+Nl=1γklg1(l)B+c2g2(k)[μU(k)μU(k)MUβ(k)BMU]+c2Nl=1γklg2(l)MU+c1g3(k)[kI(k)(1T)MIμT(k)T]+c1Nl=1γklg3(l)Tc1g3(k)kI(k)MI+g1(k)r(k)MI+g1(k)υ(k)(1B)B+c2g2(k)μU(k)[μB(k)g1(k)+Nl=1γklg1(l)]B+c2[μU(k)g2(k)+Nl=1γklg2(l)]MU+c1[μT(k)g3(k)+Nl=1γklg3(l)]T, (4.6)

    where g1(k),g2(k),g3(k) are defined in Lemma 2.2. In view of (4.5), (4.6) and dxex2d24e(e>0),xR, we obtain

    L(Q1+Q2+ω(k))33c1c2μU(k)β(k)r(k)+c1(μI(k)+12σ22(k))+c2(μB(k)+12σ23(k))+μU(k)
    +12σ21(k)+(c1g3(k)kI(k)+g1(k)r(k))MI+14υ(k)g1(k)+c2g2(k)μU(k)+Nl=1γklω(l)+[β(k)+c2υ(k)μB(k)g1(k)+Nl=1γklg1(l)]B+c2[γU(k)μU(k)g2(k)+Nl=1γklg2(l)]MU+c1[α(k)μT(k)g3(k)+Nl=1γklg3(l)]T:=R0(k)+(c1ˇg3ˇkI+ˇg1ˇr)MI+Nl=1γklω(l), (4.7)

    where R0(k)=33c1c2μU(k)β(k)r(k)+c1(μI(k)+12σ22(k))+c2(μB(k)+12σ23(k))+μU(k)+12σ21(k)+14υ(k)g1(k)+c2g2(k)μU(k).

    Since the generator matrix Γ is irreducible, for R0=(R0(1),,R0(N))T, there exists ω=(ω(1),,ω(N))T satisfying the following Poisson system

    Γω=(Nl=1πkR0(k))1R0,

    which implies that

    R0(k)+Nl=1γklω(l)=Nl=1πkR0(k).

    Substituting this equality into (4.7)

    L(Q1+Q2+ω(k))3Nl=1πk(c1c2μU(k)β(k)r(k))13+c1Nk=1πk(μI(k)+12σ22(k))+c2Nk=1πk(μB(k)+12σ23(k))+Nk=1πk(μU(k)+12σ21(k))+14Nk=1πkυ(k)g1(k)+c2Nk=1πkg2(k)μU(k)+(c1ˇg3ˇkI+ˇg1ˇr)MI:=R0+(c1ˇg3ˇkI+ˇg1ˇr)MI. (4.8)

    Employing the Itô's formula to Q3 and Q4, one has

    LQ3=μU(k)MU+μU(k)+β(k)B+12σ21(k)r(k)MIBυ(k)+υ(k)B+γU(k)MU+μB(k)+12σ23(k)kI(k)MIT+kI(k)MI+μT(k)+12σ24(k)ˆμUMUˆrMIBˆkIMIT+(ˇβ+ˇυ)B+ˇγUMU+ˇkIMI+ˇμU+ˇμB+ˇμT+12(ˇσ21+ˇσ23+ˇσ24) (4.9)

    and

    LQ4=(MU+MI+ˆμI4ˇrB+ˆμI4ˇkIT)[μU(k)μU(k)MUαT(k)MITμI(k)MI+ˆμI4ˇrr(k)MI+ˆμI4ˇrυ(k)B
    ˆμI4ˇrυ(k)B2ˆμI4ˇrγU(k)MUBˆμI4ˇrμB(k)B+ˆμI4ˇkIkI(k)MIˆμI4ˇkIkI(k)MITˆμI4ˇkIμT(k)T+12(σ21(k)M2U+σ22(k)M2I+(ˆμI4ˇr)2σ23(k)B2+(ˆμI4ˇkI)2σ24(k)T2)(MU+MI+ˆμI4ˇrB+ˆμI4ˇkIT)[ˇμU+ˆμIˇυ4ˇrBˆμIˆυ4ˇrB2ˆμUMUˆμI2MIˆμIˆμT4ˇkIT]+12(ˇσ21M2U+ˇσ22M2I+(ˆμI4ˇr)2ˇσ23B2+(ˆμI4ˇkI)2ˇσ24T2)=ˇμU(MU+MI+ˆμI4ˇrB+ˆμI4ˇkIT)+ˆμIˇυ4ˇrB(MU+MI+ˆμI4ˇrB+ˆμI4ˇkIT)ˆυ(ˆμI4ˇr)2B312(2ˆμUˇσ21)M2U12(ˆμIˇσ22)M2I12(2ˆμTˇσ24)(ˆμIT4ˇkI)2+ˇσ232(ˆμIB4ˇr)2Eˆυ2(ˆμI4ˇr)2B314(2ˆμUˇσ21)M2U14(ˆμIˇσ22)M2I14(2ˆμTˇσ24)(ˆμIT4ˇkI)2, (4.10)

    where

    \begin{equation*} \begin{aligned} E = \sup\limits_{(M_U, M_I, B, T)\in \mathbb{R }^4_+ }&\bigg\{\check{\mu}_U(M_U+M_I+\frac{\hat{\mu}_I}{4\check{r}}B+\frac{\hat{\mu}_I}{4\check{k}_I}T)+\frac{\hat{\mu}_I\check{\upsilon}}{4\check{r}}B(M_U+M_I+\frac{\hat{\mu}_I}{4\check{r}}B+\frac{\hat{\mu}_I}{4\check{k}_I}T)-\frac{\hat{\upsilon}}{2} \big(\frac{\hat{\mu}_I}{4\check{r}}\big)^2B^3\\ &-\frac{1}{4}\big(2\hat{\mu}_U-\check{\sigma}_1^2\big)M_U^2-\frac{1}{4}\big(\hat{\mu} _I-\check{\sigma}_2^2\big)M_I^2 -\frac{1}{4}\big(2\hat{\mu}_T -\check{\sigma}_4^2\big)\bigg(\frac{\hat{\mu}_IT}{4\check{k}_I}\bigg)^2+\frac{\check{\sigma}_3^2}{2}\bigg(\frac{\hat{\mu}_IB}{4\check{r}}\bigg)^2\bigg\}.\\ \end{aligned} \end{equation*}

    It follows from (4.8)–(4.10) that

    \begin{equation*} \begin{aligned} LQ&\leq M_0R_0^*+\bigg[M_0\big(c_1\check{g}_3\check{k}_I+\check{g}_1 \check{r}\big)+\check{k}_I\bigg]M_I-\frac{\hat{\mu}_U}{M_U}-\frac{\hat{r}M_I}{B}-\frac{\hat{k}_IM_I}{T}+(\check{\beta}+\check{\upsilon})B+\check{\gamma}_UM_U\\ &+\check{\mu}_U+\check{\mu}_B+\check{\mu}_T+\frac{1}{2}(\check{\sigma}_1^2+\check{\sigma}_3^2+\check{\sigma}_4^2)-\frac{\hat{\upsilon}}{2}\big(\frac{\hat{\mu}_I}{4\check{r}}\big)^2B^3-\frac{1}{4}\big(2\hat{\mu}_U-\check{\sigma}_1^2\big)M_U^2-\frac{1}{4}\big(\hat{\mu}_I-\check{\sigma}_2^2\big)M_I^2\\ &-\frac{1}{4}\big(2\hat{\mu}_T-\check{\sigma}_4^2\big)\bigg(\frac{\hat{\mu}_IT}{4\check{k}_I}\bigg)^2+E. \end{aligned} \end{equation*}

    Next, we construct a compact subset U such that the condition (II) in Lemma 2.1 holds. Define the following bounded set

    U = \{(M_U, M_I, B, T) \in \mathbb{R }^4_+:\, \epsilon < M_I < \frac{1}{\epsilon}, \, \epsilon < M_U < \frac{1}{\epsilon}, \, \epsilon^2 < B < \frac{1}{\epsilon^2}, \, \epsilon^2 < T < \frac{1}{\epsilon^2}\},

    where 0 < \varepsilon < 1 is a sufficiently small constant. In the set \mathbb{R }^4_+\setminus U = U^C we choose \varepsilon satisfying the following condition

    \begin{equation} \bigg[M_0\big(c_1\check{g}_3\check{k}_I+\check{g}_1 \check{r}\big)+\check{k}_I\bigg]\varepsilon \leq 1, \end{equation} (4.11)
    \begin{equation} -\frac{\min\bigg\{\hat{\mu}_U, \hat{r}, \hat{k}_I\bigg\}}{\varepsilon} +D \leq -1, \end{equation} (4.12)
    \begin{equation} -\frac{1}{8\varepsilon^2}(\hat{\mu}_I-\check{\sigma}_2^2)+D\leq -1, \end{equation} (4.13)
    \begin{equation} -\frac{1}{8\varepsilon^2}(2\hat{\mu}_U-\check{\sigma}_1^2)+D\leq -1, \end{equation} (4.14)
    \begin{equation} -\frac{\hat{\upsilon}}{4\varepsilon^6}\bigg(\frac{\hat{\mu}_I}{4\check{r}}\bigg)^2+D\leq -1, \end{equation} (4.15)
    \begin{equation} -\frac{1}{8\varepsilon^4}\bigg(\frac{\hat{\mu}_I}{4\check{k}_I}\bigg)^2(2\hat{\mu}_T-\check{\sigma}_4^2)+D\leq -1, \end{equation} (4.16)

    where

    \begin{equation*} \begin{aligned} D& = \sup\limits_{(M_U, M_I, B, T)\in \mathbb{R }^4_+ }\bigg\{\bigg[M_0\big(c_1\check{g}_3\check{k}_I+\check{g}_1 \check{r}\big)+\check{k}_I\bigg]M_I+(\check{\beta}+\check{\upsilon})B+\check{\gamma}_UM_U-\frac{\hat{\upsilon}}{4}\big(\frac{\hat{\mu}_I}{4\check{r}}\big)^2B^3-\frac{1}{8}\big(2\hat{\mu}_U-\check{\sigma}_1^2\big)M_U^2\\ &-\frac{1}{8}\big(\hat{\mu}_I-\check{\sigma}_2^2\big)M_I^2 -\frac{1}{8}\big(2\hat{\mu}_T-\check{\sigma}_4^2\big)\bigg(\frac{\hat{\mu}_IT}{4\check{k}_I}\bigg)^2+E+\check{\mu}_U+\check{\mu}_B+\check{\mu}_T+\frac{1}{2}(\check{\sigma}_1^2+\check{\sigma}_3^2+\check{\sigma}_4^2)\bigg\}.\\ \end{aligned} \end{equation*}

    For convenience, we can divide \mathbb{R }^4_+ \setminus U = U^C into eight domains,

    \begin{equation*} \begin{aligned} U_{1}& = \{(M_U, M_I, B, T) \in \mathbb{R }^4_+ : \, 0 < M_I < \varepsilon\}, \, \, \, D_{2} = \{(M_U, M_I, B, T) \in \mathbb{R }^4_+ : \, 0 < M_U < \varepsilon\}, \\ U_{3}& = \{(M_U, M_I, B, T) \in \mathbb{R }^4_+ : \, 0 < B < \varepsilon^2, \, M_I\geq\varepsilon\}, \, \, \, U_{4} = \{(M_U, M_I, B, T) \in \mathbb{R }^4_+ : \, 0 < T < \varepsilon^2, \, M_I\geq\varepsilon\}, \\ U_{5}& = \{(M_U, M_I, B, T) \in \mathbb{R }^4_+ :\, M_I > \frac{1}{\varepsilon}\}, \, \, U_{6} = \{(M_U, M_I, B, T) \in \mathbb{R }^4_+ :\, M_U > \frac{1}{\varepsilon}\}, \\ U_{7}& = \{(M_U, M_I, B, T) \in \mathbb{R }^4_+ : \, B > \frac{1}{\varepsilon^2}\}, \, \, \, U_{8} = \{(M_U, M_I, B, T) \in \mathbb{R }^4_+ :\, T > \frac{1}{\varepsilon^2}\}.\\ \end{aligned} \end{equation*}

    Obviously, U^C = U_1\cup U_2 \cup U_3\cup U_4\cup U_5\cup U_6\cup U_7\cup U_8. Next, we will prove that

    \begin{equation} LQ(M_U, M_I, B, T, k)\leq-1, \, \, \, \, \text {for any} \, \, (M_U, M_I, B, T, k) \in U^C \times \mathbb{S }. \end{equation} (4.17)

    Case 1. For any (M_U, M_I, B, T, k) \in U_{1}\times \mathbb{S }, according to (4.4) and (4.11), we obtain that

    \begin{equation*} \begin{aligned} L\widetilde{Q}&\leq M_0R_0^*+\bigg[M_0\big(c_1\check{g}_3\check{k}_I+\check{g}_1 \check{r}\big)+\check{k}_I\bigg]M_I+(\check{\beta}+\check{\upsilon})B+\check{\gamma}_UM_U-\frac{\hat{\upsilon}}{2} \big(\frac{\hat{\mu}_I}{4\check{r}}\big)B^3-\frac{1}{4}\big(2\hat{\mu}_U-\check{\sigma}_1^2\big)M_U^2\\ &-\frac{1}{4}\big(\hat{\mu}_I-\check{\sigma}_2^2\big)M_I^2-\frac{1}{4}\big(2\hat{\mu}_T-\check{\sigma}_4^2\big)\bigg(\frac{\hat{\mu}_IT}{4\check{k}_I}\bigg)^2 +E+\check{\mu}_U+\check{\mu}_B+\check{\mu}_T+\frac{1}{2}\bigg(\check{\sigma}_1^2+\check{\sigma}_3^2+\check{\sigma}_4^2\bigg)\\ &\leq M_0R_0^*+\bigg[M_0\big(c_1\check{g}_3\check{k}_I+\check{g}_1 \check{r}\big)+\check{k}_I\bigg]\varepsilon+C\\ &\leq -1.\\ \end{aligned} \end{equation*}

    Case 2. For any (M_U, M_I, B, T, k) \in U_{2}\times \mathbb{S }, in view of (4.12), we can obtain

    \begin{equation*} \begin{aligned} LQ&\leq -\frac{\hat{\mu}_U}{M_U}+\bigg[M_0\big(c_1\check{g}_3\check{k}_I+\check{g}_1 \check{r}\big)+\check{k}_I\bigg]M_I+(\check{\beta}+\check{\upsilon})B+\check{\gamma}_UM_U-\frac{\hat{\upsilon}}{2} \big(\frac{\hat{\mu}_I}{4\check{r}}\big)B^3-\frac{1}{4}\big(2\hat{\mu}_U-\check{\sigma}_1^2\big)M_U^2\\ &-\frac{1}{4}\big(\hat{\mu}_I-\check{\sigma}_2^2\big)M_I^2-\frac{1}{4}\big(2\hat{\mu}_T-\check{\sigma}_4^2\big)\bigg(\frac{\hat{\mu}_IT}{4\check{k}_I}\bigg)^2 +E+\check{\mu}_U+\check{\mu}_B+\check{\mu}_T+\frac{1}{2}\bigg(\check{\sigma}_1^2+\check{\sigma}_3^2+\check{\sigma}_4^2\bigg)\\ &\leq -\frac{\hat{\mu}_U}{\varepsilon}+D\\ &\leq -1.\\ \end{aligned} \end{equation*}

    Case 3. For any (M_U, M_I, B, T, k) \in U_{3}\times \mathbb{S }, according to (4.12), we can deduce that

    \begin{equation*} \begin{aligned} LQ &\leq -\frac{\hat{r}M_I}{B}+D\\ &\leq -\frac{\hat{r}}{\varepsilon}+D\\ &\leq -1.\\ \end{aligned} \end{equation*}

    Case 4. For any (M_U, M_I, B, T, k) \in U_{4}\times \mathbb{S }, from condition (4.12), we can deduce that

    \begin{equation*} \begin{aligned} LQ &\leq -\frac{\hat{k}_IM_I}{T}+D\\ &\leq -\frac{\hat{k}_I}{\varepsilon}+D\\ &\leq -1.\\ \end{aligned} \end{equation*}

    Case 5. For any (M_U, M_I, B, T, k) \in U_{5}\times \mathbb{S }, in view of (4.13), we can deduce that

    \begin{equation*} \begin{aligned} LQ&\leq -\frac{1}{8}\big(\hat{\mu}_I-\check{\sigma}_2^2\big)M_I^2-\frac{1}{8}\big(\hat{\mu}_I-\check{\sigma}_2^2\big)M_I^2+\bigg[M_0\big(c_1\check{g}_3\check{k}_I+\check{g}_1 \check{r}\big)+\check{k}_I\bigg]M_I+(\check{\beta}+\check{\upsilon})B+\check{\gamma}_UM_U\\ &-\frac{\hat{\upsilon}}{2} \big(\frac{\hat{\mu}_I}{4\check{r}}\big)^2B^3-\frac{1}{4}\big(2\hat{\mu}_U-\check{\sigma}_1^2\big)M_U^2-\frac{1}{4}\big(2\hat{\mu}_T-\check{\sigma}_4^2\big)\bigg(\frac{\hat{\mu}_IT}{4\check{k}_I}\bigg)^2 +E+\check{\mu}_U+\check{\mu}_B+\check{\mu}_T+\frac{1}{2}\bigg(\check{\sigma}_1^2+\check{\sigma}_3^2+\check{\sigma}_4^2\bigg)\\ &\leq -\frac{1}{8}\big(\hat{\mu}_I-\check{\sigma}_2^2\big)\frac{1}{\varepsilon^2}+D\\ &\leq -1.\\ \end{aligned} \end{equation*}

    Case 6. For any (M_U, M_I, B, T, k) \in U_{6}\times \mathbb{S }, by condition (4.14), we can conclude that

    \begin{equation*} \begin{aligned} LQ&\leq -\frac{1}{8}\big(2\hat{\mu}_U-\check{\sigma}_1^2\big)M_U^2+D\\ &\leq -\frac{1}{8\varepsilon^2}\big(2\hat{\mu}_U-\check{\sigma}_1^2\big)+D\\ &\leq -1.\\ \end{aligned} \end{equation*}

    Case 7. For any (M_U, M_I, B, T, k) \in U_{7}\times \mathbb{S }, in view of (4.15), we obtain that

    \begin{equation*} \begin{aligned} LQ&\leq -\frac{\hat{\upsilon}}{4} \big(\frac{\hat{\mu}_I}{4\check{r}}\big)^2B^3+D\\ &\leq -\frac{\hat{\upsilon}}{4\varepsilon^6} \big(\frac{\hat{\mu}_I}{4\check{r}}\big)^2+D\\ &\leq -1.\\ \end{aligned} \end{equation*}

    Case 8. For any (M_U, M_I, B, T, k) \in U_{8}\times \mathbb{S }, from (4.16), it is deduced that

    \begin{equation*} \begin{aligned} LQ&\leq -\frac{1}{8}\big(2\hat{\mu}_T-\check{\sigma}_4^2\big)\bigg(\frac{\hat{\mu}_IT}{4\check{k}_I}\bigg)^2+D\\ &\leq -\frac{1}{8\varepsilon^4}\bigg(\frac{\hat{\mu}_I}{4\check{k}_I}\bigg)^2\big(2\hat{\mu}_T-\check{\sigma}_4^2\big)+D\\ &\leq -1.\\ \end{aligned} \end{equation*}

    Then the assertion (4.17) is verified, i.e., condition (II) of Lemma 2.1 holds.

    Define

    \begin{equation*} R_0^E = \frac{1}{2\hat{l}_2}\sum\limits_{k = 1}^N\pi_k\mu_U(k)g_1(k)+\sum\limits_{k = 1}^N\pi_k\big(\frac{l_2(k)r(k)}{l_1(k)}+\upsilon(k)\big) -\frac{1}{2}\sum\limits_{k = 1}^N\pi_k\bigg[\bigg(\frac{\sigma_2^2(k)}{2}+\mu_I(k)\bigg)\wedge\bigg(\frac{\sigma_3^2(k)}{2}+\mu_B(k)\bigg)\bigg], \end{equation*}

    where l_1(k) = \frac{\beta(k)+c_2\upsilon(k)}{\beta(k)}, \, \, \, l_2(k) = \frac{\beta(k)+c_2\upsilon(k)}{2\gamma_U(k)}, c_2 = \frac{\bigg(\sum\limits_{k = 1}^N\pi_k(\mu_U(k)\beta(k)r(k))^{\frac{1}{3}}\bigg)^3} {\bigg(\sum\limits_{k = 1}^N\pi_k(\mu_I(k)+\frac{1}{2}\sigma_2^2(k))\bigg)\bigg(\sum\limits_{k = 1}^N\pi_k(\mu_B(k)+\frac{1}{2}\sigma_3^2(k))\bigg)} and g_1(k) is the solution of the linear system (2.2).

    Theorem 5.1. Assume that R_0^E < 0 for any initial value (M_U(0), M_I(0), B(0), T(0), \zeta(0)) \in \mathbb{R }^4_+\times \mathbb{S }, the solution (M_U(t), M_I(t), B(t), T(t), \varpi(t)) of system (1.3) will follow

    \lim\limits_{t\rightarrow \infty}\sup\frac{1}{t}\ln \bigg(l_1( \varpi(t))M_I(t)+l_2( \varpi(t))B(t)\bigg) < R_0^E < 0,

    which means that the disease of system (1.3) will exponentially go to extinction with probability one, where

    \begin{equation} l_1( \varpi(t)) = \frac{\beta( \varpi(t))+c_2\upsilon( \varpi(t))}{\beta( \varpi(t))}, \, \, \, l_2( \varpi(t)) = \frac{\beta( \varpi(t))+c_2\upsilon( \varpi(t))}{2\gamma_U( \varpi(t))}. \end{equation} (5.1)

    Proof. Define a C^2 -function H: \mathbb{R }^4_+\times \mathbb{S }\rightarrow \mathbb{R } as follow,

    H(M_I, B, \varpi(t)) = l_1( \varpi(t))M_I+l_2( \varpi(t))B.

    Employing Itô's formula to H and applying (5.1), one has

    \begin{equation*} \begin{aligned} \mathrm{d}\ln H(t)& = \frac{1}{l_1( \varpi(t))M_I+l_2( \varpi(t))B}\bigg[l_1( \varpi(t))\beta( \varpi(t))BM_U-l_1( \varpi(t))\alpha_T( \varpi(t))M_IT-l_1( \varpi(t))\mu_I( \varpi(t))M_I\\ \end{aligned} \end{equation*}
    \begin{equation*} \begin{aligned} &+l_2( \varpi(t))r( \varpi(t))M_I+l_2( \varpi(t))\upsilon( \varpi(t))B-l_2( \varpi(t))\upsilon( \varpi(t))B^2-l_2( \varpi(t))\gamma_U( \varpi(t))M_UB\\ &-l_2( \varpi(t))\mu_B( \varpi(t))B\bigg]\mathrm{d} t -\frac{l_1^2( \varpi(t))\sigma_2^2( \varpi(t))M_I^2+l_2^2( \varpi(t))\sigma_3^2( \varpi(t))B^2}{2\bigg(l_1( \varpi(t))M_I+l_2( \varpi(t))B\bigg)^2}\mathrm{d} t\\ &+\frac{\sigma_2( \varpi(t))l_1( \varpi(t))M_I}{l_1( \varpi(t))M_I+l_2( \varpi(t))B} \mathrm{d}B_2(t)+\frac{\sigma_3( \varpi(t))l_2( \varpi(t))B}{l_1( \varpi(t))M_I+l_2( \varpi(t))B} \mathrm{d}B_3(t)\\ &\leq \frac{1}{l_1( \varpi(t))M_I+l_2( \varpi(t))B}\bigg[\frac{1}{2}\big(\beta( \varpi(t))+c_2\upsilon( \varpi(t))\big)BM_U+l_2( \varpi(t))r( \varpi(t))M_I+l_2( \varpi(t))\upsilon( \varpi(t))B\\ &-l_1( \varpi(t))\mu_I( \varpi(t))M_I-l_2( \varpi(t))\mu_B( \varpi(t))B\bigg]\mathrm{d}t-\frac{l_1^2( \varpi(t))\sigma_2^2( \varpi(t))M_I^2+l_2^2( \varpi(t))\sigma_3^2( \varpi(t))B^2}{2\bigg(l_1( \varpi(t))M_I+l_2( \varpi(t))B\bigg)^2}\mathrm{d} t\\ &+\sigma_2( \varpi(t))\mathrm{d}B_2(t)+\sigma_3( \varpi(t))\mathrm{d}B_3(t).\\ \end{aligned} \end{equation*}

    We use the following relationship,

    \begin{equation*} \begin{aligned} &\frac{\frac{1}{2}\big(\beta( \varpi(t))+c_2\upsilon( \varpi(t)))\big)BM_U}{l_1( \varpi(t))M_I+l_2( \varpi(t))B}\leq \frac{1}{2\hat{l}_2}\big(\beta( \varpi(t))+c_2\upsilon( \varpi(t))\big)M_U, \\ &\frac{l_2( \varpi(t))r( \varpi(t))M_I}{l_1( \varpi(t))M_I+l_2( \varpi(t))B}\leq\frac{l_2( \varpi(t))r( \varpi(t))}{l_1( \varpi(t))}, \\ \end{aligned} \end{equation*}
    \begin{equation*} \begin{aligned} &\frac{l_2( \varpi(t))\upsilon( \varpi(t))B}{l_1( \varpi(t))M_I+l_2( \varpi(t))B}\leq \upsilon( \varpi(t)), \\ &-\frac{l_1( \varpi(t))\mu_I( \varpi(t))M_I}{l_1( \varpi(t))M_I+l_2( \varpi(t))B} = -\frac{l_1( \varpi(t))\mu_I( \varpi(t))M_I\bigg(l_1( \varpi(t))M_I+l_2( \varpi(t))B\bigg)}{\bigg(l_1( \varpi(t))M_I+l_2( \varpi(t))B\bigg)^2}\leq - \frac{l_1^2( \varpi(t))\mu_I( \varpi(t))M_I^2}{\bigg(l_1( \varpi(t))M_I+l_2( \varpi(t))B\bigg)^2}, \\ &-\frac{l_2( \varpi(t))\mu_B( \varpi(t))B}{l_1( \varpi(t))M_I+l_2( \varpi(t))B}\leq - \frac{l_2( \varpi(t))\mu_B( \varpi(t))B\bigg(l_1( \varpi(t))M_I+l_2( \varpi(t))B\bigg)}{\bigg(l_1( \varpi(t))M_I+l_2( \varpi(t))B\bigg)^2}\leq -\frac{l_2^2( \varpi(t))\mu_B( \varpi(t))B^2}{\bigg(l_1( \varpi(t))M_I+l_2( \varpi(t))B\bigg)^2}, \\ \end{aligned} \end{equation*}

    then,

    \begin{equation} \begin{aligned} \mathrm{d}\ln H(t)&\leq \frac{1}{2\hat{l}_2}\big(\beta( \varpi(t))+c_2\upsilon( \varpi(t)))\big)M_U \mathrm{d} t+ \bigg[\frac{l_2( \varpi(t))r( \varpi(t))}{l_1( \varpi(t))}+\upsilon( \varpi(t))\bigg]\mathrm{d} t\\ &-\frac{1}{\bigg(l_1( \varpi(t))M_I+l_2( \varpi(t))B\bigg)^2}\bigg[\bigg(\frac{\sigma_2^2( \varpi(t))}{2}+\mu_I( \varpi(t))\bigg)(l_1( \varpi(t))M_I)^2\\ &+\bigg(\frac{\sigma_3^2( \varpi(t))}{2}+\mu_B( \varpi(t))\bigg)(l_2( \varpi(t))B)^2\bigg]\mathrm{d} t+\sigma_2( \varpi(t))\mathrm{d}B_2(t) +\sigma_3( \varpi(t))\mathrm{d}B_3(t)\\ &\leq \frac{1}{2\hat{l}_2}\bigg(\beta( \varpi(t))+c_2\upsilon( \varpi(t))\bigg)M_U \mathrm{d} t+ \bigg[\frac{l_2( \varpi(t))r( \varpi(t))}{l_1( \varpi(t))}+\upsilon( \varpi(t))\bigg]\mathrm{d} t\\ &-\frac{\big(l_1( \varpi(t))M_I\big)^2+\big(l_2( \varpi(t))B\big)^2}{\bigg(l_1( \varpi(t))M_I+ l_2( \varpi(t))B\bigg)^2}\bigg[\bigg(\frac{\sigma_2^2( \varpi(t))}{2}+\mu_I( \varpi(t))\bigg)\wedge\bigg(\frac{\sigma_3^2( \varpi(t))}{2}+\mu_B( \varpi(t))\bigg)\bigg]\mathrm{d} t\\ &+\sigma_2( \varpi(t))\mathrm{d}B_2(t) +\sigma_3( \varpi(t))\mathrm{d}B_3(t).\\ \end{aligned} \end{equation} (5.2)

    Integrating from 0 to t and dividing t on both sides of (5.2), we have

    \begin{equation*} \begin{aligned} \frac{\ln H(t)-\ln H(0)}{t}& \leq \frac{1}{2\hat{l}_2}\frac{1}{t}\int_0^t\big(\beta( \zeta(s))+c_2\upsilon( \zeta(s)))\big)M_U(s) \mathrm{d} s+\frac{1}{t}\int_0^t \bigg[\frac{l_2( \zeta(s))r( \zeta(s))}{l_1( \zeta(s))}+\upsilon( \zeta(s))\bigg]\mathrm{d} s\\ &-\frac{1}{2}\frac{1}{t}\int_0^t\bigg[\bigg(\frac{\sigma_2^2( \zeta(s))}{2}+\mu_I( \zeta(s))\bigg)\wedge\bigg(\frac{\sigma_3^2( \zeta(s))}{2}+\mu_B( \zeta(s))\bigg)\bigg]\mathrm{d} s\\ &+\frac{1}{t}\int_0^t\sigma_2( \zeta(s))\mathrm{d}B_2(s) +\frac{1}{t}\int_0^t\sigma_3( \zeta(s))\mathrm{d}B_3(s)\\ &\leq \frac{1}{2\hat{l}_2}\frac{1}{t}\int_0^t\big(\beta( \zeta(s))+c_2\upsilon( \zeta(s)))\big)Z(s) \mathrm{d} s+\frac{1}{t}\int_0^t \bigg[\frac{l_2( \zeta(s))r( \zeta(s))}{l_1( \zeta(s))}+\upsilon( \zeta(s))\bigg]\mathrm{d} s\\ &-\frac{1}{2}\frac{1}{t}\int_0^t\bigg[\bigg(\frac{\sigma_2^2( \zeta(s))}{2}+\mu_I( \zeta(s))\bigg)\wedge\bigg(\frac{\sigma_3^2( \zeta(s))}{2}+\mu_B( \zeta(s))\bigg)\bigg]\mathrm{d} s\\ \end{aligned} \end{equation*}
    \begin{equation} \begin{aligned} &+\frac{1}{t}\int_0^t\sigma_2( \zeta(s))\mathrm{d}B_2(s) +\frac{1}{t}\int_0^t\sigma_3( \zeta(s))\mathrm{d}B_3(s).\\ \end{aligned} \end{equation} (5.3)

    By Lemma 2.3, we have

    \lim\limits_{t\rightarrow \infty}\frac{1}{t}\int_0^t\big(\beta( \zeta(s))+c_2\upsilon( \zeta(s))\big)Z(s) \mathrm{d} s = \sum\limits_{k = 1}^N \pi_k \mu_U(k)g_1(k).

    Using the strong law of large number for local martingale, one has

    \lim\limits_{t\rightarrow \infty}\frac{1}{t}\int_0^t\sigma_2( \zeta(s))\mathrm{d}B_2(s) = 0, \, \, \, \, \, \lim\limits_{t\rightarrow \infty}\frac{1}{t}\int_0^t\sigma_3( \zeta(s))\mathrm{d}B_3(s) = 0.

    Taking the superior limit on both sides of (5.3) and applying the ergodicity of Markov chain \varpi(t) , we obtain

    \begin{equation*} \begin{aligned} \lim\limits_{t\rightarrow \infty}\sup \frac{\ln H(t)}{t}& \leq\frac{1}{2\hat{l}_2}\sum\limits_{k = 1}^N\pi_k\mu_U(k)g_1(k)+\sum\limits_{k = 1}^N\pi_k\bigg(\frac{l_2(k)r(k)}{l_1(k)}+\upsilon(k)\bigg)\\ &-\frac{1}{2}\sum\limits_{k = 1}^N\pi_k\bigg[\big(\frac{\sigma_2^2(k)}{2}+\mu_I(k)\big)\wedge \big(\frac{\sigma_3^2(k)}{2}+\mu_B(k)\big)\bigg]\\ & < 0. \end{aligned} \end{equation*}

    Hence, we can equivalently obtain

    \lim\limits_{t\rightarrow \infty}M_I(t) = \lim\limits_{t\rightarrow \infty}B(t) = 0.

    This completes the proof.

    In this section, some numerical examples are provided to support our theoretical findings. Using Milstein's high-order method, the corresponding discretization equation of system (1.3) is

    \begin{equation} \left\{ \begin{aligned} M_U^{j+1}& = M_U^{j} +\bigg[\mu_U(k)-\mu_U(k)M_U^{j} -\beta(k) B^{j}M_U^j\bigg] \triangle t+\sigma_1(k)M_U^j\sqrt{\triangle t} \eta_{1, j}+\frac{\sigma_1^2(k)M_U^j}{2}( \eta_{1, j}^2-1) \triangle t, \\ M_I^{j+1}& = M_I^{j}+\bigg[\beta(k) B^jM_U^j-\alpha_T(k) M_I^jT^j-\mu_I( k)M_I^j\bigg] \triangle t+\sigma_2(k)M_I^j\sqrt{\triangle t} \eta_{2, j}+\frac{\sigma_2^2(k)M_I^j}{2}( \eta_{2, j}^2-1) \triangle t, \\ B^{j+1}& = B^{j}+\bigg[r(k)M_I^j+ \upsilon(k)(1-B^j)B^j-\gamma_U( k)M_U^jB^j-\mu_B(k)B^j\bigg]\triangle t+\sigma_3(k)B^j\sqrt{\triangle t} \eta_{3, j}+\frac{\sigma_3^2(k)B^j}{2}( \eta_{3, j}^2-1) \triangle t, \\ T^{j+1}& = T^{j}+\bigg[k_I(k)(1-T^j)M_I^j-\mu_T(k) T^j\bigg]\triangle t+\sigma_4(k)T^j\sqrt{\triangle t} \eta_{4, j}+\frac{\sigma_4^2(k)T^j}{2}( \eta_{4, j}^2-1) \triangle t, \\ \end{aligned} \right. \end{equation} (6.1)

    here \eta_{1, j}, \, \eta_{2, j}, \, \eta_{3, j}, \, \eta_{4, j} are N(0, 1) distributed independent Gaussian random variables.

    Let N = 2 and the generator \Gamma = (\gamma_{ij})_{2\times 2} of the Markov chain be

    \Gamma = \left( \begin{matrix} -\frac{7}{9}&\frac{7}{9}&\\ \frac{8}{13}&-\frac{8}{13}\\ \end{matrix}\right).

    By solving \pi \Gamma = 0, the stationary distribution \Gamma follows \pi = (\pi_1, \pi_2) = (\frac{8}{13}, \frac{7}{9}).

    Example 6.1. Take initial value (M_U(0), M_I(0), B(0), T(0)) = (1, 5, 3.5, 0.65) and

    \begin{matrix} \big(\beta(1), \beta(2)\big) = (0.0625, 0.061), & \big(\mu_U(1), \mu_U(2)\big) = (0.132, 0.08), & \big(\nu(1), \nu_(2)\big) = (0.03, 0.0225), \\ \big(\mu_T(1), \mu_T(2)\big) = (0.066, 0.042), & \big(\gamma_U(1), \gamma_U(2)\big) = (0.0878, 0.0867), &\big(\mu_B(1), \mu_B(2)\big) = (0.16, 0.15).\\ \big(\alpha_T(1), \alpha_T(2)\big) = (0.015, 0.0097), &\big(\mu_I(1), \mu_I(2)\big) = (0.0033, 0.002), &\big(r(1), r(2)\big) = (0.2667, 0.18), \\ \; \big(k_I(1), k_I(2)\big) = (0.0909, 0.08).&\; &\\ \end{matrix}

    Case 1. Choose \big(\sigma_1(1), \sigma_1(2)\big) = (0.03, 0.01), \; \big(\sigma_2(1), \sigma_2(2)\big) = (0.002, 0.001), \big(\sigma_3(1), \sigma_3(2)\big) = \big(\sigma_4(1), \sigma_4(2)\big) = (0.006, 0.005), then R_0^* = -1.873 < 0. By Theorem 4.1, we obtain that there exists a unique ergodic stationary distribution of system (1.3). Our simulations confirm these results: The sample paths of M_U(t), M_I(t), B(t), T(t), and their corresponding probability density function (PDF) are shown in Figure 1. Figure 2 shows the corresponding movement of Markov chain \big(\varpi(t)\big)_{t\geq 0} in the state space \mathbb {S} = \{1, 2\}.

    Figure 1.  The left pictures are the solutions to the determine model (1.3) and stochastic system (1.3) with noise \big(\sigma_1(1), \sigma_1(2)\big) = (0.03, 0.01), \; \big(\sigma_2(1), \sigma_2(2)\big) = (0.002, 0.001)\; \text{and}\; \big(\sigma_3(1), \sigma_3(2)\big) = \big(\sigma_4(1), \sigma_4(2)\big) = (0.006, 0.005). The right pictures show the frequency histograms and fitting density functions.
    Figure 2.  The movement of Markov chain \big(\varpi(t)\big)_{t\geq 0} of the state space \mathbb {S} = \{1, 2\}.

    Case 2. Choose \big(\sigma_1(1), \sigma_1(2)\big) = (0.3, 0.1), \; \big(\sigma_2(1), \sigma_2(2)\big) = (0.02, 0.01), \big(\sigma_3(1), \sigma_3(2)\big) = \big(\sigma_4(1), \sigma_4(2)\big) = (0.006, 0.005). Simple computation R_0^* = -1.7581 < 0. Then from Theorem 4.1 it follows that system (1.3) has a unique stationary distribution. Simulations are presented in Figure 3. By comparing with Figure 1, the numbers of M_U(t), M_I(t), B(t), \text{and}\; T(t) are largely fluctuated by the stochastic noises.

    Figure 3.  The left pictures are the solutions to the determine model (1.3) and stochastic system (1.3) with noise \big(\sigma_1(1), \sigma_1(2)\big) = (0.3, 0.1), \; \big(\sigma_2(1), \sigma_2(2)\big) = (0.02, 0.01)\; \text{and}\; \big(\sigma_3(1), \sigma_3(2)\big) = \big(\sigma_4(1), \sigma_4(2)\big) = (0.06, 0.05). The right pictures show the frequency histograms and fitting density functions.

    Case 3. Choose \big(\sigma_1(1), \sigma_1(2)\big) = (0.6, 0.2), \; \big(\sigma_2(1), \sigma_2(2)\big) = (0.5, 0.4), \big(\sigma_3(1), \sigma_3(2)\big) = \big(\sigma_4(1), \sigma_4(2)\big) = (0.9, 0.8). We can easily obtain R_0^* = 0.3042 > 0, we can not determine whether there exists an ergodic stationary distribution. From Figure 4, we can see that the disease of system (1.3) will be extinct in a long time. From Figures 1, 3 and 4, we can find that when white noise intensity \sigma^2(k) increases, infected populations tend to go extinct faster.

    Figure 4.  The left pictures are the solutions to the determine model (1.3) and stochastic system (1.3) with noise \big(\sigma_1(1), \sigma_1(2)\big) = (0.6, 0.2), \; \big(\sigma_2(1), \sigma_2(2)\big) = (0.5, 0.4)\; \text{and}\; \big(\sigma_3(1), \sigma_3(2)\big) = \big(\sigma_4(1), \sigma_4(2)\big) = (0.9, 0.8). The right pictures show the frequency histograms and fitting density functions.

    On the left column of Figure 5, the red, blue and green lines represent the sample paths of M_U(t), M_I(t), B(t), \text{and }\; T(t) , when there is only one state k = 1, k = 2 and switching between states k = 1, 2 . Similarity, On the right column of Figure 5, the red, blue and green lines represent the PDF of M_U(t), M_I(t), B(t), \text{and }\; T(t) . It is displayed directly that the green line is located between the red and the blue lines. That is to say the switching state is located between states k = 1 and k = 2 .

    Figure 5.  The left figures are the solution trajectories of M_U(t), \; M_I(t), \; B(t), \text{and}\; T(t). The right figures are the probability density function (PDF) of M_U(t), \; M_I(t), \; B(t), \; T(t) and their corresponding component-wise1, 2 or hybrid system.

    Example 6.2. We choose \big(\alpha_T(1), \alpha_T(2)\big) = (0.015, 0.0097), \; \big(\mu_I(1), \mu_I(2)\big) = (0.7, 0.8), \; \big(r(1), r(2)\big) = (0.05334, 0.04), \; \big(k_I(1), k_I(2)\big) = (0.3636, 0.32), and \big(\sigma_i(1), \sigma_i(2)\big) = (0.01, 0.02), \, i = 1, 2, 3, 4. Other coefficients are the same as in Example 6.1. By direct calculation, we derive R_0^E = -0.1032 < 0. Then the disease of system (1.2) will be extinct in a long time, which can be verified in Figure 6.

    Figure 6.  Simulations of stochastic solution (M_U(t), M_I(t), B(t), T(t)) for stochastic model (1.3), the corresponding noise intensities are \big(\sigma_i(1), \sigma_i(2)\big) = (0.01, 0.02), \, i = 1, 2, 3, 4 .

    This paper is devoted to studying a stochastic mycobacterium tuberculosis model, that is perturbed by white and colored noises. First, we show that the unique solution of system (1.3) is global and positive with probability one. In order to establish the existence of an ergodic stationary distribution, we construct a stochastic Lyapunov function with regime switching. Different switching parameters correspond to different peaks in the distribution function, and each peak represents the equilibrium value. Further, we can infer from Example 6.1 that large perturbations can change population dynamics, whereas smaller perturbations can lead to disease persistence.

    Some interesting topics deserve consideration. Such as considering mean-reverting Ornstein-Uhlenbeck processes, non-Gaussian Levy noise, and impulsive perturbations on system (1.2). We can also use the method of this paper to study other epidemic models. We leave these cases for our work.

    Ying He: Conceptualization, Investigation, Formal analysis, Writing – review and editing. Bo Bi: Formal analysis, Writing – review and editing, Numerical simulation. All authors have read and approved the final version of the manuscript for publication.

    This work is supported by Hainan Provincial Natural Science Foundation of China (No. 122RC679, 121RC554), Talent Program of Hainan Medical University (No. XRC2020030) and Northeast Petroleum University Special Research Team Project (No. 2022TSTD-05).

    The authors declare there is no conflict of interest.



    [1] World Health Organization, Global tuberculosis report, 2019. Available from: http://www.who.int/publications/i/item/9789241565714.
    [2] C. Gong, J. J. Linderman, D. Kirschner, A population model capture dynamics of tuberculosis granulomas predicts host infection outcomes, Math. Biosci. Eng., 12 (2015), 625–642. http://dx.doi.org/10.3934/mbe.2015.12.625 doi: 10.3934/mbe.2015.12.625
    [3] J. L. Flynn, Immunology of tuberculosis and implications in vaccine development, Tuberculosis, 84 (2004), 93–101. http://dx.doi.org/10.1016/j.tube.2003.08.010 doi: 10.1016/j.tube.2003.08.010
    [4] L. Ramakrishnan, Revisiting the role of the granuloma in tuberculosis, Nat. Rev. Immunol., 12 (2012), 352–366. http://dx.doi.org/10.1038/nri3211 doi: 10.1038/nri3211
    [5] E. Ibargüen-Mondragón, L. Esteva, E. M. Burbano-Rosero, Mathematical model for the growth of Mycobacterium tuberculosis in the granuloma, Math. Biosci. Eng., 15 (2018), 407–428. http://dx.doi.org/10.3934/mbe.2018018 doi: 10.3934/mbe.2018018
    [6] K. K. Wang, D. C. Zong, Y. Zhou, J. C. Wu, Stochastic dynamical features for a time-delayed ecological system of vegetation subjected to correlated multiplicative and additive noises, Chaos Solitons Fract., 91 (2016), 490–502. http://dx.doi.org/10.1016/j.chaos.2016.07.011 doi: 10.1016/j.chaos.2016.07.011
    [7] H. Zhang, W. Xu, Y. Lei, Y. Qiao, Early warning and basin stability in a stochastic vegetation-water dynamical system, Commun. Nonlinear Sci. Numer. Simul., 77 (2019), 258–270. http://dx.doi.org/10.1016/j.cnsns.2019.05.001 doi: 10.1016/j.cnsns.2019.05.001
    [8] H. Zhang, X. Liu, W. Xu, Threshold dynamics and pulse control of a stochastic ecosystem with switching parameters, J. Franklin. Inst., 358 (2020), 516–532. http://dx.doi.org/10.1016/j.jfranklin.2020.10.035 doi: 10.1016/j.jfranklin.2020.10.035
    [9] H. Qi, X. Meng, Threshold behavior of a stochastic predator–prey system with prey refuge and fear effect, Appl. Math. Lett., 113 (2021), 106846. http://dx.doi.org/10.1016/j.aml.2020.106846 doi: 10.1016/j.aml.2020.106846
    [10] Q. Liu, D. Jiang, Influence of the fear factor on the dynamics of a stochastic predator–prey model, Appl. Math. Lett., 112 (2021), 106756. http://dx.doi.org/10.1016/j.aml.2020.106756 doi: 10.1016/j.aml.2020.106756
    [11] N. H. Dang, N. H. Du, G. Yin, Existence of stationary distributions for Kolmogorov systems of competitive type under telegraph noise, J. Differ. Equations, 257 (2014), 2078–2101. http://dx.doi.org/10.1016/j.jde.2014.05.029 doi: 10.1016/j.jde.2014.05.029
    [12] N. H. Du, R. Kon, K. Sato, Y. Takeuchi, Dynamical behavior of Lotka–Volterra competition systems: non-autonomous bistable case and the effect of telegraph noise, J. Comput. Appl. Math., 170 (2004), 399–422. http://dx.doi.org/10.1016/j.cam.2004.02.001 doi: 10.1016/j.cam.2004.02.001
    [13] N. Bacaër, M. Khaladi, On the basic reproduction number in a random environment, J. Math. Biol., 67 (2013), 1729–1739. http://dx.doi.org/10.1007/s00285-012-0611-0 doi: 10.1007/s00285-012-0611-0
    [14] Y. Takeuchi, N. H. Du, N. T. Hieu, K. Sato, Evolution of predator–prey systems described by a Lotka–Volterra equation under random environment, J. Math. Anal. Appl., 323 (2006), 938–957. http://dx.doi.org/10.1016/j.jmaa.2005.11.009 doi: 10.1016/j.jmaa.2005.11.009
    [15] L. Wang, D. Jiang, Ergodicity and threshold behaviors of a predator–prey model in stochastic chemostat driven by regime switching, Math. Methods Appl. Sci., 44 (2021), 325–344. http://dx.doi.org/10.1002/mma.6738 doi: 10.1002/mma.6738
    [16] R. Z. Has'miniskii, Stochastic stability of differential equations, Alphen aan den Rijn, The Netherlands, 1980.
    [17] X. Mao, C. Yuan, Stochastic differential equations with Markovian switching, 2 Eds., London: Imperial College Press, 2006.
    [18] Q. Liu, The threshold of a stochastic susceptible-infective epidemic model under regime switching, Nonlinear Anal.: Hybrid Syst., 21 (2016), 49–58. http://dx.doi.org/10.1016/j.nahs.2016.01.002 doi: 10.1016/j.nahs.2016.01.002
    [19] L. Zu, D. Jiang, D. O'Regan, T. Hayat, B. Ahmad, Ergodic property of a lotka-volterra predator-prey model with white noise higher order perturbation under regime switching, Appl. Math. Comput., 330 (2018), 93–102. http://dx.doi.org/10.1016/j.amc.2018.02.035 doi: 10.1016/j.amc.2018.02.035
    [20] K. Qi, D. Jiang, The impact of virus carrier screening and actively seeking treatment on dynamical behavior of a stochastic HIV/AIDS infection model, Appl. Math. Model., 85 (2020), 378–404. http://dx.doi.org/10.1016/j.apm.2020.03.027 doi: 10.1016/j.apm.2020.03.027
    [21] X. Li, D. Jiang, X. Mao, Population dynamical behavior of lotka-Volterra system under regime switching, J. Comput. Appl. Math., 232 (2009), 427–448. http://dx.doi.org/10.1016/j.cam.2009.06.021 doi: 10.1016/j.cam.2009.06.021
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(555) PDF downloads(44) Cited by(0)

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog