In this article, global asymptotic stability and trajectory structure of the following high-order nonlinear difference equation
$ z_{n+1} = \frac{z_{n-1}z_{n-2}z_{n-4}+z_{n-1}+z_{n-2}+z_{n-4}+b}{z_{n-1}z_{n-2}+z_{n-1}z_{n-4}+z_{n-2}z_{n-4}+1+b}, \quad n\in N, $
are studied, where $ b\in[0, \infty) $ and the initial conditions $ z_{i}\in(0, \infty), i = 0, -1, -2, -3, -4. $ Using the semi-cycle analysis method, in a prime period, a continuous length of positive and negative semi-cycles of any nontrivial solution appears periodically: 2, 3, 4, 6, 12. Moreover, two examples are given to illustrate the effectiveness of theoretic analysis.
Citation: Qianhong Zhang, Liqin Shen. Global asymptotic stability and trajectory structure rules of high-order nonlinear difference equation[J]. AIMS Mathematics, 2024, 9(10): 28256-28272. doi: 10.3934/math.20241370
In this article, global asymptotic stability and trajectory structure of the following high-order nonlinear difference equation
$ z_{n+1} = \frac{z_{n-1}z_{n-2}z_{n-4}+z_{n-1}+z_{n-2}+z_{n-4}+b}{z_{n-1}z_{n-2}+z_{n-1}z_{n-4}+z_{n-2}z_{n-4}+1+b}, \quad n\in N, $
are studied, where $ b\in[0, \infty) $ and the initial conditions $ z_{i}\in(0, \infty), i = 0, -1, -2, -3, -4. $ Using the semi-cycle analysis method, in a prime period, a continuous length of positive and negative semi-cycles of any nontrivial solution appears periodically: 2, 3, 4, 6, 12. Moreover, two examples are given to illustrate the effectiveness of theoretic analysis.
[1] | W. T. Patula, H. D. Vouloy, On the oscillation and periodic character of a third order rational difference equation, Proc. Amer. Math. Soc., 131 (2003), 905–909. http://dx.doi.org/10.1090/S0002-9939-02-06611-X doi: 10.1090/S0002-9939-02-06611-X |
[2] | X. F. Yang, H. J. Lai, D. J. Evans, G. M. Megson, Global asymptotic stability in a rational recursive sequence, Appl. Math. Comput., 158 (2004), 703–716. http://dx.doi.org/10.1016/j.amc.2003.10.010 doi: 10.1016/j.amc.2003.10.010 |
[3] | A. Khaliq, H. S. Alayachi, M. S. M. Noorani, A. Q. Khan, On stability analysis of higher-order rational difference equation, Discrete Dyn. Nat. Soc., 2020 (2020), 3094185. http://dx.doi.org/10.1155/2020/3094185 doi: 10.1155/2020/3094185 |
[4] | M. Migda, A. Musielak, E. Schmeidel, On a class of fourth-order nonlinear difference equations, Adv. Differ. Equ., 2004 (2004), 23–36. http://dx.doi.org/10.1155/S1687183904308083 doi: 10.1155/S1687183904308083 |
[5] | A. Q. Khan, S. M. Qureshi, Global dynamical properties of rational higher-order system of difference equations, Discrete Dyn. Nat. Soc., 2020 (2020), 3696874. http://dx.doi.org/10.1155/2020/3696874 doi: 10.1155/2020/3696874 |
[6] | G. Ladas, Open problems and conjectures on the recursive sequence, J. Diff. Equ. Appl., 1 (1995), 317–321. http://dx.doi.org/10.1080/10236199508808030 doi: 10.1080/10236199508808030 |
[7] | T. Nesemann, Positive nonlinear difference equations: Some results and applications, Nonlinear Anal., 47 (2001), 4707–4717. http://dx.doi.org/10.1016/S0362-546X(01)00583-1 doi: 10.1016/S0362-546X(01)00583-1 |
[8] | A. M. Amleh, N. Kruse, G. Ladas, On a class of difference equations with strong negative feedback, J. Diff. Equ. Appl., 5 (1999), 497–515. https://doi.org/10.1080/10236199908808204 doi: 10.1080/10236199908808204 |
[9] | X. Y. Li, D. M. Zhu, Global asymptotic stability for two recursive difference equations, Appl. Math. Comput., 150 (2004), 481–492. http://dx.doi.org/10.1016/S0096-3003(03)00286-8 doi: 10.1016/S0096-3003(03)00286-8 |
[10] | X. Y. Li, Global behavior for a fourth-order rational difference equation, J. Math. Anal. Appl., 312 (2005), 555–563. http://dx.doi.org/10.1016/j.jmaa.2005.03.097 doi: 10.1016/j.jmaa.2005.03.097 |
[11] | D. M. Chen, X. Y. Li, The bifurcation of cycle length and global asymptotic stability in a rational difference equation with higher order, Open Appl. Math. J., 2 (2008), 80–85. http://dx.doi.org/10.2174/1874114200802010080 doi: 10.2174/1874114200802010080 |
[12] | E. M. Elsayed, M. M. El-Dessoky, Dynamics and behavior of a higher order rational recursive sequence, Adv. Differ. Equ., 2012 (2012), 1–16. http://dx.doi.org/10.1186/1687-1847-2012-69 doi: 10.1186/1687-1847-2012-69 |
[13] | T. F. Ibrahim, Bifurcation and periodically semicycles for fractional difference equation of fifth order, J. Nonlinear Sci. Appl., 11 (2018), 375–382. http://dx.doi.org/10.22436/jnsa.011.03.06 doi: 10.22436/jnsa.011.03.06 |
[14] | G. E. Chatzarakis, E. M. Elabbasy, O. Moaaz, H. Mahjoub, Global analysis and the periodic character of a class of difference equations, Axioms, 8 (2019), 131. http://dx.doi.org/10.3390/axioms8040131 doi: 10.3390/axioms8040131 |
[15] | A. Q. Khan, H. El-Metwally, Global dynamics, boundedness, and semicycle analysis of a difference equation, Discrete Dyn. Nat. Soc., 2021 (2021). http://dx.doi.org/10.1155/2021/1896838 |
[16] | X. L. Liu, H. Y. Xu, Y. H. Xu, N. Li, Results on solutions of several systems of the product type complex partial differential difference equations, Demonstr. Math., 57 (2024). http://dx.doi.org/10.1515/DEMA-2023-0153 |