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Abstract: This paper is concerned with a stochastic Mycobacterium tuberculosis model, which is
perturbed by both white noise and colored noise. First, we prove that the stochastic model has a unique
global positive solution. Second, we derive an important condition R; depending on environmental
noise for this stochastic model. We construct an appropriate Lyapunov function, and show that the
model possesses a unique ergodic stationary distribution when R < 0, in other words, it indicates the
long-term persistence of the disease. Finally, we investigate the related conditions of extinction.
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1. Introduction

Tuberculosis (TB), caused by mycobacterium tuberculosis (Mtb), remains one of the leading
causes of death worldwide, surpassing even acquired immune deficiency syndrome (AIDS) [1,2].
Approximately 25% of the global population carries Mtb, with most progressing to latent infection.
This latent state can persist for life or re-emerge as active disease, underscoring the need to understand
Mtb-host dynamics. As a result, many studies were dedicated to exploring these interactions [3,4]. For
instance, Ibarguen-Mondragon et al. [5] proposed a mathematical model describing the growth of Mtb
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populations:
dM o
dtU = Ay —uyMy — BBMy,
a, -
- BBMy — arM;T — uMj,
4B . B\ o . (1.1)
E = 77,UIM[ + U(l - —)B - 7uMuB —,UBB,
dr - _ _
Sy (1 - )M —uy T
ar 1 T, 1~ Mr

Here, My (f), M;(t), B(t) and T(¢) represent the population densities of normal macrophages, infected

macrophages, extracellular Mtb and T cells, respectively. Some main parameters of system (1.1) are
summarized in Table 1.

Table 1. Some main parameters of system (1.2).

Parameter Description

Ay The recruitment rate of normal macrophages

K The carrying capacity

v The intrinsic reproduction rate of Mtb population
Uy The death rate of normal macrophages,

Uy The death rate of infected macrophages
Up The death rate of Mtb
ur The death rate of T cells
r The average number of bacilli produced by an infected macrophage
B The infected rate of normal macrophages by Mtb
ar The eliminated rate of infected macrophages by T cells
Yu The eliminated rate of Mtb by normal macrophages
k; The recruited rate of T cells
T ax The maximum T cell population

To simplify the model, they introduce the following change of variables:
M M T
= v . MI = ! N .
Ay/py N Tinax
Replacing the new variables, the system (1.1) becomes
dMy

dt

dM,
d_ :ﬁBMU - QTM[T _ﬂIMl,

t (1.2)
dB |

= I”M] +U(1 - B)B—’}/UMUB—/,LBB,

MU T =

B
K’

= py — puyMy — BBMy,

dr
dr
— =k;(1 -=T)M; — us7T,
dr 1( M) — ur

where -

r AU k[AU
—Hi—, kp = .
K" py Hu

_ _ _ Ay
ar = @rTyax, B=PK, yy = ')’U'u_, r=
U
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In ecosystems, many of the main parameters are affected by environmental white noises such
as drought-fire interactions and species invasions, and therefore should generally display stochastic
disturbances [6—10]. Stochastic models have been widely employed to capture the dynamics of various
infectious diseases, including measles, malaria, tuberculosis, smallpox, and AIDS. However, few
stochastic models have explored the impact of Mtb growth on infection outcomes.

However, the majority of ecosystems will eventually change due to many natural elements like
temperature, precipitation, and PH. Furthermore, we see that during the warm season, the recruitment
and death rates of both healthy and infected macrophages will change significantly from those during
the cold season. Similarly, changes in nutrition or food resources commonly impact the intrinsic
reproduction rate. Colored noise (or telegraph noise) is often used to describe the transition between
different environmental states, such as from the rainy season to the dry season. The switching is
memoryless and the waiting time for the next switching is exponentially distributed. Therefore,
a continuous-time Markov chain @(z), + > 0 with finite-state space S = {1,2,---,N} is used to
represent random switches between environmental states [11-15]. Taking into account the sensitivity to
environmental states, let us investigate time-varying parameters with various discrete values affected
by colored noises. We will consider time-varying parameters influenced by both white and colored
noise and introduce this noise into system (1.2) as follows:

dMy = [Mu(W(t)) — uu(@())My —ﬁ(W(t))BMu]dt + o (w())MydB (1),
dM; = [ﬁ(w 0)BMy — ar(w()M,T - ﬂz(W(t))Mz]dt + o (@ (N))M;dBy (1),

(1.3)
dB = [r(w(r))Ml + w(@®)(1 - B)B — yu(w(t))MyB — uB(W(t))B]dt + o3(w (1) BdBs (1),

dT = [k,(wa))(l ~T)M, - NT(W(I))T]dt + (@) TdBy(1),

where B(t), By(t), Bs(t) and B4(f) are mutually independent standard Brownian motions and the

Markov chain @w(¢), ¢+ > 0 with values in a finite state space S = {1,2,---,N}. We assume that

Brownian motion and Markov chain are independent. The generator matrix I = (y;;)nxn of the Markov
chain is given by

PIL(t + A1) = jlao(n) = i} = {”JA”O(“)’ N

1 +vyuat+o(ar) if i =,

N

where At > 0,vy;; > 0 denotes the transition rate from i to jif i # j while )] y;; = 0. In addition
j=1

(@ (1))»0 1s irreducible and has a unique stationary distribution & = (my,m,, -+ ,my) satisfying the

N
conditions 7" =0, >, m, = 0.
k=1
This paper aims at establishing some criteria for the existence of ergodic stationary distribution and

extinction of mycobacterium tuberculosis model, which is almost a void in this area. As far as we know,
this type of model has received little attention. There is not much research on the stochastic epidemic
model in the literature because of how difficult it is to handle discrete Markov switching and remove
linear perturbation terms. Unlike deterministic models, it is difficult to analyze the disease persistence
and extinction of system (1.3) because of the stochastic fluctuations of each compartment in disease
transmission; the stable equilibrium of system (1.3) will no longer exist. In this way, analyzing the
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persistence and extinction of tuberculosis disease is a challenging task. We will provide the relevant
threshold dynamics and ergodic properties of the system (1.3) to the best of our ability.

The structure of the paper is organized as follows: Section 2 introduces necessary notations and
auxiliary lemmas. Section 3 investigates the conditions for the existence and uniqueness of a global
positive solution to system (1.3). Section 4 applies stochastic Lyapunov methods to establish the
ergodicity and positive recurrence of the stochastic Mtb model under regime switching. Finally, we
derive the sufficient condition for extinction.

2. Preliminaries

In this section, we will introduce three important lemmas for the subsequent dynamical analyses.

Lemma 2.1. (Has’minskii [16]) Assume that for any i # j € S, such that y;; > 0. If the following
conditions are satisfied:
(I) For any k € S and for all Y € R", C(Y, k) is symmetric and

plnf < "CYkm < p'lgf forall £ eR"

with some constant p € (0, 1].

(IT) There exists a nonempty bounded open set U € R"” with compact closure, satisfying that, for each
k € S, there exists a nonnegative function V(- ,k) : U° X S — R such that V(-, k) is twice continuously
differentiable and for some o > 0,

LV(Y,k)<-o0 (Y,k)e U xS,

then the solution (Y (#), @w(¢)) of system (2.1) is positive recurrent and ergodic. It shows that (Y(7), @(t))
has a unique stationary density u(-, - ), and for any Borel measurable function ¢(-,-) : R" X S — R”
such that 3, [ l¢(y, k)lu(dy, k) < oo, we have

keS

1 t
pltim [ oo atonds =Y [ et b} = 1.

keS
Then, the ergodicity of Markov chain @(- ) implies that lim % fot e(@(s)ds = Y mp(k) a.s.
1—00 keS

Lemma 2.2. The following linear system

N
B + cxv(k) = &1 (s k) + > yagi(D = 0,
=1

N
Yo®) = g2y )+ yuga(l) = 0, (22)
=1

N
ar(k) = ga(Kpr() + Y yugs() = 0, k=1,...,N,

=1
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where

3
N
(E. muluy (OB’ )

c2 = 2
N N
(El nkml(k>+;rr§(k>))(kgl nkw3<k>+§cr§<k»)

then (22) haS a unique SOIution (g1(1)9 T, gl(N)a g2(1)’ ot ’gZ(N)’ g3(l)a et ’g3(N))T > 0

Proof. System (2.2) can be rewritten in the following form,
AG = H,

where G € R, H = (B(1) + cou(1),- -+ ,B(N) + cou(N), vy (1), -+ ,yu(N), ar(1),--- ,ar(N))! and

ps(l) =y - YN 0 0 0 0
~YNI woo pu(N) = yan 0 0 0 0
0 0 o) =y - YN 0 0
A= : : : : : : : ; :
0 0 —~Yn1 o puN) —ynN 0 0
0 0 0 0 ur(D) —yi - —yin
0 0 0 0 —~YN1 o pur(N) = ynn

Clearly, A € Z*V3N Foreach k = 1,..., N, consider the leading principal submatrix

up(l) —yi1 —Y12 T —Yik
—Y21 up(2) =y - —Y2k
Ak = . . . . 5
Ykl —Yi2 e up(k) = Yik
(L) =y - —YIN 0 0
Ayar = —YN1 <o up(N) —ynn 0 e 0
' 0 0 po() =y - ~Yik ’
0 .- 0 —Yk1 o py(k) = Y

AIMS Mathematics Volume 9, Issue 11, 30686-30709.



30691

and
up(D) =y - —yin 0 0 0 0
~YNI =+ up(N) = ynNn 0 0 0 0
0 0 pu) =y - —YIN 0 0
Aok = : : : : : : : :
0 0 —YN1 =+ Hu(N) —ynN 0 0
0 0 0 pr() =y -+ Yk
0 0 0 0 ~Yki o (k) = Vi

Obviously, Ay, Ay Aansx € Z*. Additionally, each row of submatrix A; has the sum

k N
ua(i) = D vy =@+ Y vy Z s> 0, =1,k
j=1

j=k+1
For submatrix Ay,

N

pa(i) = D7y = pa(i) > 0, if 1<i <N,

. . =1
the sum of its ith row = /

k
pu() = > vy 2 i) > 0, if N<i<N+k.
=1

And for submatrix Ay,

N
up(i) - Zyij = up(i) >0, if 1<i<N,
=1

N
the sum of its ith row = {py()) = Y vy = (@) > 0, if N <i <2N,
=1
k
pr()) = > vy 2 pr(@) > 0, if 2N <i 2N +k.

J=1

By applying Lemma 5.3 of [17], we get detA; > 0,k = 1...,3N. In other words, we’ve shown that
all the leading principal minors of A are positive. Using Theorem 2.10 in [16] indicates that A is
a nonsingular M-matrix and for the vector H > 0 € R3", the linear Eq (2.2) has a unique solution
G = (gi(1), -+, g1(N),g2(1), -+, g2(N), g3(1),--- , g3(N))T > 0. On the other hand, by system (2.2),
we can easily observe that g;(k), g,(k) and g3(k) should be positive, k = 1,..., N.

Lemma 2.3. ([18]) Let Z(¢) be the solution of the auxiliary stochastic differential equation
dZ(t) = |py(@(1) — py(@ () Z(1) |dt + o1 (@ (1) Z(1)d B (2),
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with the initial value Z(0) = My (0) > 0, Then My (t) < Z(¢) for any ¢ > 0, a.s. Moreover, (Z(t), @w(?)) is
positive recurrent and has the following property:

1 [ al
lim fo (Bt + exveon s = )" mptw 1) as.
k=1

where

3
( 3 mlu®phri} )
2= — . 5, 81(k) = (g1(1), -+, g1 (V)"
(kgl nsz(k)+;o§<k)))( b ”k(llB(k)"'%O'%(k)))

is determined by the following linear equation
N
B + cxv(k) = &1 (Rppu () = Y yugi (D, k=1,...,N.
I=1

3. Existence and uniqueness of the global positive solution

When studying the dynamical behavior of an epidemic model, it is important to consider whether
the solution is global and positive.

Theorem 3.1. For any initial value (My(0), M,(0), B(0), T(0), £(0)) € Rﬁt X S, there exists a unique
solution (My (1), M((1), B(t), T(t), @(t)) to system (1.3) on z > 0 and the solution will remain in RY x S
with probability one (a.s.).

Proof. Since the coefficients of (1.3) satisfy the locally Lipschitz continuous condition, thus the
system (1.3) has a unique local solution (M (¢), M,(¢t), B(t), T(t), @w(t)) € Rﬁ xSont e [0,7,.], where T,
is an exposure time. Next, we claim that the solution is global, i.e 7, = +0c0. Similar to the proof of Zu
et al. [19] and Liu et al. [20], we will only show the key step is to construct a nonnegative Lyapunov
function Q : R* — R, satisfying

LOy(My,M;,B,T) <0,

where O is a positive constant. Define
Oo(My, M, B,T) = aMy —b1n My —b(1+In ;—1)+aM1—dlnM1—d(1+lng)+B—1—lnB+T—1—ln T,

where a, b and d are positive constants to be defined later. Based on the basic inequality u—1-Inu > 0,
for any u > 0, we have

M M
Rl A P

b bU)ZO, for anya, b > 0.

aMy —bln My — b(1 +lng) = b(

Making use of It6’s formula to Qj, we obtain

dQo(My, M;, B,T) = LQodt + (aMy — b)o((w(1))dB (1) + (aM; — d)o»(w(1))d B, (1)
+ (B = Dos(@()dB3(1) + (T — Dou(w(1))dBs(1),
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where LQ, : R* — R is defined by

bﬂMU(k) + by (k) + bB(K)B — aar (M, T - au (k)M

b
LQy(My, My, B,T) = auy(k) — apy(k)My + za%(k) -

L4 dB(k)BMy
I

~ k)8 + 503 k)~ "M

+dar(K)T + duy(k) + r(k)M; + v(k)B — v(k)B* — yy(k)My B

—v(k) + v(k)B + yy(k)My + pp(k) + ki(k)M; — ki (k)T M;

k (k)M
— ur (T + Ecr4(k) - 7 !

+ ki (k)M + pr (k)

< (b - ip)B + sup{—aB2 + zmé} + ( —af i+ 212,)M, + ( — afiy + «yU)MU
BeR,

(d(xr - ,uT)T + (a+ b)uy +diy + g + fir + 2(ba'1 + dO'2 + 0'3 + 0'4)

Choose a = max{’+21k’, Ly b= fg d = £, such that —ay; + ¥ + 2k, <0, —ajly + ¥y <0, then,

LQO, < Sup{ OB* + 2uB} +(a+ by +diy + fig + fir + 2(bal +dos + 03+ &i)
BeR .,

=0,

where O is a positive constant. The following proof is almost the same as those in Theorem 2.1 of Li
et al. [21]. Hence, we omit it here.

4. Ergodic stationary distribution
In this part, we demonstrate the existence of a unique ergodic stationary distribution, which suggests

that the virus is widespread, based on the theory presented in Lemma 2.1.
Define the critical condition

N 3
( £ mtuutopioro! y 1
Ry=— + ) Mo (k) + 50 (K)
( 2 mtuti + (rg(k)))( X m(us) + 3o3kp)
1 N
+ 7 2 ki) + o Z mept ()ga (),
k=1 k=1

where g(k) = (gi(k), g2(k), g3(k))T is the solution of the linear system (2.2) and c, is defined in
Lemma 2.2.

Theorem 4.1. If R} < 0 and &5 < 20y, &5 < fi;, &5 < 2 are satisfied, then for any initial
value (My(0), M;(0), B(O) T(0),£(0)) € R* x S, the solution (M (t), M;(t), B(t), T(t)) of system (1.3)
is positive recurrent and has a unique ergodic stationary distribution ¢(-, - ).

Proof. Since the diffusion matrix

C(Y, k) = GV, )GT (Y, k) = diag(a2(k)M?,, o2(k)M?, 0(k) B>, o2(k)T?)
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is positive definite, which implies that condition (I) in Lemma 2.1 is satisfied. Next we will prove the

condition (IT) holds. Define a C*>—function Q : R* x S — R as follows:

O(My.M,.B.T.k) = Mo( —1In My — ¢ In My — ¢ In B + g1(K)B + 282000 My + c1g5(K)T + a)(k))

1 g, BV
—IHMU—IHB—IHT+—MU+M[+—VB+ —T1] .
2 ar 4k,

It is clear that there is a unique point (My(k), M(k), B(k), T(k),k), which is the minimum value of
Q(My, M;, B, T, k). Define a nonnegative C*>— function Q : R X S — R in the following from

O(My,M;, B, T, k) = Mo( —InMy —ciInMj = c2In B + g1(k)B + c282(k)My + ¢183()T + w(k))

1 ) TR o
—InMy-InB-InT + E(MU + M+ %B + fk’ T) — Oy k), My(k), B(k), T(kK),k)
r 1

= MO(QI + O+ w(k)) + Qs + Qs — Q(My(k), M(k), Bk), T(k),k),

where (My, M;,B,T,k) € (i,n) X (i,n) X (i,n) X (i,n) X S, and n > 1 is a sufficiently large integer,
Q] = —lnMU - C1 11'1M1 - ClelB, QZ = gl(k)B + ngz(k)MU + C1g3(k)T, Q3 = —thU —InB- lnT,

Q4 = %(MU + M+ 2B+ fTT) and

N . 3
( 2 mtuo @Bt}
k=1
¢ =— — , (4.2)
(2 mGu + o300 ( £ mtusth + 130
k=1 k=1
N | 3
( 2 mtuo@ptoron?)
) = =l (4.3)

N N 2
(zmwmﬁﬁw%zmw®+ywm
k=1 k=1

g(k) = (81(1)’ e ,g](N), gZ(l)a R gZ(N)’ g3(1)7 ) 83(N))T, is the unique solution of SyStem (22)’

w(k) :== (w(1),--- ,w(N))T will be determined later and M, > 0 is a sufficiently large number satisfying
the following condition,

MoR; + C < -2, 4.4)
where

. y U fi | I L.
C= sup {(ﬂ +U)B + yyMy - 5(4%)33 - 1(2,“[/ - FM}, - Z(ﬂl - 55)M;
(My.M;,B.T)eR* r
1 LT\ 1
- —(2fx —VZ(—V) +E + iy + [ig + [1 +—(V2+V2+V2)}.
4( fr — 07y) I Hy + Up + Ur 3 01 T03 10y

AIMS Mathematics Volume 9, Issue 11, 30686-30709.
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Applying the 1t6’s formula to Q; and Q,, we have

k 1 kKBM
L0, = —“jjU) + k) + BB + 303(K) - %

Czl"(k)M]

|
+ erap (T + cl(ul(k) + 5ag(k))

1
— cu(k) + (B + cryu () My + Cz(#B(k) ¥ Ecr%(k))

(4.5)

. 1 1 1
< —3ereang OB + cl(ul(k) + 5(’3(")) " Cz(llB(k) " §a§<k)) + k) + 5070
+ (B(k) + cou(k))B + crar (k)T + cyyy(k)My
and

N
LO, = gl(k)[r(k)Ml +v(k)(1 = B)B — yy(k)MyB _,UB(k)B] + Z Yug1 (DB + ngz(k)[,UU(k) — uy(k)My
=1

N N
= BIOBMu |+ 2 )" yuga(DMy + c1gs(0)| iK1 = TIMy = ur(OT | + 1 Y yuags )T

=1 =1

N
< cigs(Oki(OM; + 1R OM; + g1 (k1 - BYB + cagalu(0)] = s + Y vugiD]B
=1

N N
r ool ap® + Y yued My + o - 1 @s® + Y sd|T,
I=1 =1

(4.6)
where g;(k), g,(k), g3(k) are defined in Lemma 2.2. In view of (4.5), (4.6) and dx — ex* < ff—z (e >
0), Vx e R, we obtain

3 1 1
L(O) + 05 + w(k)) < ~3er1cam0 BRI + cl(m(k) + Eai(m) ¥ Cz(,UB(k) ¥ Eaé(k)) + (k)

1 1 N
+ Ecrf(k) + (ClgS(k)kI(k) + gl(k)r(k))Mz + Zv(k)gl(k) + g (K)py (k) + Z Yiaw(l)
=1

N N

B0 + 200 = s+ Y g (D[ + 2 yoh) = o g0 + Y yuaga)| Mo
=1 =1

4.7)

N
+ 1o = ur0gs) + Y yugs [T

=1

N
= Roth) + (cnsla + 21 M+ )y,
=1

where Ro(k) = —3 /cicana (OBITR) + cl(,uz(k) + gag(lo) + Cz(llB(k) ¥ %(r%(k)) Ty + Lo (k) +

Ju()g1(k) + c2g2(k)py (k).
Since the generator matrix I' is irreducible, for Ry = (Ry(1),..., Ro(N))T, there exists w =
(w(l),..., w(N))T satisfying the following Poisson system

N
Tw = (Z ﬂkRo(k))f - R(),
=1
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which implies that
N N
Ro(k) + " yiaw(D) = > meRo (k).
=1 =1

Substituting this equality into (4.7)

N 1 N N
Qi+ Qs+ k) <=3 mfcrcamu®BRIr®) +er D el + 5036)) 402 3 muath) + 3030
=1

— k=1 k=1
N 1 1 N N .
Y o ® + 303®) + 7 3 R+ e Y meapo® + ek a3
k=1 k=1 k=1
= RZ+(C1§37€1+§17‘)M].
Employing the It6’s formula to Q3 and Q4, one has
(k) 1 k)M
LQ; = —“]‘(4 +puk) + UOB + S0l (k) - = L — (k) + v(k)B + yy(k)My
U
1 k; (k)M 1
+ up(k) + 5a§(/<) - - Ly k(M + pr(k) + Eaﬁ(k) (4.9)
(i M, kM, y 1
< KU T T (Bt 9)B + YuMy + kM + fiy + fip + i + =0+ 52+ D)
My B T 2
and
27 iy i 27
L0y = (My+ My +£LB+ £ T)[ﬂu(k) — 1 OMy — arOMT - (oM, + ELrtom, + ELuB
2 4k, 47 47
i M 27 i i 27
— B — By My B — ELus(0)B + Lk, (M, — Zl k(M T — 25 14,(0)T
47,1}( ) 4?)/U( YMy 4;,#3( ) 4k, (k)M 4k, (k)M 4k1ﬂT( )
) . A
+ —(af(k)Mg + 20M? + (P20 + (“—f)zaﬁ(k)TZ)
2 47 4k,
i iy . J152% oo 5 i frfir ]
<\My+M;+—B+—T + B - B - jgayMy — —M; - ——T
—(U VTR )[“U ar - " ap D TRV TR T
1/. . o, ir o
+5(otmg + i + GLPoE i 57
v /:11 ﬁl ﬁlb ﬁl ﬁ[ A /:11 2 3 1 N ) 2
=fy|My+M;+—B+——T|+ B\My+M;+—=B+——T)-0(—=)B - =iy -d))M
,UU( U I a5 A ) a7 ( U I 47 A%, ) U(4?) 2( Hu 0'1) U
1 1 T\ 03 (B
oo Sew o3+ S(42)
2(#1 0'2) I 2( M1 0'4) A > \ a7
P 1 1. . 1, (T2
< =3 (GB - 3@~ DMy = 3 = M - 10 - ()
(4.10)
where
. iy i v 27 i U firo 3
E = su { My+M;+—=B+—T)+—BMy+M;+—=B+—T)-=(—=)B
(MU’MI,ET)EM RO 52 0k g VTR R > (&)

1 1 1 LT\ O3B\
— Ry - FHIM?Y - =(p; — FM? — - (20 —“2( ; ) +—3(—)}.
4( Hu 0'1) U 4(/11 05) My 4( Hr — Oy 4%, > \ 47
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It follows from (4.8)—(4.10) that

. Dy Ly Qv M kM,
LO < MyR +[M k; + +k]M—————
9 oR, o(c183kr + &17) + ki | M M, B T

+(B+V)B+yuMy
+ iy + fig + fir + (0'1+0'3 0y) —

.UIT
S L
( M1 AL

1

247

i N Lo
( ~YB 3——(2 U%)Mé—z(ﬂl—o'z)Mzz

Next, we construct a compact subset U such that the condition (I) in Lemma 2.1 holds. Define the

following bounded set

1

1 1 1
U={My,M,B,T)ER: : e<M;<—,e<My<-—,e <B<— 62<T<—2},
€ € 6 €

where 0 < & < 1 is a sufficiently small constant. In the set R? \ U = U® we choose ¢ satisfying the

following condition
[M0(01§37€1 + 81F) + 7(1]8 <1,

min{ﬁU? ?,]%I}

&

+D< -1,
| P
—@(/11—0'2)+DS—1,

|
—@(2/,[[] —0'%) +D < —1,

A2
oYy
40\ 4F
| /4
— 2y - )+ D < —1,
884(4k1) (2t 0-4)

where

D= sup {[Mo(01g3k1 +817) + kI]MI + B+ VB +yuMy - 1(4) B - —(2,UU

(My,My,B,T)eR:

1, . 1, _. oo T .
- g(,ul - O-Z)MIZ - §(2/1T - 0-4)('L:_]v€) + E+ iy + fip + fir + (0'1 + 0'3 0’4)}-
1

For convenience, we can divide Ri \ U = U€ into eight domains,

U ={(My,M;,B,TYER! : 0< M, <&}, Dy ={(My,M;,B,T)€R:: 0< My <&},

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

M,

Us = {(My,M;,B,T)eRY : 0<B<&’, M;>&}), Uy={(My,M;,B,T)eER} : 0<T <&’ M; > &},

1 1

U5 = {(MU,MI’B’ T) € Ri . MI > ;}’ U6 = {(MU’MI’ Ba T) € R:‘- : MU > g}’
1 1

U; = {(My,M;,B,T)eR} : B> ;}, Ug = {(My,M;,B,T)eR} : T > =)
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Obviously, US=U,UU,UU;UU;UUsUUgU U; U Usg. Next, we will prove that
LO(My,M,;,B,T,k) < -1, forany (My, M,;,B,T,k) € U xS. (4.17)
Case 1. For any (My, M;, B, T,k) € U, X S, according to (4.4) and (4.11), we obtain that

LQ < MyR; + [MO(C1g3kI +817) + kI]MI + B+ U)B+yyMy - 5(4)33 - —(Z,UU My,

1 . 1 o fiuT . . . 1/. . .
—Z(ﬂl—o'z)Mzz—Z(ZMT—Ou)(T]vq) +E+/~1U+,UB+,UT+§(O-%+O-§+ 42;)
< M()Rz; + [Mo(Clgﬂ\é] + gll\’/‘) + ]2]]8 +C

<-1

Case 2. For any (My, M;, B, T, k) € U, X S, in view of (4.12), we can obtain

A

LQ < —1/;1— + [MO(ClgSkI +817) + kI]MI + B+ U)B+yuMy - 5(4)33 - —(Z.UU FHM,
L. o n 1. (T Lis o0 2
—Z(ﬂl—o'z)Mz—4—1(2,UT—0'4)(4]VC ) +E+#U+MB+,UT+2( oyt+o3+ 4)
1
<M .ip
P>
<-1

Case 3. For any (My, M;, B, T, k) € Us X S, according to (4.12), we can deduce that

"M,
LI0<-—1+D
C=<-7

A

p

<-—-+D
&

<-1

kM,
LO < - D
0= T
ki
<-—+D
E
<-1

Case 5. For any (My, M;, B, T,k) € Us X S, in view of (4.13), we can deduce that

1, 1. Uy ey . 5
LO < __(:“1 - 0'2)MI2 - g(ﬂl - (Tz)M12 + [MO(Clg3kI +8iF) + kI]MI +(B+0)B+yyMy
uzzglszzlAv(ﬂzT)z 1( 22)
- —Qpy -o)M;, — =Qpar - )\— | +E+fwy + g+ iy + + 035+
2(4v) 4(:“U FMy 4( fir — %) A Hu* Hp+ A7+ 5101+ 03+ 0y
TN |
S—g(ﬂl—ﬁz);+D
<-1.
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Case 6. For any (My, M;, B, T, k) € Ug X S, by condition (4.14), we can conclude that
1
LQO < —g(zﬁU - 5O)MG + D
| v 2
< —@(2,&1] -0 +D
<-1.
Case 7. For any (My, M;, B, T, k) € U; X S, in view of (4.15), we obtain that
U 23
LO<——(=)B +D
v
—

= 4547
< -1.

)2+D

Case 8. For any (My, M;, B, T,k) € Ug X S, from (4.16), it is deduced that

1 T2
LO < ——Qfir — &2 (—) +D
8( HT 4 na
L (fu )2
< ——— 20r — O +D
<-1

Then the assertion (4.17) is verified, i.e., condition (II) of Lemma 2.1 holds.

5. Exponential extinction

Define
1 & N Lkrk) 1 & a(k) (k)
E _ - 2 3
Ry = o ;:1 Ty (k)gi (k) + k; i 0 +u(k)) > k; ﬂk[( > +,U1(k)) /\( > +,uB(k))],

3
N
(El muluu (OB’ )

k)+cou(k k k
where [;(k) = Hrar® gy = Ml ) o (

and g,(k) is the

=

N
1”"(""("”5(’5("”)(% nk(ug(k)+%cr§<k>>)

k

solution of the linear system (2.2).
Theorem 5.1. Assume that Rg < 0 for any initial value (My(0), M;(0), B(0), T(0),£(0)) € R x S,
the solution (My (), My(¢), B(t), T(t), @w(t)) of system (1.3) will follow
1
lim sup — In (ll(w(t))MI(t) " lz(w(t))B(t)) <RE <0,
[—00

which means that the disease of system (1.3) will exponentially go to extinction with probability one,

where
B(@ (1)) + cou(w (1)) B(@ (1)) + cou(w(t))
) = l = . 5.1
(@ (1)) Bo() , (@ (1)) 2@ ®) (5.1)
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Proof. Define a C*>-function H : R* X S — R as follow,
H(M,, B, w (1)) = Li((w()M; + L(w(1))B.

Employing Itd’s formula to H and applying (5.1), one has

1

dInH(r) = [ (@M, + (@)B [11(W(t))ﬁ(W(t))BM v = li(@@O)ar(@O)M;T — (@) (@ ()M,

+ L(@(O)r(@()M; + L(@@)u(@(1)B - L(@®)u(@(1)B* - L(@()yyy(@(t)MyB

K@)o3(@O)M; + L(w(1)o3(w(1) B ds
2

- lz(w(f))ﬂB(W(f))B]df -
2(11(W(t))M1 + lz(zv(t))B)

o (@)L (@ (D))M; dBy(1) + a3(@()(@(1)B dBA(7)
L(@®)M; + L(w(1)B L(@(O)M; + L(w(1)B

1 1
[E(ﬂ(W(f)) + ou(@(1))BMy + L(@O)r(w ()M + L(w(1)v(w(1)B

= (@M, + L(@®)B
2 2 2 2 2 2
- W@ (@M = b (O)us()BJd - W@O)T@OM; + L) @)E

2
2(11(w<r>)M1 ¥ lz(w(f))B)
+ oy (@(1)dBa(1) + o3 (@(1)dBs ).

We use the following relationship,

1
F(B@(1) + cu(@(1)BMy 1
2

LM+ L(w@)B 2, ) T

L@®)r(@®)M; _ L@®)r(@®)
L@O)M; + L(@(@)B —  Li(w(1)

h(w()v(@(1))B
L(@®)M; + L(w()B

oM, :_ll(m(t)),ul(w(f))Ml(ll(W(I))Ml+12(1U(t))B) @t
h(@O)M; + b(@(0)B

< v(@(1),

2 - 27
(ll(w(l))MI + (@ (0)B) (h(w(r))M, + lz(w(r»B)

| h@oum@os @ us(@ (B @ 0)Ms + L@ 0)5) B
L(@@)M; + b(@(O)B

2 - 2
(1@ @)y + lz(zU(t))B) (h(w(r)m ¥ lz(w(l))B)
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then,

L(@®)r(w(1))

A (w(1))
2
) 1 [(‘fz(w(”) + (@) (@M

2 2
(h(w(r))M, + lz(w(f))B)

o3 (@ (1))
* ( 2

1
< 2—i2(,8(w(t)) + czv(w(t)))MUdt + [

dinH(r) < %(ﬁ(m(t)) + cou(w(1))))Mydt + [ + v(w(t))]dt
2

+ ﬂB(w(t)))(lz(w(t))B)z]dt + oa(w(1))dBy (1) + o73(w(1))d B3 (1)

L(@(D)r(w(1))
—ll(w(t)) + v(w(t))]dt

2 2 2 2
_ (h(@O)M)” + (lz(w(t))Bz) [ 02(7;0)) - t))) \ (%(Zr(t))
(h(w(r))Ml + lz(w(t))B)
+ oo (@O)dBa(0) + o3 (@ (1) dBs(1).

(5.2)

+ (e () o

Integrating from O to ¢ and dividing t on both sides of (5.2), we have

InH() - InHO) _
t

[
212 f (BL(9)) + c2u(f())))My(s)ds + — fo [% v({(s))|ds

—%% fo [(”2(§(S))+ul<§(s»)A( g(g( ))+,u3({(S)))]ds

1 (" L[
+;foJz(é”(s))de(S)+—fO'S({(S))d&(S)

11 LE(s)r(s))
<3 f (BE(9)) + v ()))Z(s)ds + ~ fo [—11@( [ UL |ds

= fo I 2(4;( ))+u1(§(s)))/\( §<g< ))+MB(§(S)))]ds

1 [ 1 [
+;f0Gz({(S))de(SH;fO03(4’(5))st($)- (5.3)

By Lemma 2.3, we have

1 N
lim 7 f (BUL(9)) + c2u(&(s)))Z(s)ds = Z ity (k)g1 (k).
Using the strong law of large number for local martingale, one has
I 1 [
lim m f 02({(5))dB(s) =0, lim " f 03(£(5))dBs(s) = 0.
t—00 0 t—00 0
Taking the superior limit on both sides of (5.3) and applying the ergodicity of Markov chain @w(¢), we
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obtain
- mH@ 1 < 5 (Lkork)
lim sup — sz—izg;nkuy<k>gl<k>+;nk( i +v<k>)
1< [0k o2 (k)
=3 {5 ) A 3 )|
< 0.

Hence, we can equivalently obtain

o M = i B = 0.
This completes the proof.
6. Numerical simulations

In this section, some numerical examples are provided to support our theoretical findings. Using
Milstein’s high-order method, the corresponding discretization equation of system (1.3) is

. ) . o . a2 (k)M
M =My + [NU(k) ~ puOMy, = BUOB My |t + o ()M, o j + ———0r; ;= Dar,
o o - . . o2(kM]
M =M+ [ﬁ(k)BfM{, —ar()M]T’ - y,(k)M;]m + o (k)M Namy j + (15, — Dat,
2 5
. (6.1)
o A o . . . ocX(kB
Bt =B/ 4+ [r(k)M{ +u(k)(1 — BB — yy(k)Mi,B/ - ,uB(k)B/]At + o3(k)B? Vamgs ; + T("l ;= Dat,
) ) o ) ) o2(k)T/
AR [k,(k)(l - THM] - yr(k)T/]At + oy ()T Varmy j + “(T)(ni ;= Dat,

here 1 j, 12, 113, 14,; are N(0O, 1) distributed independent Gaussian random variables.
Let N = 2 and the generator I" = (y;;)2x, of the Markov chain be

A

S
=g % |

13 13

By solving #l" = 0, the stationary distribution I" follows 7 = (7, m;) = (%, g).

Example 6.1. Take initial value (M(0), M;(0), B(0),T(0)) = (1,5,3.5,0.65) and

(B(1),(2)) = (0.0625,0.061),  (uy(1), up(2)) = (0.132,0.08),  (»(1),%2)) = (0.03,0.0225),
(ur(1), 1r(2)) = (0.066,0.042),  (yu(1),y0(2)) = (0.0878,0.0867), (up(1), us(2)) = (0.16,0.15).
(ar(1), ar(2)) = (0.015,0.0097), (1 (1), r(2)) = (0.0033,0.002),  (r(1), 7(2)) = (0.2667,0.18),
(ki(1), k,(2)) = (0.0909, 0.08).

Case 1. Choose (o1(1),01(2)) = (0.03,0.01), (02(1),02(2)) = (0.002,0.001), (o5(1),03(2)) =
(o4(1),04(2)) = (0.006,0.005), then R; = —1.873 < 0. By Theorem 4.1, we obtain that there exists
a unique ergodic stationary distribution of system (1.3). Our simulations confirm these results: The
sample paths of M (1), M (t), B(t), T(t), and their corresponding probability density function (PDF) are
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shown in Figure 1. Figure 2 shows the corresponding movement of Markov chain (@(t)),., in the state
space S = {1,2}.

Case 2. Choose (oi(1),01(2)) = (0.3,0.1), (02(1),02(2)) = (0.02,0.01), (o3(1),03(2)) =
(04(1),04(2)) = (0.006,0.005). Simple computation Ry = —1.7581 < 0. Then from Theorem 4.1 it
follows that system (1.3) has a unique stationary distribution. Simulations are presented in Figure 3.
By comparing with Figure 1, the numbers of My (t), M,(t), B(t), and T(¢) are largely fluctuated by the
stochastic noises.

Case 3. Choose (oi(1),01(2)) = (0.6,0.2), (02(1),02(2)) = (0.5,0.4), (03(1),03(2)) =
(o4(1),04(2)) = (0.9,0.8). We can easily obtain R; = 0.3042 > 0, we can not determine whether there
exists an ergodic stationary distribution. From Figure 4, we can see that the disease of system (1.3)
will be extinct in a long time. From Figures 1,3 and 4, we can find that when white noise intensity
o?(k) increases, infected populations tend to go extinct faster.

—— Stochastic solufion
— Deleministic solution 0

P = o pp—
] ‘,\,\u‘\,‘ \

VS
VL =

nb——1 I
0 EL (T TN N N 08 02 02 0d 0% 0B 03 0R 0% 0%
Timet Freuency hstogram of Muiu

—— Stochastic solufion 10
§ — Delerministic solution

A i A A
551 -

100 0 30 40 i 600 10 600 83 54 38 56 a1 a8 59
Tinel Frequency istogram of M ({

—— Stochastic soluion B
— Delerministic solution

T g A e e e
| \

i IR 2

N tand VWU A

L L L L L
10 il kil 40 € i} 10 800 4 LYY B A § [T
Timet Freauency histogram of BlY)

12 —— Stochastic soluion
— Deleministic solution

. )
100 A0 30 40 0 800 700 800 082 08 08 088 09 092 0% 0% 0%
Timet Frequency istogrem of TH)

Figure 1. The left pictures are the solutions to the determine model (1.3) and
stochastic system (1.3) with noise (o(1),01(2)) = (0.03,0.01), (02(1),02(2)) =
(0.002,0.001) and (o3(1), 03(2)) = (04(1), 04(2)) = (0.006,0.005). The right pictures show
the frequency histograms and fitting density functions.
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it

Figure 2. The movement of Markov chain (@(?)),,, of the state space S = {1,2}.

\
04“

H
[

fstochas tic solution
— De terministic solution

" ”’Mf Mv‘ M‘WT ‘HWWPM WMM\

300 400
Time t

U 100

8-
7-

6-

g

1
i

L

SM h W ﬂ '/J .MM ”‘A i HW

— Stochastic solution
— Deterministic solution

\ !

.
U 100 200 300 400
Time t

Figure 3.
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Ayt P Pt —
U VA B ¢
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13
—— Stochastic solution
12 —— Deterministic solution
g
\

M ( ﬂ i IM l’ﬂ “ !

\‘ iH M

i

I (I ﬂ‘

0

100

stochastic system (1.3) with noise (o ((1),0(2))
(0.02,0.01) and (o3(1), 03(2)) = (04(1),04(2)) = (0.06,0.05). The right pictures show the
frequency histograms and fitting density functions.
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The left pictures are the solutions to the determine model (1.3) and
(0.3,0.1),
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Figure 4.

5 1
—— Stochastic solution
—— Deterministic solution
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The left pictures are the solutions to the determine model (1.3) and

stochastic system (1.3) with noise (o(1),01(2)) =

(0.5,0.4) and (o3(1),05(2)) =

frequency histograms and fitting density functions.

(0.6,0.2), (02(1),02(2))

(o4(1),04(2)) = (0.9,0.8). The right pictures show the

On the left column of Figure 5, the red, blue and green lines represent the sample paths of
My(t), M(t), B(t),and T(t), when there is only one state k = 1,k = 2 and switching between states
k = 1,2. Similarity, On the right column of Figure 5, the red, blue and green lines represent the PDF of
My (1), M(t), B(t),and T(r). It is displayed directly that the green line is located between the red and
the blue lines. That is to say the switching state is located between states k = 1 and k = 2.

Example 6.2. We choose (a7(1), @7(2)) = (0.015,0.0097), (u;(1), u;(2)) = (0.7,0.8), (r(1),r(2)) =
(0.05334,0.04), (k;(1),k;(2)) = (0.3636,0.32), and (o7(1),0:(2)) = (0.01,0.02), i = 1,2,3,4. Other

coefficients are the same as in Example 6.1. By direct calculation, we derive R =

the disease of system (1.2) will be extinct in a long time, which can be verified in Figure 6.
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Figure 5. The left figures are the solution trajectories of My (t), M,;(t), B(t),and T(¢). The
right figures are the probability density function (PDF) of My (¢), M,(t), B(t), T(t) and their
corresponding component-wisel , 2 or hybrid system.
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Figure 6. Simulations of stochastic solution (My(?), M,(t), B(t), T(t)) for stochastic
model (1.3), the corresponding noise intensities are (o(1),0:(2)) = (0.01,0.02), i =
1,2,3,4.
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7. Conclusions

This paper is devoted to studying a stochastic mycobacterium tuberculosis model, that is perturbed
by white and colored noises. First, we show that the unique solution of system (1.3) is global and
positive with probability one. In order to establish the existence of an ergodic stationary distribution,
we construct a stochastic Lyapunov function with regime switching. Different switching parameters
correspond to different peaks in the distribution function, and each peak represents the equilibrium
value. Further, we can infer from Example 6.1 that large perturbations can change population
dynamics, whereas smaller perturbations can lead to disease persistence.

Some interesting topics deserve consideration. Such as considering mean-reverting Ornstein-
Uhlenbeck processes, non-Gaussian Levy noise, and impulsive perturbations on system (1.2). We
can also use the method of this paper to study other epidemic models. We leave these cases for our
work.
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