Research article

Analytical formulae for variance and volatility swaps with stochastic volatility, stochastic equilibrium level and regime switching

  • Received: 11 June 2024 Revised: 05 July 2024 Accepted: 08 July 2024 Published: 16 July 2024
  • MSC : 91G20

  • The CIR stochastic volatility model is modified to introduce nonlinear mean reversion, with the long-run volatility average as a random variable controlled by two parts being modeled through a Brownian motion and a Markov chain, respectively. This model still possesses an analytical formulation of the forward characteristic function, from which we establish variance swap prices as well as volatility swap ones with a nonlinear payoff in closed form. The numerical implementation of the two formulae demonstrates the significant impact of regime switching.

    Citation: Xin-Jiang He, Sha Lin. Analytical formulae for variance and volatility swaps with stochastic volatility, stochastic equilibrium level and regime switching[J]. AIMS Mathematics, 2024, 9(8): 22225-22238. doi: 10.3934/math.20241081

    Related Papers:

  • The CIR stochastic volatility model is modified to introduce nonlinear mean reversion, with the long-run volatility average as a random variable controlled by two parts being modeled through a Brownian motion and a Markov chain, respectively. This model still possesses an analytical formulation of the forward characteristic function, from which we establish variance swap prices as well as volatility swap ones with a nonlinear payoff in closed form. The numerical implementation of the two formulae demonstrates the significant impact of regime switching.



    加载中


    [1] S. D. Chen, Y. L. Sun, Y. Liu, Forecast of stock price fluctuation based on the perspective of volume information in stock and exchange market, China Financ. Rev. Int., 8 (2018), 297–314. https://doi.org/10.1108/CFRI-08-2017-0184 doi: 10.1108/CFRI-08-2017-0184
    [2] D. L. Ma, H. Tanizaki, Fat-tailed stochastic volatility model and the stock market returns in China, China Financ. Rev. Int., 11 (2021), 170–184. https://doi.org/10.1108/CFRI-03-2018-0028 doi: 10.1108/CFRI-03-2018-0028
    [3] P. Carr, R. Lee, Realized volatility and variance: Options via swaps, Risk, 20 (2007), 76–83.
    [4] A. Grünbichler, F. A. Longstaff, Valuing futures and options on volatility, J. Bank. Financ., 20 (1996), 985–1001. https://doi.org/10.1016/0378-4266(95)00034-8 doi: 10.1016/0378-4266(95)00034-8
    [5] S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327–343. https://doi.org/10.1093/rfs/6.2.327 doi: 10.1093/rfs/6.2.327
    [6] A. Javaheri, P. Wilmott, E. G. Haug, GARCH and volatility swaps, Quant. Financ., 4 (2004), 589–595. https://doi.org/10.1080/14697680400008700
    [7] S.-P. Zhu, G.-H. Lian, A closed-form exact solution for pricing variance swaps with stochastic volatility, Math. Financ., 21 (2011), 233–256. https://doi.org/10.1111/j.1467-9965.2010.00436.x doi: 10.1111/j.1467-9965.2010.00436.x
    [8] S.-P. Zhu, G.-H. Lian, Analytically pricing volatility swaps under stochastic volatility, J. Comput. Appl. Math., 288 (2015), 332–340. https://doi.org/10.1016/j.cam.2015.04.036 doi: 10.1016/j.cam.2015.04.036
    [9] G. Bakshi, N. J. Ju, H. Ou-Yang, Estimation of continuous-time models with an application to equity volatility dynamics, J. Financ. Econ., 82 (2006), 227–249. https://doi.org/10.1016/j.jfineco.2005.09.005 doi: 10.1016/j.jfineco.2005.09.005
    [10] X.-J. He, W. T. Chen, A closed-form pricing formula for European options under a new stochastic volatility model with a stochastic long-term mean, Math. Finan. Econ., 15 (2021), 381–396. https://doi.org/10.1007/s11579-020-00281-y doi: 10.1007/s11579-020-00281-y
    [11] J. D. Hamilton, Analysis of time series subject to changes in regime, J. Econometrics, 45 (1990), 39–70. https://doi.org/10.1016/0304-4076(90)90093-9 doi: 10.1016/0304-4076(90)90093-9
    [12] M. T. Vo, Regime-switching stochastic volatility: evidence from the crude oil market, Energy Econ., 31 (2009), 779–788. https://doi.org/10.1016/j.eneco.2009.05.001 doi: 10.1016/j.eneco.2009.05.001
    [13] R. J. Elliott, G.-H. Lian, Pricing variance and volatility swaps in a stochastic volatility model with regime switching: discrete observations case, Quant. Financ., 13 (2013), 687–698. https://doi.org/10.1080/14697688.2012.676208 doi: 10.1080/14697688.2012.676208
    [14] T. K. Siu, R. J. Elliott, American option pricing and filtering with a hidden regime-switching jump diffusion, Journal of Derivatives, 29 (2022), 106–123. https://doi.org/10.3905/jod.2022.1.147 doi: 10.3905/jod.2022.1.147
    [15] X.-J. He, S. Lin, Analytically pricing exchange options with stochastic liquidity and regime switching, J. Futures Markets, 43 (2023), 662–676. https://doi.org/10.1002/fut.22403 doi: 10.1002/fut.22403
    [16] S. Lin, X.-J. He, Analytically pricing variance and volatility swaps with stochastic volatility, stochastic equilibrium level and regime switching, Expert Syst. Appl., 217 (2023), 119592. https://doi.org/10.1016/j.eswa.2023.119592 doi: 10.1016/j.eswa.2023.119592
    [17] S. Byelkina, A. Levin, Implementation and calibration of the extended affine heston model for basket options and volatility derivatives, Sixth World Congress of the Bachelier Finance Society, Canada, Toronto, 2010.
    [18] S. Lin, X.-J. He, Closed-form formulae for variance and volatility swaps under stochastic volatility with stochastic liquidity risks, J. Futures Markets, 44 (2024), 1447–1461. https://doi.org/10.1002/fut.22531 doi: 10.1002/fut.22531
    [19] S. Lin, X. M. Lin, X.-J. He, Analytically pricing European options with a two-factor Stein-Stein model, J. Comput. Appl. Math., 440 (2024), 115662. https://doi.org/10.1016/j.cam.2023.115662 doi: 10.1016/j.cam.2023.115662
    [20] B.-Z. Yang, J. Yue, M.-H. Wang, N.-J. Huang, Volatility swaps valuation under stochastic volatility with jumps and stochastic intensity, Appl. Math. Comput., 355 (2019), 73–84. https://doi.org/10.1016/j.amc.2019.02.063 doi: 10.1016/j.amc.2019.02.063
    [21] X.-J. He, S. Lin, Analytically pricing foreign exchange options under a three-factor stochastic volatility and interest rate model: A full correlation structure, Expert Syst. Appl., 246 (2024), 123203. https://doi.org/10.1016/j.eswa.2024.123203 doi: 10.1016/j.eswa.2024.123203
    [22] Z. H. Hu, B.-Z. Yang, X.-J. He, J. Yue, Equilibrium pricing of European crude oil options with stochastic behaviour and jump risks, Math. Comput. Simulat., 219 (2024), 212–230. https://doi.org/10.1016/j.matcom.2023.12.020 doi: 10.1016/j.matcom.2023.12.020
    [23] X.-J. He, S. Lin, A stochastic liquidity risk model with stochastic volatility and its applications to option pricing, Stoch. Models, 2024 (2024), 1–20. https://doi.org/10.1080/15326349.2024.2332326 doi: 10.1080/15326349.2024.2332326
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(505) PDF downloads(39) Cited by(2)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog