Loading [MathJax]/extensions/TeX/mathchoice.js
Research article

Separating invariants for certain representations of the elementary Abelian p-groups of rank two

  • For a finite group acting linearly on a vector space, a separating set is a subset of the invariant ring that separates the orbits. In this paper, we determined explicit separating sets in the corresponding rings of invariants for four families of finite dimensional representations of the elementary abelian p-groups (Z/p)2 of rank two over an algebraically closed field of characteristic p, where p is an odd prime. Our construction was recursive. The separating sets consisted only of transfers and norms, and the size of every separating set depended only on the dimension of the representation.

    Citation: Panpan Jia, Jizhu Nan, Yongsheng Ma. Separating invariants for certain representations of the elementary Abelian p-groups of rank two[J]. AIMS Mathematics, 2024, 9(9): 25603-25618. doi: 10.3934/math.20241250

    Related Papers:

    [1] Qifang Li, Jinjin Li, Xun Ge, Yiliang Li . Invariance of separation in covering approximation spaces. AIMS Mathematics, 2021, 6(6): 5772-5785. doi: 10.3934/math.2021341
    [2] Yongli Zhang, Jiaxin Shen . Flag-transitive non-symmetric 2-designs with $ \lambda $ prime and exceptional groups of Lie type. AIMS Mathematics, 2024, 9(9): 25636-25645. doi: 10.3934/math.20241252
    [3] Tariq A. Alraqad, Hicham Saber . On the structure of finite groups associated to regular non-centralizer graphs. AIMS Mathematics, 2023, 8(12): 30981-30991. doi: 10.3934/math.20231585
    [4] Bao-Hua Xing, Nurten Urlu Ozalan, Jia-Bao Liu . The degree sequence on tensor and cartesian products of graphs and their omega index. AIMS Mathematics, 2023, 8(7): 16618-16632. doi: 10.3934/math.2023850
    [5] Yuting Hu, Jiangtao Peng, Mingrui Wang . On Modified Erdős-Ginzburg-Ziv constants of finite abelian groups. AIMS Mathematics, 2023, 8(3): 6697-6704. doi: 10.3934/math.2023339
    [6] Yunpeng Bai, Yuanlin Li, Jiangtao Peng . Unit groups of finite group algebras of Abelian groups of order 17 to 20. AIMS Mathematics, 2021, 6(7): 7305-7317. doi: 10.3934/math.2021428
    [7] Fawaz Aseeri, Julian Kaspczyk . The conjugacy diameters of non-abelian finite $ p $-groups with cyclic maximal subgroups. AIMS Mathematics, 2024, 9(5): 10734-10755. doi: 10.3934/math.2024524
    [8] Huadong Su, Ling Zhu . Thickness of the subgroup intersection graph of a finite group. AIMS Mathematics, 2021, 6(3): 2590-2606. doi: 10.3934/math.2021157
    [9] Guoqing Wang . A generalization of Kruyswijk-Olson theorem on Davenport constant in commutative semigroups. AIMS Mathematics, 2020, 5(4): 2992-3001. doi: 10.3934/math.2020193
    [10] Zhiying Deng, Yisheng Huang . Existence and multiplicity results for a singular fourth-order elliptic system involving critical homogeneous nonlinearities. AIMS Mathematics, 2023, 8(4): 9054-9073. doi: 10.3934/math.2023453
  • For a finite group acting linearly on a vector space, a separating set is a subset of the invariant ring that separates the orbits. In this paper, we determined explicit separating sets in the corresponding rings of invariants for four families of finite dimensional representations of the elementary abelian p-groups (Z/p)2 of rank two over an algebraically closed field of characteristic p, where p is an odd prime. Our construction was recursive. The separating sets consisted only of transfers and norms, and the size of every separating set depended only on the dimension of the representation.



    Let ρ:GGL(n,F) be a faithful representation of a finite group G over a field F of arbitrary characteristic. Denote by V=Fn the n dimensional representation space over F. We write F[V] for the symmetric algebra S(V) over the dual space V. The action of G on V induces an action on F[V]: for fF[V] and vV, the action of gG is given by (g(f))(v)=f(g1(v)). The ring of invariants F[V]G is defined by

    F[V]G:={fF[V]|g(f)=fforallgG}.

    Here are some general methods to construct invariants of finite groups. Let fF[V], then the transfer of f is defined by

    TrG(f):=gGg(f).

    Let HG be a subgroup. Then the relative transfer is defined as

    TrGH:F[V]HF[V]G,fgHG/Hg(f),

    where G/H denotes a set of left coset representatives of H in G. TrGH is independent of the choice of the coset representatives. The norm of f is defined by

    NG(f):=gGg(f).

    Note that the transfer, relative transfer and norm are invariant polynomials. If the characteristic of F divides the group order |G|, we speak of the modular case. Otherwise, we are in the nonmodular case, which includes char(F)=0.

    Separating orbits of a group action on some geometric or algebraic space is likely to have been one of the original motivations of invariant theory. It has regained particular attention following the influential textbook of Derksen and Kemper [1]. Since then, separating invariants have been extensively studied within the last decade.

    Definition 1. A subset SF[V]G is said to be separating if for any two points v,vV, we have: If there exists an invariant fF[V]G with f(v)f(v), then there exists an element hS with h(v)h(v).

    If G is finite, then for v,vV with distinct G-orbits, there exists fF[V]G such that f(v)f(v). It follows that a subset SF[V]G is separating if any two G-orbits can be separated by invariants from S for any finite group [2]. While the ring of invariants forms a separating set, computing the ring of invariants for a modular representation is typically a difficult problem. Moreover, separating invariants are better behaved than generating ones. For instance, the Noether degree bound and Weyl theorem hold for separating invariants without any hypothesis on char(F), see [2,3]. In [4], Dufresne introduced a geometric notion of separating algebra and gave two geometric formulations of this notion. Geometric separating sets and separating invariants over finite fields were considered in [5,6]. For more background on separating invariants we direct readers to [7,8,9,10,11,12,13].

    In the study of explicit separating invariants, it is natural to take p-groups as a starting point. The work of Sezer [14] gives us a good understanding in the case of the cyclic group of order p. Since then, explicit separating invariants have also been calculated for various groups such as cyclic p-groups, the Klein four group, etc [15,16,17,18,19]. The next step is to look at elementary abelian p-groups. With a few notable exceptions, the modular representation theory of an elementary abelian p-group is wild, see for example [20, Theorem 4.4.4]. In the modular case, the degrees of the generators can become arbitrarily big. Therefore, computing the invariants of elementary abelian p-groups in the modular case is particularly difficult and explicit generating sets are available only for a handful of cases. The ring of invariants for all two dimensional representations of (Z/p)r and the ring of invariants for all three dimensional representations of (Z/p)2 have been worked out in [21]. See also [22] for further research. Four families of finite dimensional representations of (Z/p)2 over an algebraically closed field F of characteristic p, where p is an odd prime, is given in [23] and their invariant rings have not been computed. In this paper, we give explicit separating sets, including transfers and norms for each representation. Transfers and norms are basic invariants that are easier to obtain. These invariants usually do not suffice to generate the entire ring of invariants F[V]G in the modular case. Since the dual of a subrepresentation sits in the dual of higher dimensional representation of (Z/p)2, this allows us to reduce the problem to separating two points whose coordinates are all the same except a few coordinates. Consequently, we show that the separating set for a representation of (Z/p)2 can be obtained by adding some transfers and norms to any separating set for the subrepresentation. It is worth pointing out that the size of the separating set depends only on the dimension of the representation. Our work can be viewed as the generalization of the Klein four group (the elementary abelian 2-groups of rank two) [17] to the elementary abelian p-groups of rank two for arbitrary odd prime p. However, the latter case needs more complicated computation and additional separating invariants.

    Let G=σ1,σ2(Z/p)2 be the elementary abelian p-group of rank two of order p2, where p is an odd prime. Let σ3=σ1σ2 and Hi denote the subgroup of G which is generated by σi for 1i3. The complete list of indecomposable representations of the Klein four group is described in [20, Theorem 4.3.3]. However, the modular representation theory of an elementary abelian p-group of rank two is wild. Here, we study the natural generalization of the irreducible representations of the Klein four group. There are four families of finite dimensional representations of G over an algebraically closed field F of characteristic odd prime p, which are given in [23]. For each representation in each family, we construct a finite separating set recursively. In the following, In denotes the n×n identity matrix and for any element λ of the field F, Jλ denotes the n×n Jordan block (lower triangular) with eigenvalues λ.

    Type (I) For every even dimension 2n there are representations V2n,λ,

    σ1(In0InIn),
    σ2(In0JλIn).

    Type (II) For every even dimension 2n there are representations V2n,,

    σ1(In0J0In),
    σ2(In0InIn).

    Type (III) For every odd dimension 2n1 there are representations V(2n1),

    σ1(In10In101×(n1)In),
    σ3(In1001×(n1)In1In).

    Type (IV) For every odd dimension 2n1 there are representations V2n1,

    σ1(In00(n1)×1In1In1),
    σ3(In0In10(n1)×1In1).

    Notice that the matrix group associated with V2n, in type (II) is the same as the matrix group associated with V2n,0 in type (I). Therefore, their invariant rings are equal, and a separating set for V2n,0 is also a separating set for V2n,. Each representation V(2n1) in type (III) is isomorphic to a subrepresentation of V2n,p1 in type (I), which we will explain in detail later. So we study the separating sets for types (I)(III) in Subsection 2.1 and for type (IV) in Subsection 2.2.

    We start with the action of G on the representation space V2n,λ. Let ε1, ε2, , εn, ξ1, ξ2, , ξn be the basis for V2n,λ with σ1(εi)=εi+ξi, σ1(ξi)=ξi, σ2(ξi)=ξi for 1in, σ2(εn)=εn+λξn and σ2(εi)=εi+λξi+ξi+1 for 1in1. We identify each εi with the column vector with 1 on the i-th coordinate and zero elsewhere, and each ξi with the column vector with 1 on the (n+i)-th coordinate and zero elsewhere. Let x1,x2,,xn,y1,y2,,yn denote the corresponding elements in the dual space V2n,λ. In fact, x1,x2,,xn,y1,y2,,yn form the basis for V2n,λ in the reverse order: we have σ11(xi)=xi, σ11(yi)=xi+yi, σ12(xi)=xi for 1in, σ12(y1)=λx1+y1 and σ12(yi)=xi1+λxi+yi for 2in. For simplicity we will use the generators σ1i instead of σi for the rest of the paper and change the notation by writing σi for the new generators for 1i3. Note also that F[V2n,λ]=F[x1,x2,,xn,y1,y2,,yn]. Pick a point v=(v1,v2,,vn,w1,w2,,wn) in V2n,λ. The surjection φ:V2n,λV2n2,λ given by (v1,v2,,vn,w1,w2,,wn)(v1,v2,,vn1,w1,w2,,wn1) is G-equivariant, as for gG, vV2n,λ, g(φ(v))=φ(g(v)). Dual to this surjection, the subspace in V2n,λ generated by x1,x2,,xn1,y1,y2,,yn1 is closed under the G-action and isomorphic to V2n2,λ. Hence F[V2n2,λ]=F[x1,x2,,xn1,y1,y2,,yn1] is a subalgebra in F[V2n,λ].

    The following three lemmas are very useful in studying the image of the transfer for modular groups. We will use these formulas repeatedly in the proofs of Lemmas 4–6.

    Lemma 1. Let k be a positive integer. Then 0lp1lk1modp if p1 divides k and 0lp1lk0modp, otherwise.

    Proof. See [24, Lemma 9.0.2] for a proof for this statement.

    Lemma 2. Let k and l be positive integers such that 0kp1, klp1. There holds

    {k\choose 0}{p\!-\!(k\!+\!1)\choose l\!-\!k}+{k\!+\!1\choose 1}{p\!-\!(k\!+\!2)\choose l\!-\!(k\!+\!1)}\!+\cdots+\!{l\choose l\!-\!k}{p\!-\!(l\!+\!1)\choose 0} = {p\choose l\!-\!k}.

    Proof. This statement can be proved by induction on k and l and we omit the detailed proof.

    Lemma 3. (1) Let k be a positive integer such that 1\leq k\leq p . Then

    {(p+1)(p-1)\choose k(p-1)}\equiv 1\; {mod}\; p.

    (2) Let l and k be a positive integer such that 2\leq l\leq p and 1\leq k\leq l-1 . Then

    {l(p-1)\choose k(p-1)}\equiv 0\; {mod}\; p.

    Proof. It is a simple matter to prove the two identities above by the definition of binomial coefficient.

    From now on all congruences are modulo \mathbb{F}[x_1, x_2, \cdots, x_n, y_1, y_2, \cdots, y_{n-1}] in Subsection 2.1 . The congruences of separating invariants in the following two lemmas will play an important part in the proof of Theorem 1.

    Lemma 4. (1) {\rm Tr}^G(y^{p-1}_iy^{p-1}_jy_n)\equiv (x_{i-1}x_j-x_ix_{j-1})^{p-1}y_n for 2\leq i, j\leq n-1 .

    (2) {\rm Tr}^G(y^{p-1}_1y^{p-1}_2y_n)\equiv x^{2(p-1)}_1y_n .

    Proof. Here we only prove for (1) . It is easy to verify that \text{Tr}^G = \text{Tr}^G_{H}\circ \text{Tr}^{H} for any subgroup H of G . This suggest that we may compute \text{Tr}^G by first computing \text{Tr}^{H} and then computing \text{Tr}^G_{H} . Thus we may work with the two smaller groups H and G/H .

    By the definition of transfer we have

    \begin{align} \text{Tr}^{H_1}(y^{p-1}_iy^{p-1}_jy_n) = &\sum\limits_{0\leq l\leq p-1}(lx_i+y_i)^{p-1}(lx_j+y_j)^{p-1}(lx_n+y_n)\\ \equiv&\sum\limits_{0\leq l\leq p-1}(lx_i+y_i)^{p-1}(lx_j+y_j)^{p-1}y_n\\ \equiv&\sum\limits_{0\leq l\leq p-1}\sum\limits_{0\leq s, t\leq p-1}{p-1\choose s}{p-1\choose t}(lx_i)^sy^{p-1-s}_i(lx_j)^{p-1-t}y^t_jy_n\\ \equiv&\sum\limits_{0\leq l\leq p-1}\sum\limits_{0\leq s, t\leq p-1}{p-1\choose s}{p-1\choose t}l^{p-1+s-t}x^s_ix^{p-1-t}_jy^{p-1-s}_iy^t_jy_n. \end{align}

    By Lemma 1, we see that

    \begin{align} \text{Tr}^{H_1}(y^{p-1}_iy^{p-1}_jy_n) \equiv&\sum\limits_{0\leq l\leq p-1}\sum\limits_{0\leq k\leq p-1}{p-1\choose k}^2l^{p-1}x^k_ix^{p-1-k}_jy^{p-1-k}_iy^k_jy_n\\ \equiv&\sum\limits_{0\leq l\leq p-1}l^{p-1}\bigg(\sum\limits_{0\leq k\leq p-1}{p-1\choose k}^2x^k_ix^{p-1-k}_jy^{p-1-k}_iy^k_jy_n\bigg)\\ \equiv&-\sum\limits_{0\leq k\leq p-1}x^k_ix^{p-1-k}_jy^{p-1-k}_iy^k_jy_n. \end{align}

    The last congruence follows since {p-1\choose k}^2\equiv 1\; \text{mod}\; p . Similarly, for each k with 0\leq k\leq p-1 we have

    \begin{align} \text{Tr}^{H_2}(x^k_ix^{p-1-k}_jy^{p-1-k}_iy^k_jy_n) = &\sum\limits_{0\leq l\leq p-1}x^k_ix^{p-1-k}_j(lx_{i-1}+l\lambda x_i+y_i)^{p-1-k}(lx_{j-1}+l\lambda x_j+y_j)^k(lx_{n-1}+l\lambda x_n+y_n)\\ \equiv&\sum\limits_{0\leq l\leq p-1}x^k_ix^{p-1-k}_j(lx_{i-1}+l\lambda x_i+y_i)^{p-1-k}(lx_{j-1}+l\lambda x_j+y_j)^ky_n\\ \equiv&-x^k_ix^{p-1-k}_j(x_{i-1}+\lambda x_i)^{p-1-k}(x_{j-1}+\lambda x_j)^ky_n. \end{align}

    Thus

    \begin{align} \text{Tr}^G(y^{p-1}_iy^{p-1}_jy_n) = &\text{Tr}^G_{H_1}(\text{Tr}^{H_1}(y^{p-1}_iy^{p-1}_jy_n))\\ \equiv&\text{Tr}^G_{H_1}(-\sum\limits_{0\leq k\leq p-1}x^k_ix^{p-1-k}_jy^{p-1-k}_iy^k_jy_n)\\ \equiv&\sum\limits_{0\leq k\leq p-1}x^k_ix^{p-1-k}_j(x_{i-1}+\lambda x_i)^{p-1-k}(x_{j-1}+\lambda x_j)^ky_n\\ = &\sum\limits_{0\leq k\leq p-1}\sum\limits_{0\leq s\leq p\!-\!1\!-\!k}\sum\limits_{0\leq t\leq k}{p\!-\!1\!-\!k\choose s}{k\choose t}\lambda^{s+t}x^{p-1-k-s}_{i-1}x^{k+s}_ix^{k-t}_{j-1}x^{p-1-k+t}_jy_n. \end{align}

    It follows from Lemma 2 that the coefficient of x^{p-1-l}_{i-1}x^l_ix^{m-1}_{j-1}x^{p-m}_jy_n is

    \begin{align} &\lambda^{l-m+1}\bigg({m-1\choose 0}{p-m\choose l-(m-1)}+{m\choose 1}{p-(m+1)\choose l-m}+\cdots+{l\choose l-(m-1)}{p-(l+1)\choose 0}\bigg)\\ = &\lambda^{l-m+1}{p\choose l-(m-1)}. \end{align}

    Moreover, {p\choose l-(m-1)}\equiv 1\; \text{mod}\; p if l = m-1 and {p\choose l-(m-1)}\equiv 0\; \text{mod}\; p , otherwise. From the above it follows that

    \begin{align} \text{Tr}^G(y^{p-1}_iy^{p-1}_jy_n) \equiv&\sum\limits_{0\leq k\leq p-1}\sum\limits_{0\leq s\leq p\!-\!1\!-\!k}\sum\limits_{0\leq t\leq k}{p\!-\!1\!-\!k\choose s}{k\choose t}\lambda^{s+t}x^{p-1-k-s}_{i-1}x^{k+s}_ix^{k-t}_{j-1}x^{p-1-k+t}_jy_n\\ = &(x^{p-1}_{i-1}x^{p-1}_j+x^{p-2}_{i-1}x_ix_{j-1}x^{p-2}_j+\cdots+x^{p-1}_ix^{p-1}_{j-1})y_n\\ = &(x_{i-1}x_j-x_ix_{j-1})^{p-1}y_n. \end{align}

    Lemma 5. (1) {\rm Tr}^G(y^{(p+1)(p-1)}_{n-1}y_n)\!\equiv\!\sum_{1\leq k\leq p}(x_{n-2}\!+\!\lambda x_{n-1})^{(p+1-k)(p-1)}x^{k(p-1)}_{n-1}y_n .

    (2) {\rm N}^{H_3}(x_{n-1}y_n-x_ny_{n-1})\equiv x^p_{n-1}y^p_n-x_{n-1}(x^2_{n-1}-x_{n-2}x_n)^{p-1}y_n.

    Proof. (1) By the definition of transfer, we have

    \begin{align} \text{Tr}^{H_1}(y^{(p+1)(p-1)}_{n-1}y_n) = &\sum\limits_{0\leq l\leq p-1}(lx_{n-1}+y_{n-1})^{(p+1)(p-1)}(lx_n+y_n)\\ \equiv&\sum\limits_{0\leq l\leq p-1}(lx_{n-1}+y_{n-1})^{(p+1)(p-1)}y_n. \end{align}

    By Lemma 1 and Lemma 3(1) we see that

    \begin{align} \text{Tr}^{H_1}(y^{(p+1)(p-1)}_{n-1}y_n) \equiv&\sum\limits_{0\leq l\leq p-1}\sum\limits_{0\leq k\leq p+1}{(p+1)(p-1)\choose k(p-1)}l^{k(p-1)}x^{k(p-1)}_{n-1}y^{(p+1-k)(p-1)}_{n-1}y_n\\ \equiv&-\sum\limits_{1\leq k\leq p+1}x^{k(p-1)}_{n-1}y^{(p+1-k)(p-1)}_{n-1}y_n. \end{align}

    For each k with 1\leq k\leq p+1 ,

    \begin{align} \text{Tr}^{H_2}(x^{k(p-1)}_{n-1}y^{(p+1-k)(p-1)}_{n-1}y_n) = &\sum\limits_{0\leq l\leq p-1}x^{k(p-1)}_{n-1}(lx_{n-2}+l\lambda x_{n-1}+y_{n-1})^{(p+1-k)(p-1)}(lx_{n-1}+l\lambda x_n+y_n)\\ \equiv&\sum\limits_{0\leq l\leq p-1}x^{k(p-1)}_{n-1}(lx_{n-2}+l\lambda x_{n-1}+y_{n-1})^{(p+1-k)(p-1)}y_n. \end{align}

    By Lemma 1 and Lemma 3(1) we have

    \begin{align} \text{Tr}^{H_2}(x^{k(p-1)}_{n-1}y^{(p+1-k)(p-1)}_{n-1}y_n) \equiv&\sum\limits_{0\leq l\leq p\!-\!1}\sum\limits_{0\leq s\leq p\!+\!1-\!k}{\!(p\!+\!1\!-\!k)(p\!-\!1\!)\!\choose s(p-1)}l^{s(p\!-\!1)}(x_{n-2}\!+\!\lambda x_{n-1})^{s(p\!-\!1)}x^{k(p\!-\!1)}_{n-1}y^{(p\!+\!1\!-\!k\!-\!s)(p\!-\!1)}_{n-1}y_n. \end{align}

    For 1\leq k\leq p , we see that {(p+1-k)(p-1)\choose s(p-1)}\equiv 0\; \text{mod}\; p unless s = p+1-k by Lemma 3(2) in which case we have

    \begin{align} \text{Tr}^{H_2}(x^{k(p-1)}_{n-1}y^{(p+1-k)(p-1)}_{n-1}y_n) \equiv&\sum\limits_{0\leq l\leq p-1}l^{(p+1-k)(p-1)}(x_{n-2}+\lambda x_{n-1})^{(p+1-k)(p-1)}x^{k(p-1)}_{n-1}y_n\\ \equiv&-(x_{n-2}+\lambda x_{n-1})^{(p+1-k)(p-1)}x^{k(p-1)}_{n-1}y_n. \end{align}

    For k = p+1 , \text{Tr}^{H_2}(x^{k(p-1)}_{n-1}y^{(p+1-k)(p-1)}_{n-1}y_n)\equiv \sum_{0\leq l\leq p-1}x^{(p+1-k)(p-1)}_{n-1}y_n\equiv 0 . Thus,

    \begin{align} \text{Tr}^G(y^{(p+1)(p-1)}_{n-1}y_n) = &\text{Tr}^G_{H_1}(\text{Tr}^{H_1}(y^{(p+1)(p-1)}_{n-1}y_n))\\ \equiv&\text{Tr}^G_{H_1}(-\sum\limits_{1\leq k\leq p+1}x^{k(p-1)}_{n-1}y^{(p+1-k)(p-1)}_{n-1}y_n)\\ \equiv&\sum\limits_{1\leq k\leq p}(x_{n-2}+\lambda x_{n-1})^{(p+1-k)(p-1)}x^{k(p-1)}_{n-1}y_n. \end{align}

    (2) Note that x_{n-1}y_n-x_ny_{n-1} is \sigma_1 -invariant, so the H_3 -orbit product of this polynomial is G -invariant. Thus, we have

    \begin{align} \text{N}^{H_3}(x_{n-1}y_n-x_ny_{n-1}) = &\Pi_{0\leq l\leq p-1}(x_{n-1}(lx_{n-1}+(l\lambda+l)x_n+y_n)-x_n(lx_{n-2}+(l\lambda+l)x_{n-1}+y_{n-1}))\\ = &\Pi_{0\leq l\leq p-1}(l(x^2_{n-1}-x_{n-2}x_n)+(x_{n-1}y_n-x_ny_{n-1}))\\ = &(x_{n-1}y_n-x_ny_{n-1})^p-(x_{n-1}y_n-x_ny_{n-1})(x^2_{n-1}-x_{n-2}x_n)^{p-1}\\ \equiv&x^p_{n-1}y^p_n-x_{n-1}(x^2_{n-1}-x_{n-2}x_n)^{p-1}y_n. \end{align}

    Theorem 1. Let \mathbb{F}[V_{2n, \lambda}] = \mathbb{F}[x_1, x_2, \cdots, x_n, y_1, y_2, \cdots, y_n] . Then

    S_1 = \bigg\{x_1, \; f_\lambda = \left\{ \begin{aligned} {\rm N}^G(y_1)& &for\; \lambda\notin \mathbb{F}_p, \\ {\rm N}^{H_1}(y_1)& &for\; \lambda\in \mathbb{F}_p \end{aligned} \right.\bigg\}

    is a separating set for V_{2, \lambda} . And S_2 = S_1\bigcup T_2 is a separating set for V_{4, \lambda} , where

    T_2 = \bigg\{x_2, \; {\rm N}^G(y_2), \; f_\lambda = \left\{ \begin{aligned} {\rm Tr}^G(y^{(p+1)(p-1)}_1y_2)& &for\; \lambda\notin \mathbb{F}_p, \\ {\rm N}^{H_3}(x_1y_2-x_2y_1)& &for\; \lambda\in \mathbb{F}_p \end{aligned} \right.\bigg\}.

    Let n\geq3 and S_{n-1}\subseteq \mathbb{F}[V_{2n-2, \lambda}]^G be a separating set for V_{2n-2, \lambda} . Then S_n = S_{n-1}\bigcup T_n is a separating set for V_{2n, \lambda} , where

    T_n = \bigg\{x_n, \; {\rm N}^G(y_n), \; {\rm Tr}^G(y^{p-1}_iy^{p-1}_{i+1}y_n)\; for\; 2\leq i\leq n-1,
    f_\lambda = \left\{ \begin{aligned} {\rm Tr}^G(y^{(p+1)(p-1)}_{n-1}y_n)& &for\; \lambda\notin \mathbb{F}_p, \\ {\rm N}^{H_3}(x_{n-1}y_n-x_ny_{n-1})& &for\; \lambda\in \mathbb{F}_p \end{aligned} \right. \bigg\}.

    Moreover, a separating set for V_{2n, 0} is a separating set for V_{2n, \infty} .

    Proof. The cases V_{2, \lambda} and V_{4, \lambda} are easy to check so we only prove the case of n . Consider any two points \textbf{v} = (v_1, \cdots, v_n, w_1, \cdots, w_n), \; \textbf{v}^{\prime} = (v^{\prime}_1, \cdots, v^{\prime}_n, w^{\prime}_1, \cdots, w^{\prime}_n)\in V_{2n, \lambda} that do not lie in the same G -orbit, and suppose that f(\textbf{v}) = f(\textbf{v}^{\prime}) for all f\in S_n . We will show that there exists g\in G such that \textbf{v}^{\prime} = g(\textbf{v}) . This contradicts our assumption that \textbf{v} and \textbf{v}^{\prime} do not lie in the same G -orbit and this contradiction shows that S_n is a separating set for V_{2n, \lambda} . We assume that every invariant in S_n takes the same value on \textbf{v} and \textbf{v}^{\prime} from now on.

    If (v_1, \cdots, v_{n-1}, w_1, \cdots, w_{n-1}), \; (v^{\prime}_1, \cdots, v^{\prime}_{n-1}, w^{\prime}_1, \cdots, w^{\prime}_{n-1})\in V_{2n-2, \lambda} do not lie in the same G -orbit, then there exists a polynomial in S_{n-1} that separates the two points because S_{n-1}\subseteq \mathbb{F}[V_{2n-2, \lambda}]^G is separating. Therefore this polynomial separates \textbf{v} and \textbf{v}^{\prime} as well. Hence by replacing \textbf{v}^{\prime} with a suitable element in its G -orbit we may assume that v^{\prime}_i = v_i and w^{\prime}_i = w_i for 1\leq i\leq n-1 . Since x_n\in T_n , we may assume that v^{\prime}_n = v_n . Note that with this assumption we must have w^{\prime}_n\neq w_n .

    First, by Lemma 4(2), \text{Tr}^G(y^{p-1}_1y^{p-1}_2y_n)(\textbf{v}) = \text{Tr}^G(y^{p-1}_1y^{p-1}_2y_n)(\textbf{v}^{\prime}) implies

    \begin{align} 0& = \text{Tr}^G(y^{p-1}_1y^{p-1}_2y_n)(\boldsymbol{{v}})-\text{Tr}^G(y^{p-1}_1y^{p-1}_2y_n)(\boldsymbol{{v}}^{\prime})\\ & = v^{2(p-1)}_1w_n-v^{2(p-1)}_1w^{\prime}_n\\ & = v^{2(p-1)}_1(w_n-w^{\prime}_n). \end{align}

    As w^{\prime}_n\neq w_n , we obtain

    v_1 = 0.

    Similarly, \text{Tr}^G(y^{p-1}_iy^{p-1}_{i+1}y_n)(\textbf{v}) = \text{Tr}^G(y^{p-1}_iy^{p-1}_{i+1}y_n)(\textbf{v}^{\prime}) implies

    \begin{align} 0& = \text{Tr}^G(y^{p-1}_iy^{p-1}_{i+1}y_n)(\boldsymbol{{v}})-\text{Tr}^G(y^{p-1}_iy^{p-1}_{i+1}y_n)(\boldsymbol{{v}}^{\prime})\\ & = (v_{i-1}v_{i+1}-v^2_i)^{p-1}(w_n-w^{\prime}_n) \end{align}

    for 2\leq i\leq n-2 by setting j = i+1 in Lemma 4 (1). Since v_1 = 0 and w^{\prime}_n\neq w_n , we get

    v_2 = v_3 = \cdots = v_{n-2} = 0

    successively. Since v_{n-2} = 0 , \text{Tr}^G(y^{(p+1)(p-1)}_{n-1}y_n)(\textbf{v}) = \text{Tr}^G(y^{(p+1)(p-1)}_{n-1}y_n)(\textbf{v}^{\prime}) implies

    \begin{align} 0& = \text{Tr}^G(y^{(p+1)(p-1)}_{n-1}y_n)(\boldsymbol{{v}})-\text{Tr}^G(y^{(p+1)(p-1)}_{n-1}y_n)(\boldsymbol{{v}}^{\prime})\\ & = \sum\limits_{1\leq k\leq p}(v_{n-2}\!+\!\lambda v_{n-1})^{(p+1-k)(p-1)}v^{k(p-1)}_{n-1}(w_n-w^{\prime}_n)\\ & = \sum\limits_{1\leq k\leq p}\lambda^{(p+1-k)(p-1)}v^{(p+1)(p-1)}_{n-1}(w_n-w^{\prime}_n)\\ & = (\!\lambda^{p\!-\!1}\!+\!\lambda^{2(p-1)}\!+\cdots+\!\lambda^{p(p-1)}\!)v^{(p+1)(p-1)}_{n-1}(w_n-w^{\prime}_n)\\ & = \lambda^{p\!-\!1}(\lambda^{p-1}-1)^{p-1}v^{(p+1)(p-1)}_{n-1}(w_n-w^{\prime}_n) \end{align} (2.1)

    by Lemma 5(1). Notice that \lambda^{p\!-\!1}(\lambda^{p-1}-1)^{p-1} = 0 if and only if \lambda\in \mathbb{F}_p , so the following proof falls into two parts depending on whether \lambda is in \mathbb{F}_p or not.

    If \lambda\notin \mathbb{F}_p , then we have

    v_{n-1} = 0

    by (2.1). As \text{N}^G(y_n) = \prod_{0\leq k, l\leq p-1}(lx_{n-1}+(l\lambda+k)x_n+y_n) , we have \text{N}^G(y_n)(\textbf{v}) = \prod_{0\leq k, l\leq p-1}((l\lambda+k)v_n+w_n) . We define a polynomial

    P(X): = \prod\limits_{0\leq k, l\leq p-1}(X+(l\lambda+k)v_n)

    in \mathbb{F}[X] . Notice that \text{N}^G(y_n)(\textbf{v}) = P(w_n) and that P(w_n) = P(w_n+(l\lambda+k)v_n) for all 0\leq k, l\leq p-1 . Since P(X) is a polynomial of degree p^2 , it follows that w_n+(l\lambda+k)v_n for 0\leq k, l\leq p-1 are the only solutions of P(X)-P(w_n) = 0 . Therefore the equality of \text{N}^G(y_n)(\textbf{v}^{\prime}) = P(w^{\prime}_n) and \text{N}^G(y_n)(\textbf{v}) = P(w_n) implies w_n must be equal to w^{\prime}_n+(l\lambda+k)v_n for some 0\leq k, l\leq p-1 . Hence \textbf{v}^{\prime} = \sigma^k_1\sigma^l_2(\textbf{v}) . This is a contradiction because \textbf{v} and \textbf{v}^{\prime} lie in the same G -orbit.

    Next we turn to the case \lambda\in \mathbb{F}_p . Since v_{n-2} = 0 , then \text{N}^{H_3}(x_{n-1}y_n-x_ny_{n-1}) taking the same value on \textbf{v}, \textbf{v}^{\prime} implies

    \begin{align} 0& = \text{N}^{H_3}(x_{n-1}y_n-x_ny_{n-1})(\boldsymbol{{v}})-\text{N}^{H_3}(x_{n-1}y_n-x_ny_{n-1})(\boldsymbol{{v}}^{\prime})\\ & = (v^p_{n-1}w^p_n-v^{2p-1}_{n-1}w_n)-(v^p_{n-1}{w^{\prime}}^p_n-v^{2p-1}_{n-1}w^{\prime}_n)\\ & = v^p_{n-1}(w_n-w^{\prime}_n)((w_n-w^{\prime}_n)^{p-1}-v^{p-1}_{n-1}) \end{align}

    by Lemma 5(2). If v_{n-1}\neq0 , then we have (w_n-w^{\prime}_n)^{p-1}-v^{p-1}_{n-1} = 0 , i.e. (w_n-w^{\prime}_n)^{p-1} = v^{p-1}_{n-1} , i.e. w_n-w^{\prime}_n = lv_{n-1} for some 1\leq l\leq p-1 . There must exist k with 0\leq k\leq p-1 such that l\lambda+k = 0 . Hence \textbf{v}^{\prime} = \sigma^k_1\sigma^l_2(\textbf{v}) . This is a contradiction. So now assume v_{n-1} = 0 . Then \text{N}^G(y_n)(\textbf{v}) = \text{N}^G(y_n)(\textbf{v}^{\prime}) implies (\prod_{0\leq l\leq p-1}(l v_n+w_n))^p = (\prod_{0\leq l\leq p-1}(l v_n+w^{\prime}_n))^p . Thus 0 = (\prod_{0\leq l\leq p-1}(l v_n+w_n))^p-(\prod_{0\leq l\leq p-1}(l v_n+w^{\prime}_n))^p = (\prod_{0\leq l\leq p-1}(l v_n+w_n)-\prod_{0\leq l\leq p-1}(l v_n+w^{\prime}_n))^p and therefore w_n = w^{\prime}_n+kv_n for some 1\leq k\leq p-1 . Hence \textbf{v}^{\prime} = \sigma^k_1(\textbf{v}) . This is also a contradiction.

    The final statement follows because the matrix group associated with V_{2n, \infty} is the same as the matrix group associated with V_{2n, 0} , so their invariant rings are equal, and a separating set for V_{2n, 0} is also a separating set for V_{2n, \infty} .

    Remark 1. From the proof of Theorem 1, we see that the separating set for each representation V_{2n, \lambda} we obtained is minimal. Moreover, the size of separating set for V_{2n, \lambda} is \frac{n(n+3)}{2} , which only depends on the dimension of the representation. Nevertheless, the maximal degree of an invariant in this set is the group order p^2 .

    Since V_{-(2n-1)} is isomorphic to the submodule of V_{2n, p-1} spanned by \boldsymbol{\varepsilon_1} , \cdots , \boldsymbol{\varepsilon_{n-1}} , \boldsymbol{\xi_1} , \cdots , \boldsymbol{\xi_n} , where \boldsymbol{\varepsilon_1} , \cdots , \boldsymbol{\varepsilon_n} , \boldsymbol{\xi_1} , \cdots , \boldsymbol{\xi_n} is the basis for V_{2n, p-1} . Dual to this inclusion, there is a restriction map \mathbb{F}[V_{2n, p-1}]^G\rightarrow \mathbb{F}[V_{-(2n-1)}]^G, \; f\mapsto f|_{V_{-(2n-1)}} which sends separating sets to separating sets by [1, Theorem 2.4.9]. Therefore, in view of Theorem 2.1, we have the following statement.

    Corollary 1. Let

    \mathbb{F}[V_{2n, p-1}] = \mathbb{F}[x_1, x_2, \cdots, x_n, y_1, y_2, \cdots, y_n]

    and

    \mathbb{F}[V_{-(2n-1)}] = \mathbb{F}[x_1, x_2, \cdots, x_{n-1}, y_1, y_2, \cdots, y_n].

    Then

    T_1 = \{y_1\}

    is a separating set for V_{-1} . Additionally,

    T_2 = \big\{x_1, \; {\rm N}^{H_1}(y_1), \; {\rm N}^{H_3}(y_2)\big\}

    is a separating set for V_{-3} . Let n\geq3 and S_{n-1}\subseteq \mathbb{F}[V_{2n-2, p-1}]^G be a separating set for V_{2n-2, p-1} . Then the polynomials in S_n = S_{n-1}\bigcup T_n restricted to V_{-(2n-1)} form a separating set for V_{-(2n-1)} , where

    T_n = \big\{{\rm N}^G(y_n), \; {\rm N}^{H_3}(x_{n-1}y_n-x_ny_{n-1}), \; {\rm Tr}^G(y^{p-1}_iy^{p-1}_{i+1}y_n)\; for\; 2\leq i\leq n-1\big\}.

    We consider type (\text{I}) representations V_{2n, p-1} . In view of \langle \boldsymbol{\xi_1}\rangle\subset V_{2n, p-1} is a G -submodule, we have V_{2n-1}\cong V_{2n, p-1}/\langle \boldsymbol{\xi_1}\rangle with basis \boldsymbol{\tilde{\varepsilon}_i}: = \boldsymbol{\varepsilon_i}+\langle \boldsymbol{\xi_1}\rangle for 1\leq i\leq n , \boldsymbol{\tilde{\xi}_i}: = \boldsymbol{\xi_i}+\langle \boldsymbol{\xi_1}\rangle for 2\leq i\leq n , and a G -algebra inclusion \mathbb{F}[V_{2n-1}] = \mathbb{F}[x_1, \cdots, x_n, y_2, \cdots, y_n]\subset \mathbb{F}[V_{2n, p-1}] . The action of \sigma_1 and \sigma_3 on the variables are given by

    \begin{equation} \nonumber \left\{ \begin{aligned} &\sigma_1(x_i) = x_i\; for\; 1\leq i\leq n-1, \\ &\sigma_1(y_i) = x_i+y_i\; for\; 2\leq i\leq n \end{aligned} \right. \end{equation}

    and

    \begin{equation} \nonumber \left\{ \begin{aligned} &\sigma_3(x_i) = x_i\; for\; 1\leq i\leq n-1, \\ &\sigma_3(y_i) = x_{i-1}+y_i\; for\; 2\leq i\leq n. \end{aligned} \right. \end{equation}

    Pick a point (v_1, \cdots, v_n, w_2, \cdots, w_n) in V_{2n-1} . There is a G -equivariant surjection V_{2n-1}\rightarrow V_{2n-3} given by

    (v_1, \cdots, v_n, w_2, \cdots, w_n)\mapsto (v_1, \cdots, v_{n-1}, w_2, \cdots, w_{n-1}).

    Hence

    \mathbb{F}[V_{2n-3}] = \mathbb{F}[x_1, \cdots, x_{n-1}, y_2, \cdots, y_{n-1}]

    is a subalgebra in \mathbb{F}[V_{2n-1}] .

    Note that all congruences are modulo \mathbb{F}[x_1, \cdots, x_n, y_2, \cdots, y_{n-1}] in subsection 2.2 .

    Lemma 6. (1) {\rm Tr}^G(y^{p-1}_iy^{p-1}_jy_n)\equiv (x_{i-1}x_j-x_ix_{j-1})^{p-1}y_n for 2\leq i, j\leq n-1 .

    (2) {\rm Tr}^G(y^{(p+1)(p-1)}_iy_n)\equiv x^{p-1}_{i-1}x^{p-1}_i(x^{p-1}_{i-1}-x^{p-1}_i)^{p-1}y_n for 2\leq i\leq n-1 .

    (3) {\rm N}^{H_3}(x_{n-1}y_n-x_ny_{n-1})\equiv x^p_{n-1}y^p_n-x_{n-1}(x^2_{n-1}-x_{n-2}x_n)^{p-1}y_n.

    (4) {\rm Tr}^G((y_i+\alpha y_{n-1}\!)^{(p+1)(p-1)}y_n)\!\equiv\! (\!x_{i-1}+\alpha x_{n-2}\!)^{p-1}(x_i+\alpha x_{n-1})^{p-1}((x_{i-1}+\alpha x_{n-2})^{p-1}-(x_i+\alpha x_{n-1})^{p-1})^{p-1}y_n for every \alpha\in \mathbb{F}\backslash \mathbb{F}_p and 2\leq i\leq n-2 .

    Proof. The above congruences follow by the same methods as Lemmas 4 and 5.

    Theorem 2. Let \mathbb{F}[V_{2n-1}] = \mathbb{F}[x_1, \cdots, x_n, y_2, \cdots, y_n] . Then S_1 = \{x_1\} , S_2 = \big\{x_1, x_2, {\rm N}^G(y_2)\big\} and S_3 = S_2\bigcup T_3 are separating sets for V_1, V_3 and V_5 respectively, where

    T_3 = \bigg\{x_3, \; {\rm N}^G(y_3), \; {\rm Tr}^G(y^{(p+1)(p-1)}_2y_3), \; {\rm N}^{H_3}(x_2y_3-x_3y_2)\bigg\}.

    Let n\geq4 and S_{n-1}\subseteq \mathbb{F}[V_{2n-3}]^G be a separating set for V_{2n-3} . Choose an element \alpha\in \mathbb{F} with \alpha not in the prime field \mathbb{F}_p . Then S_n = S_{n-1}\bigcup T_n is a separating set for V_{2n-1} , where

    T_n = \bigg\{x_n, \; {\rm N}^G(y_n), \; {\rm N}^{H_3}(x_{n-1}y_n-x_ny_{n-1}), \; {\rm Tr}^G(y^{p-1}_2y^{p-1}_{n-1}y_n),
    {\rm Tr}^G(y^{p-1}_iy^{p-1}_{i+1}y_n)\; for\; 2\leq i\leq n-2, \\ {\rm Tr}^G(y^{(p+1)(p-1)}_iy_n)\; for\; 2\leq i\leq n-1, \\ {\rm Tr}^G((y_i+\alpha y_{n-1})^{(p+1)(p-1)}y_n)\; for\; 2\leq i\leq n-2\bigg\}.

    Proof. We first prove the cases n\geq4 . Consider any two points \textbf{v} = (v_1, \cdots, v_n, w_2, \cdots, w_n), \; \textbf{v}^{\prime} = (v^{\prime}_1, \cdots, v^{\prime}_n, w^{\prime}_2, \cdots, w^{\prime}_n)\in V_{2n-1} that do not lie in the same G -orbit, and suppose that f(\textbf{v}) = f(\textbf{v}^{\prime}) for all f\in S_n . We show that there exists g\in G such that \textbf{v}^{\prime} = g(\textbf{v}) . This contradicts our assumption that \textbf{v} and \textbf{v}^{\prime} do not lie in the same G -orbit and this contradiction shows that S_n is a separating set for V_{2n-1} . We assume that every invariant in S_n takes the same value on \textbf{v} and \textbf{v}^{\prime} from now on. We may assume that v^{\prime}_i = v_i for 1\leq i\leq n , w^{\prime}_i = w_i for 2\leq i\leq n-1 and w^{\prime}_n\neq w_n as the proof of Theorem 2.1.

    Case\; 1 . We assume that there exists v_i = 0 for 1\leq i\leq n-1 and let j be maximal with this property.

    First, \text{Tr}^G(y^{p-1}_iy^{p-1}_{i+1}y_n)(\textbf{v}) = \text{Tr}^G(y^{p-1}_iy^{p-1}_{i+1}y_n)(\textbf{v}^{\prime}) implies

    \begin{align} 0& = \text{Tr}^G(y^{p-1}_iy^{p-1}_{i+1}y_n)(\boldsymbol{{v}})-\text{Tr}^G(y^{p-1}_iy^{p-1}_{i+1}y_n)(\boldsymbol{{v}}^{\prime})\\ & = (v_{i-1}v_{i+1}-v^2_i)^{p-1}(w_n-w^{\prime}_n) \end{align}

    for 1\leq i\leq n-3 by setting j = i+1 in Lemma 6(1). As w^{\prime}_n\neq w_n , this suggests that: If v_{i-1} = 0 , then v_i = 0 for 2\leq i\leq n-2 . Therefore j\geq n-2 .

    If j = n-2 , then v_{n-1}\neq0 . Again, \text{Tr}^G(y^{p-1}_iy^{p-1}_{i+1}y_n)(\textbf{v}) = \text{Tr}^G(y^{p-1}_iy^{p-1}_{i+1}y_n)(\textbf{v}^{\prime}) implies (v_{i-1}v_{i+1}-v^2_i)^{p-1}(w_n-w^{\prime}_n) = 0 for 1\leq i\leq n-3 . As w^{\prime}_n\neq w_n , so the last equation suggests that: If v_{i+1} = 0 , then v_i = 0 for 1\leq i\leq n-3 . Since v_{n-2} = 0 , we get

    v_1 = v_2 = \cdots = v_{n-2} = 0

    successively. However, \text{N}^{H_3}(x_{n-1}y_n-x_ny_{n-1}) taking the same value on \textbf{v}, \textbf{v}^{\prime} implies

    \begin{align} 0& = \text{N}^{H_3}(x_{n-1}y_n-x_ny_{n-1})(\boldsymbol{{v}})-\text{N}^{H_3}(x_{n-1}y_n-x_ny_{n-1})(\boldsymbol{{v}}^{\prime})\\ & = (v^p_{n-1}w^p_n-v^{2p-1}_{n-1}w_n)-(v^p_{n-1}{w^{\prime}}^p_n-v^{2p-1}_{n-1}w^{\prime}_n)\\ & = v^p_{n-1}(w_n-w^{\prime}_n)((w_n-w^{\prime}_n)^{p-1}-v^{p-1}_{n-1}) \end{align}

    by Lemma 6(3). As v_{n-1}\neq0 and w^{\prime}_n\neq w_n , then we have w_n = w^{\prime}_n+lv_{n-1} for some 1\leq l\leq p-1 . Hence \textbf{v}^{\prime} = \sigma^l_1\sigma^l_2(\textbf{v}) which is a contradiction.

    If j = n-1 , namely v_{n-1} = 0 . \text{Tr}^G(y^{p-1}_2y^{p-1}_{n-1}y_n) taking the same value on \textbf{v} , \textbf{v}^{\prime} implies

    \begin{align} 0& = \text{Tr}^G(y^{p-1}_2y^{p-1}_{n-1}y_n)(\boldsymbol{{v}})-\text{Tr}^G(y^{p-1}_2y^{p-1}_{n-1}y_n)(\boldsymbol{{v}}^{\prime})\\ & = v^{p-1}_2v^{p-1}_{n-2}(w_n-w^{\prime}_n) \end{align}

    by setting i = 2 , j = n-2 in Lemma 6(1). We have that v_2 = 0 or v_{n-2} = 0 . Whether v_2 = 0 or v_{n-2} = 0 , we have

    v_1 = v_2 = \cdots = v_{n-2} = 0

    successively by \text{Tr}^G(y^{p-1}_iy^{p-1}_{i+1}y_n)(\textbf{v}) = \text{Tr}^G(y^{p-1}_iy^{p-1}_{i+1}y_n)(\textbf{v}^{\prime}) for 2\leq i\leq n-2 . Furthermore, \text{N}^G(y_n)(\textbf{v}) = \text{N}^G(y_n)(\textbf{v}^{\prime}) implies

    \begin{align} 0& = \text{N}^G(y_n)(\boldsymbol{{v}})-\text{N}^G(y_n)(\boldsymbol{{v}}^{\prime})\\ & = \bigg(\prod\limits_{0\leq l, k\leq p-1}(l v_{n-1}+(-l+k)v_n+w_n)\bigg)-\bigg(\prod\limits_{0\leq l, k\leq p-1}(l v_{n-1}+(-l+k)v_n+w^{\prime}_n)\bigg)\\ & = \bigg(\prod\limits_{0\leq l, k\leq p-1}((-l+k)v_n+w_n)\bigg)-\bigg(\prod\limits_{0\leq l, k\leq p-1}((-l+k)v_n+w^{\prime}_n)\bigg). \end{align}

    Thus w_n = w^{\prime}_n+(-l+k)v_n for some 0\leq k, l\leq p-1 . Hence \textbf{v}^{\prime} = \sigma^k_1\sigma^l_2(\textbf{v}) which is also a contradiction.

    Case\; 2 . We assume that v_i\neq0 for 1\leq i\leq n-1 . Then \text{Tr}^G(y^{(p+1)(p-1)}_iy_n)(\textbf{v}) = \text{Tr}^G(y^{(p+1)(p-1)}_iy_n)(\textbf{v}^{\prime}) implies

    \begin{align} 0& = \text{Tr}^G(y^{(p+1)(p-1)}_iy_n)(\boldsymbol{{v}})-\text{Tr}^G(y^{(p+1)(p-1)}_iy_n)(\boldsymbol{{v}}^{\prime})\\ & = v^{p-1}_{i-1}v^{p-1}_i(v^{p-1}_{i-1}-v^{p-1}_i)^{p-1}w_n-v^{p-1}_{i-1}v^{p-1}_i(v^{p-1}_{i-1}-v^{p-1}_i)^{p-1}w^{\prime}_n\\ & = v^{p-1}_{i-1}v^{p-1}_i(v^{p-1}_{i-1}-v^{p-1}_i)^{p-1}(w_n-w^{\prime}_n) \end{align}

    for 2\leq i\leq n-1 by Lemma 6(2). So we have

    v^{p-1}_1 = v^{p-1}_2 = \cdots = v^{p-1}_{n-1}\neq0.

    We claim that

    \frac{v_i}{v_{i+1}} = \frac{v_{n-2}}{v_{n-1}} = \gamma\in\mathbb{F}^*_p

    for 1\leq i\leq n-3 . Given this, \text{N}^{H_3}(x_{n-1}y_n-x_ny_{n-1}) taking the same value on \textbf{v}, \textbf{v}^{\prime} implies

    \begin{align} 0& = \text{N}^{H_3}(x_{n-1}y_n-x_ny_{n-1})(\boldsymbol{{v}})-\text{N}^{H_3}(x_{n-1}y_n-x_ny_{n-1})(\boldsymbol{{v}}^{\prime})\\ & = (v^p_{n-1}w^p_n\!-\!v_{n-1}(v^2_{n-1}\!-\!v_{n-2}v_n)^{p-1}w_n)\!-\!(v^p_{n-1}{w^{\prime}}^p_n\!-\!v_{n-1}(v^2_{n-1}\!-\!v_{n-2}v_n)^{p-1}w^{\prime}_n)\\ & = (v^p_{n-1}w^p_n\!-\!v_{n-1}(v^2_{n-1}\!-\!\gamma v_{n-1}v_n)^{p-1}w_n)\!-\!(v^p_{n-1}{w^{\prime}}^p_n\!-\!v_{n-1}(v^2_{n-1}\!-\!\gamma v_{n-1}v_n)^{p-1}w^{\prime}_n)\\ & = v^p_{n-1}(w_n-w^{\prime}_n)((w_n-w^{\prime}_n)^{p-1}-(v_{n-1}-\gamma v_n)^{p-1}) \end{align}

    by Lemma 6(3). Thus, there exists some 1\leq l\leq p-1 such that w_n-w^{\prime}_n = lv_{n-1}-l\gamma v_n . There must exist k with 0\leq k\leq p-1 such that -l+k+l\gamma = 0 . Then \textbf{v}^{\prime} = \sigma^k_1\sigma^l_2(\textbf{v}) . This is a contradiction.

    Now we prove for the claim. For 1\leq i\leq n-2 , We define

    \gamma_i: = \frac{v_i}{v_{n-1}}.

    It is obvious that \gamma_i\in \mathbb{F}^*_p . Because of \text{Tr}^G((y_i+\alpha y_{n-1})^{(p+1)(p-1)}y_n)(\textbf{v}) = \text{Tr}^G((y_i+\alpha y_{n-1})^{(p+1)(p-1)}y_n)(\textbf{v}^{\prime}) , we have that

    \begin{align} 0& = \text{Tr}^G((y_i+\alpha y_{n-1})^{(p+1)(p-1)}y_n)(\boldsymbol{{v}})-\text{Tr}^G((y_i+\alpha y_{n-1})^{(p+1)(p-1)}y_n)(\boldsymbol{{v}}^{\prime})\\ & = (v_{i\!-\!1}\!+\!\alpha v_{n\!-\!2})^{p\!-\!1}(v_i\!+\!\alpha v_{n\!-\!1})^{p\!-\!1}((v_{i\!-\!1}\!+\!\alpha v_{n\!-\!2})^{p\!-\!1}\!-\!(v_i\!+\!\alpha v_{n\!-\!1})^{p-1})^{p\!-\!1}w_n\\ &\; \; \; \; -(v_{i\!-\!1}\!+\!\alpha v_{n\!-\!2})^{p\!-\!1}(v_i\!+\!\alpha v_{n\!-\!1})^{p\!-\!1}((v_{i\!-\!1}\!+\!\alpha v_{n\!-\!2})^{p\!-\!1}\!-\!(v_i\!+\!\alpha v_{n\!-\!1})^{p-1})^{p\!-\!1}w^{\prime}_n\\ & = (v_{i\!-\!1}\!+\!\alpha v_{n\!-\!2})^{p\!-\!1}(v_i\!+\!\alpha v_{n\!-\!1})^{p\!-\!1}((v_{i\!-\!1}\!+\!\alpha v_{n\!-\!2})^{p\!-\!1}\!-\!(v_i\!+\!\alpha v_{n\!-\!1})^{p-1})^{p\!-\!1}(w_n-w^{\prime}_n) \end{align}

    by Lemma 6(4). Since v^{p-1}_1 = v^{p-1}_2 = \cdots = v^{p-1}_{n-1}\neq0 and \alpha\in \mathbb{F}\backslash \mathbb{F}_p , we have that v_{i-1}+\alpha v_{n-2}\neq0 and v_i+\alpha v_{n-1}\neq0 . Since w_n\neq w^{\prime}_n , we obtain that

    \begin{equation} (v_{i-1}+\alpha v_{n-2})^{p-1}-(v_i+\alpha v_{n-1})^{p-1} = 0. \end{equation} (2.2)

    Substituting \gamma_i = \frac{v_i}{v_{n-1}} into (2.2), and because of v^{p-1}_{n-1}\neq0 and \gamma^{p-1}_{n-2} = 1 we get

    (\alpha+\frac{\gamma_{i-1}}{\gamma_{n-2}})^{p-1}-(\alpha+\gamma_i)^{p-1} = 0.

    Consider the following polynomial

    Q(X): = (X+\frac{\gamma_{i-1}}{\gamma_{n-2}})^{p-1}-(X+\gamma_i)^{p-1}

    in \mathbb{F}_p[X] . It is obvious that the degree of Q(X) is strictly less than p-1 . We next show that there are at least p-1 different roots of Q(X) and consequently Q(X) = 0 .

    Since Q(\alpha) = (\alpha+\frac{\gamma_{i-1}}{\gamma_{n-2}})^{p-1}-(\alpha+\gamma_i)^{p-1} = 0 , \alpha+\frac{\gamma_{i-1}}{\gamma_{n-2}}\neq0 and \alpha+\gamma_i\neq0 , then we have

    ((\alpha+\frac{\gamma_{i-1}}{\gamma_{n-2}})/(\alpha+\gamma_i))^{p-1} = 1.

    Set

    \begin{equation} M_a = a(\alpha+\frac{\gamma_{i-1}}{\gamma_{n-2}})/(\alpha+\gamma_i) \end{equation} (2.3)

    for each a\in \mathbb{F}_p\backslash \{\pm1\} . It is easy to see that M_a\in \mathbb{F}_p and M_a\neq-1 . Indeed, if M_a = -1 , then \alpha = -(a\frac{\gamma_{i-1}}{\gamma_{n-2}}+\gamma_i)/(a+1)\in \mathbb{F}_p , which contradicts \alpha\in \mathbb{F}\backslash \mathbb{F}_p .

    Now consider

    \begin{equation} \frac{(\alpha+\frac{\gamma_{i-1}}{\gamma_{n-2}})(a+1)}{(\alpha+\gamma_i)(M_a+1)} = \frac{a\alpha+\alpha+a\frac{\gamma_{i-1}}{\gamma_{n-2}}+\frac{\gamma_{i-1}}{\gamma_{n-2}}}{M_a\alpha+\alpha+M_a\gamma_i+\gamma_i}\in \mathbb{F}^*_p. \end{equation} (2.4)

    Equation (2.4) suggests that (a\alpha+\alpha+a\frac{\gamma_{i-1}}{\gamma_{n-2}}+\frac{\gamma_{i-1}}{\gamma_{n-2}})^{p-1} = (M_a\alpha+\alpha+M_a\gamma_i+\gamma_i)^{p-1} and we see that (M_a\alpha+\alpha+M_a\gamma_i+\gamma_i)^{p-1} = (a\alpha+\alpha+a\frac{\gamma_{i-1}}{\gamma_{n-2}}+\gamma_i)^{p-1} by (2.3). Thus (a\alpha+\alpha+a\frac{\gamma_{i-1}}{\gamma_{n-2}}+\frac{\gamma_{i-1}}{\gamma_{n-2}})^{p-1} = (a\alpha+\alpha+a\frac{\gamma_{i-1}}{\gamma_{n-2}}+\gamma_i)^{p-1} , i.e.

    0 = (a\alpha+\alpha+a\frac{\gamma_{i-1}}{\gamma_{n-2}}+\frac{\gamma_{i-1}}{\gamma_{n-2}})^{p-1}- (a\alpha+\alpha+a\frac{\gamma_{i-1}}{\gamma_{n-2}}+\gamma_i)^{p-1} = Q(a\alpha+\alpha+a\frac{\gamma_{i-1}}{\gamma_{n-2}})

    for each a\in \mathbb{F}_p\backslash \{\pm1\} . For any a_1\neq a_2\in \mathbb{F}_p\backslash \{\pm1\} , a_1\alpha+\alpha+a_1\frac{\gamma_{i-1}}{\gamma_{n-2}}\neq a_2\alpha+\alpha+a_2\frac{\gamma_{i-1}}{\gamma_{n-2}} . Moreover, Q(0) = 0 . Therefore there are at least p-1 different roots of Q(X) . We have proved Q(X) = 0 .

    Substituting -\gamma_i into Q(X) = 0 we obtain

    \gamma_i = \frac{\gamma_{i-1}}{\gamma_{n-2}},

    i.e.

    \frac{v_{i-1}}{v_i} = \frac{v_{n-2}}{v_{n-1}}

    for 2\leq i\leq n-2 . This establish the claim.

    Now, we prove the cases 1\leq n\leq 3 . Obviously, \mathbb{F}[V_1]^G = \mathbb{F}[x_1] . Since \big\{x_1, x_2, \text{N}^G(y_2)\big\} forms a homogeneous system of parameters for \mathbb{F}[V_3]^G and the product of their degrees is equal to the order of G , it follows from [1, Theorem 3.9.4] that \mathbb{F}[V_3]^G = \mathbb{F}[x_1, x_2, \text{N}^G(y_2)] . Naturally S_2 = \big\{x_1, x_2, \text{N}^G(y_2)\big\} is a separating set for V_3 . Then, S_3 = S_2\bigcup T_3 is a separating set for V_5 , where

    T_3 = \bigg\{x_3, \; \text{N}^G(y_3), \; \text{Tr}^G(y^{(p+1)(p-1)}_2y_3), \; \text{N}^{H_3}(x_2y_3-x_3y_2)\bigg\}.

    The proof is analogous to the proof for n\geq4 .

    Remark 2. Theorem 2 yields a minimal separating set for each representation V_{2n-1} . Moreover, the size of separating set for V_{2n-1} is \frac{n(3n-2)}{2} , which depends only on the dimension of the representation. Incidently, the maximal degree of an invariant in this set is the group order p^2 .

    In this paper, we determine explicit separating sets for four families of finite dimensional representations of the elementary abelian p -groups of rank two (\mathbb{Z}/p)^2 over an algebraically closed field of characteristic p , where p is an odd prime. The size of every separating set depends only on the dimension of the representation.

    Panpan Jia: Conceptualization, Methodology, Writing-original draft preparation, Writing-review and editing; Jizhu Nan: Methodology, Writing-review and editing, Funding acquisition; Yongsheng Ma: Methodology, Writing-review and editing. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the National Natural Science Foundation of China (No.12171194).

    The authors declare no conflicts of interest in this paper.



    [1] H. Derksen, G. Kemper, Computational Invariant Theory, Berlin: Springer-Verlag, 2002. https://doi.org/10.1007/978-3-662-04958-7_3
    [2] J. Draisma, G. Kemper, D. Wehlau, Polarization of separating invariants, Canad. J. Math., 60 (2008), 556–571. https://doi.org/10.4153/cjm-2008-027-2 doi: 10.4153/cjm-2008-027-2
    [3] G. Kemper, Separating invariants, J. Symbolic Comput., 44 (2009), 1212–1222. https://doi.org/10.1016/j.jsc.2008.02.012
    [4] E. Dufresne, Separating invariants and finite reflection groups, Adv. Math., 221 (2009), 1979–1989. https://doi.org/10.1016/j.aim.2009.03.013 doi: 10.1016/j.aim.2009.03.013
    [5] G. Kemper, A. Lopatin, F. Reimers, Separating invariants over finite fields, J. Pure Appl. Algebra, 226 (2022), 106904. https://doi.org/10.1016/j.jpaa.2021.106904 doi: 10.1016/j.jpaa.2021.106904
    [6] Y. Chen, R. J. Shank, D. L. Wehlau, Modular invariants of finite gluing groups, J. Algebra, 566 (2021), 405–434. https://doi.org/10.1016/j.jalgebra.2020.08.034 doi: 10.1016/j.jalgebra.2020.08.034
    [7] E. Dufresne, J. Elmer, M. Kohls, The Cohen-Macaulay property of separating invariants of finite groups, Transform. Groups, 14 (2009), 771–785. https://doi.org/10.1007/s00031-009-9072-y doi: 10.1007/s00031-009-9072-y
    [8] M. Kohls, H. Kraft, Degree bounds for separating invariants, Math. Res. Lett., 17 (2010), 1171–1182. https://doi.org/10.4310/mrl.2010.v17.n6.a15 doi: 10.4310/mrl.2010.v17.n6.a15
    [9] J. Elmer, M. Kohls, Separating invariants for the basic \mathbb{G}_a-actions, Proc. Amer. Math. Soc., 140 (2012), 135–146. https://doi.org/10.1090/s0002-9939-2011-11273-5 doi: 10.1090/s0002-9939-2011-11273-5
    [10] E. Dufresne, J. Elmer, M. Sezer, Separating invariants for arbitrary linear actions of the additive group, Manuscripta Math., 143 (2014), 207–219. https://doi.org/10.1007/s00229-013-0625-y doi: 10.1007/s00229-013-0625-y
    [11] E. Dufresne, J. Jeffries, Separating invariants and local cohomology, Adv. Math., 270 (2015), 565–581. https://doi.org/10.1016/j.aim.2014.11.003 doi: 10.1016/j.aim.2014.11.003
    [12] M. Domokos, Degree bound for separating invariants of abelian groups, Proc. Amer. Math. Soc., 145 (2017), 3695–3708. https://doi.org/10.1090/proc/13534 doi: 10.1090/proc/13534
    [13] F. Reimers, Separating invariants of finite groups, J. Algebra, 507 (2018), 19–46. https://doi.org/10.1016/j.jalgebra.2018.03.022 doi: 10.1016/j.jalgebra.2018.03.022
    [14] M. Sezer, Constructing modular separating invariants, J. Algebra, 322 (2009), 4099–4104. https://doi.org/10.1016/j.jalgebra.2009.07.011 doi: 10.1016/j.jalgebra.2009.07.011
    [15] M. D. Neusel, M. Sezer, Separating invariants for modular p-groups and groups acting diagonally, Math. Res. Lett., 16 (2009), 1029–1036. https://doi.org/10.4310/mrl.2009.v16.n6.a11 doi: 10.4310/mrl.2009.v16.n6.a11
    [16] M. Sezer, Explicit separating invariants for cyclic p-groups, J. Combin. Theory Ser. A, 118 (2011), 681–689. https://doi.org/10.1016/j.jcta.2010.05.003 doi: 10.1016/j.jcta.2010.05.003
    [17] M. Kohls, M. Sezer, Separating invariants for the Klein four group and cyclic groups, Internat. J. Math., 24 (2013), 1350046. https://doi.org/10.1142/s0129167x13500468 doi: 10.1142/s0129167x13500468
    [18] F. Reimers, Separating invariants for two copies of the natural S_n-action, Commun. Algebra, 48 (2020), 1584–1590. https://doi.org/10.1080/00927872.2019.1691575 doi: 10.1080/00927872.2019.1691575
    [19] A. Lopatin, F. Reimers, Separating invariants for multisymmetric polynomials, Proc. Amer. Math. Soc., 149 (2021), 497–508. https://doi.org/10.1090/proc/15292 doi: 10.1090/proc/15292
    [20] D. J. Benson, Representations and Cohomology I, Cambridge: Cambridge University Press, 1991. https://doi.org/10.1017/cbo9780511623622
    [21] H. E. A. Campbell, R. J. Shank, D. L. Wehlau, Rings of invariants for modular representations of elementary abelian p-groups, Transform. Groups, 18 (2013), 1–22. https://doi.org/10.1007/s00031-013-9207-z doi: 10.1007/s00031-013-9207-z
    [22] T. Pierron, R. J. Shank, Rings of invariants for the three-dimensional modular representations of elementary abelian p-groups of rank four, Involve, 9 (2016), 551–581. https://doi.org/10.2140/involve.2016.9.551 doi: 10.2140/involve.2016.9.551
    [23] J. Elmer, P. Fleischmann, On the depth of modular invariant rings for the groups C_p\times C_p, Progr. Math., 278 (2010), 45–61. https://doi.org/10.1007/978-0-8176-4875-6_4 doi: 10.1007/978-0-8176-4875-6_4
    [24] H. E. A. Campbell, D. L. Wehlau, Modular Invariant Theory, Berlin: Springer-Verlag, 2011. https://doi.org/10.1090/surv/094/06
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(690) PDF downloads(32) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog