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1. Introduction

Trading derivatives is of great popularity in today’s financial markets, and thus, how to manage the
risk caused by trading attracts much attention from researchers and market practitioners. Volatility
is often used to measure asset price risk, and it is common knowledge that volatility values change
randomly over time [1, 2], which makes it even more difficult to figure out the nature of the volatility
variations. As a result, volatility derivatives are developed to manage the relative risk associated with
the asset.

In practice, variance and volatility swaps enjoy high trading volumes, which has resulted in the
desire to evaluate the two contracts correctly. To be more specific, while the results in [3] are more
general and model-independent, most other research results depend on different adopted models. For
example, Grunbichler and Longstaff [4] valued the two contracts with the CIR stochastic volatility
process, which is the same process used in the Heston model [5] to describe volatility evolution, while
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how to price the two contracts under stochastic volatility without giving a specific stochastic volatility
dynamic is illustrated by Javaheri et al. [6]. However, these results rely on the realized variance as well
as volatility used in final pay-off functions being continuous, which is certainly inappropriate since
the realized variance and volatility in real markets are discretely sampled, and such a mis-specification
could result in a pricing bias, making these results less valuable. Therefore, pricing discretely-sampled
swaps is more meaningful since that is the definition used in reality.

The literature has already witnessed the explosive expansion of evaluating discrete swap contracts.
For example, analytical solutions for these two contracts under the Heston model have already been
presented in [7, 8], respectively. Of course, the Heston model is unable to capture the significantly
nonlinear mean revision property exhibited by asset volatility [9], which prompts research into
developing more sophisticated models. In particular, He and Chen [10] introduced the concept of
the stochastic mean-reversion level in the Heston (CIR) volatility process so that the nonlinear mean
revision property can be partially addressed. Recently, the economic status has been shown to be
changing [11], and such effects on derivative prices have been shown to be significant [12]. This has
led to the emergence of regime switching models [13–16].

Motivated by the fact that the implied volatility as well as the variance swap curve cannot be
appropriately fitted using the classical Heston model [17] and the significance of combining stochastic
volatility models with regime switching [12], the He–Chen model is further modified by adding regime
switching [10], so that the long-run mean is divided into two parts. One part is characterized by a
stochastic process following a normal distribution, and another is a regime switching part. Based on
the successful presentation of the forward characteristic function, analytical solutions used to price the
two swap contracts are shown under the newly established model.

We organize the remainder of the article as follows: Section 2 briefly introduces the adopted model,
and then the forward characteristic function is derived in closed form, leading to analytical solutions
of the target contracts. In Section 3, we discuss the numerical results after implementing the solutions
we obtain. The last section concludes.

2. Analytical solution

The regime switching dynamics are embraced into the He–Chen model [10] so that the effects of
economic cycles are taken into consideration. After that, we derive the two swap pricing formulae
under this new model analytically.

2.1. Our model

As our model modifies the Heston model and the He–Chen model, we first introduce the Heston
model. With the assumption that S is the stock price and v denotes asset volatility, the Heston model
in a risk-neutral world is characterized through

dS
S
= rdt +

√
vdW1

t ,

dv = k(v̄ − v)dt + σ1
√

vdW2
t . (2.1)
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Here, W1
t and W2

t are two Wiener processes, with dW1
t dW2

t = ρdt. The He–Chen model modifies it by
proposing the concept of stochastic long-run mean, which formulates

dS
S
= rdt +

√
vdW1

t ,

dv = k(v̄ + θ − v)dt + σ1
√

vdW2
t ,

dθ = λdt + σ2dBt, (2.2)

where θ is the newly introduced stochastic source in the long-term mean. Bt is another Wiener
process that is unrelated to the other two. Our model further revises the He–Chen model through
the consideration of economic cycles on volatility

dS
S
= rdt +

√
vdW1

t ,

dv = k(v̄Xt + θ − v)dt + σ1
√

vdW2
t ,

dθ = λdt + σ2dBt. (2.3)

The two-state Markov chain Xt can take the value within the set {(1, 0)T , (0, 1)T } depending on the
different states that the economy belongs to, so that v̄Xt =< v̄, Xt >, with v̄ = (v1, v2)T . λi j, i, j =
1, 2, i , j denotes the transition rate of the Markov chain transferring from State i to j. Clearly,
the presented model is actually a combination of the Heston stochastic volatility model with regime
switching dynamics and a stochastic mean-reversion level. It will become the He–Chen model [10] if
we remove regime switching mechanics by setting λ12 = λ21 = 0. If we further make λ = σ2 = 0, it
will go back to the Heston model.

2.2. Pricing variance and volatility swaps

To price the two swap contracts, one should be very clear about the cash flow between the long
and short positions. If one longs a variance and volatility swap, he or she needs to pay a strike price
specified in the contract at maturity while receiving a floating leg of realized variance and volatility
written in an annualized form, whose computation depends on the actual asset price fluctuation during
the lifetime of the swaps.

In fact, one can compute the values of the two contracts with a notional amount L at maturity
through

Vvar = (RVvar − Kvar)L, Vvol = (RVvol − Kvol)L,

where RVvar and Kvar are the annualized realized variance and variance swap strike price, respectively,
with RVvol as well as Kvol representing the same meaning for a volatility swap. As swap contracts
are worth zero values when they are initiated, we have the following to be fair to both long and short
positions:

Kvar = E(RVvar), Kvol = E(RVvol).

Clearly, the determination of Kvar (Kvol) requires that we compute the two expectations, implying
that it is necessary for us to know how RVvar (RVvol) is defined before we proceed to figure out the
expectation. Here, we adopt the expression widely used in the literature [13, 18]

RVvar =
1002

T

N∑
i=1

(
S ti − S ti−1

S ti−1

)2

,
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RVvol = 100
√
π

2NT

N∑
i=1

∣∣∣∣∣∣S ti − S ti−1

S ti−1

∣∣∣∣∣∣ .
ti is ith observation time equally spaced within [0,T] with t0 = 0 and tN = T . Therefore, once we are

able to calculate the expectation E
[(

S ti−S ti−1
S ti−1

)2
]

and E
[∣∣∣∣S ti−S ti−1

S ti−1

∣∣∣∣] for every i = 0, ..,N, then we could

obtain the delivery price straightforwardly by adding these expectations together.
To analytically work out these expectations, we shall first derive the forward characteristic function

of the underlying price. In particular, if we write yT = ln(S T
S t

), the forward characteristic function is
formulated using

µ(ϕ; v0, θ0, X0, t,T ) = E
(
e jϕyT |y0, v0, θ0, X0

)
. (2.4)

The direct evaluation of this particular function is very difficult, and such difficulty arises from the
stochastic nature of both the Winier processes and the Markov chain. To simplify the problem for the
time being, we assume that the values of Xt, t ∈ [0,T ] are given at the current time so that the target
characteristic function becomes a conditional one

µ(ϕ; v0, θ0, t,T |Xt, t ∈ [0,T ]) = E
(
e jϕyT |y0, v0, θ0, XT

)
. (2.5)

The solution to this particular function is presented below.

Proposition 2.1. If Eq (2.3) provides information on the model dynamics, the solution of
µ(ϕ; v0, θ0, t,T |Xt, t ∈ [0,T ]) satisfies

µ(ϕ; v0, θ0, t,T |Xt, t ∈ [0,T ]) = eC̃(ϕ;τ,t)+D̄(ϕ;τ,t)v0+Ē(ϕ;τ,t)θ0e
∫ T

0 <J(s),Xs>ds, (2.6)

where

D̄(ϕ; τ, t) =
2k
σ2

1

1

1 −
[
1 − 2k

σ2
1D(ϕ;τ)

]
ekt
,

Ē(ϕ; τ, t) = E(ϕ; τ) +
2k
σ2

1

{
kt − ln

(
1 −

[
1 −

2k
σ2

1D(ϕ; τ)

]
ekt

)
+ ln

[
2k

σ2
1D(ϕ; τ)

]}
,

C̃(ϕ; τ, t) =
∫ τ

0

1
2
σ2

2E2(ϕ; s) + λE(ϕ; s)ds +
∫ t

0

1
2
σ2

2Ē(ϕ; τ, s) + λĒ(ϕ; τ, s)ds + jrϕτ,

J(s) = kv̄sD(ϕ; T − s)H(s) + kv̄sD̄(ϕ; τ, s)[1 − H(s)],

D(ϕ; τ) =
d − (ρσ1 jϕ − k)

σ2
1

(
1 − edτ

1 − gedτ

)
,

E(ϕ; τ) =
k
σ2

1

{[
d − (ρσ1 jϕ − k)

]
τ − 2 ln

(
1 − gedτ

1 − g

)}
,

d =
√

(ρσ1 jϕ − k)2 + σ2
1( jϕ + ϕ2), g =

(ρσ1 jϕ − k) − d
(ρσ1 jϕ − k) + d

,

H(s) =
{

1, s > t,
0, s ≤ t,
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with τ = T − t.
We prove the proposition in Appendix A.
Of course, the characteristic function presented in (2.6) is a conditional one, and one still has to

work out its expectation since the forward characteristic function satisfies

µ(ϕ; v0, θ0, X0, t,T ) = E
(
e jϕyT |y0, v0, θ0, X0

)
,

= E
[
E

(
e jϕyT |y0, v0, θ0, XT

)
|y0, v0, θ0, X0

]
,

= E
[
µ(ϕ; v0, θ0, t,T |Xt, t ∈ [0,T ])|y0, v0, θ0, X0

]
. (2.7)

By noticing the fact that v̄ depends on the Markov chain Xt with t ∈ [0,T ], substituting Eq (2.6) into
(2.7) could yield

µ(ϕ; v0, θ0, X0, t,T ) = eC̃(ϕ;τ,t)+D̄(ϕ;τ,t)v0+Ē(ϕ;τ,t)θ0 E
[
e
∫ T

0 <J(s),Xs>ds|X0

]
, (2.8)

which implies that E
[
e
∫ T

0 <J(s),Xs>ds|X0

]
has to be derived. Actually, this expectation can be figured out

by simply following Elliott and Lian [13]. In this case, we could obtain

E
[
e
∫ T

0 <J(s),Xs>ds|X0

]
=< eMX0, I >, (2.9)

where X0 ∈ {(1, 0)′, (0, 1)′}, and I = (1, 1)′. With A being the matrix formulated by the transition rates
associated with Xt, Matrix M is defined as

M =
∫ T

0
A′ + diag[J(s)]ds, (2.10)

yielding

M =
(

v̄1Ē(ϕ; τ, t) − λ12T λ21T
λ12T v̄2Ē(ϕ; τ, t) − λ21T

)
.

Therefore, we have finally obtained

µ(ϕ; v0, θ0, X0, t,T ) = eC̃(ϕ;τ,t)+D̄(ϕ;τ,t)v0+Ē(ϕ;τ,t)θ0 < eMX0, I > . (2.11)

With Eq (2.11), we are now able to present the formulae for pricing both swaps in the following
proposition.

Proposition 2.2. If Eq (2.3) provides information on the model dynamics, the prices of variance and
volatility swaps can be formulated as

Kvar =
1002

T

N∑
i=1

[
µ(−2 j; ti−1, ti, v0, θ0, X0) − 2µ(− j; ti−1, ti, v0, θ0, X0) + 1

]
,

Kvol = 100

√
2
πNT

∫ +∞

0

N∑
i=1

RE
[
µ(ϕ − j; v0, θ0, X0, ti−1, ti) − µ(ϕ; v0, θ0, X0, ti−1, ti)

jϕ

]
dϕ.

(2.12)
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We prove the proposition in Appendix B.
By now, we have successfully worked out the two swap prices analytically. Once a formula for

derivative prices has been derived under a new model, one may be very interested in the influence
that adopting the new model would bring about, which makes it rather important to make a comparison
between our model and the existing related models to find the different numerical behavior. The related
discussions are provided below.

3. Numerical examples

This section will mainly analyze how the results provided by the He–Chen model [10] can be
affected by adding regime switching. In particular, we will first check whether our model can represent
the He–Chen model if transition rates are zero. Then, we will compare our results with those under
the He–Chen model without regime switching to identify the difference caused by introducing regime
switching mechanics. The parameter values for the analysis are defaulted as follows, whose magnitude
is consistent with a number of different pieces of literature [13,19,20]. Both parameters in the process
describing the stochastic part of the long-term mean, i.e., λ and σ2, are set to be 0.01, and the initial
value of this particular stochastic process, θ0, is 0.03. The expiration date T is set to be 1 year. We also
assume that v̄ in the He–Chen model takes the value of v̄1 for comparison. Other model parameters
include r = 0.05, k = 10, σ1 = 0.1, v0 = 0.03 and ρ = −0.5.

Before we numerically study the swap pricing formulae, their accuracy should first be checked
using the semi-Monte Carlo benchmark, which is much more efficient than the standard Monte Carlo
approach. The detailed procedure in a single simulation will be illustrated in the following: First,
by simulating the jump moments using the exponential distribution and the transition rates, a Markov
chain within the period [0,T ] is generated so that λXt and ηXt become time-dependent parameters. Then,
we are able to evaluate the two swaps through the conditional characteristic function (2.6). Finally, by
repeating 500,000 times the above steps, we could obtain one variance and one volatility swap price. In
the following, we will only present the verification results of the variance swap pricing formula, which
is shown in Figure 1, since the two formulae are quite similar to each other and there is no need to
check the volatility swap pricing formula once variance swap pricing formula is proved. Specifically,
what could be detected first in Figure 1(a) is that our variance swap prices are point-wise close to those
from the Monte Carlo approach, and the relative difference displayed in Figure 1(b) is below 0.6%,
demonstrating that our formulae are clearly accurate.
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Figure 1. Variance swap prices with two approaches. Parameters are N = 4; v̄1 = 0.08; v̄2 =

0.02.

The He–Chen model [10] being a special case of ours, can be easily observed from the model
dynamics if the regime switching mechanics are removed. In this case, whether our formulae can
degenerate to those under the He–Chen model is of interest, and this is also a sign of the correctness
of the formulae. A scaling parameter z ∈ [0, 1] is employed with λ12 = 10 ∗ z, λ21 = 20 ∗ z, and
the corresponding swap prices are shown in Figure 2. Specifically, Figure 2 shows the variance and
volatility swap price with and without regime switching, and as expected, the two prices are exactly the
same when the two transition rates become zero. It can also be easily observed that with the selected
set of parameters, our price is no larger than that without regime switching, and it decreases with the
scaling parameter z.
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Figure 2. Strike prices of the He–Chen model and ours with respect to the scaling parameter.
Parameters are N = 4; v̄1 = 0.08; v̄2 = 0.02.
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What can be seen in Figure 3 are different swap prices when the constant long-term mean for State
1 is greater than State 2. As shown in Figure 3(a), variance swap prices keep linearly increasing as the
time to expiry increases. Moreover, the introduction of regime switching under the current settings will
lower swap prices. A very similar decreasing pattern is also shown in Figure 3(b) when we consider
volatility swap prices, except that the curve is much more flattening, which is mainly due to the much
lower magnitude of volatility swap prices.

Time to expiry

1 2 3 4 5 6 7 8 9 10

S
tr

ik
e

 p
ri
ce

 f
o

r 
va

ri
a

n
ce

 s
w

a
p

s

900

1000

1100

1200

1300

1400

1500

1600

1700

variance swap with regime switching

variance swap without regime switching

(a) Variance swaps.

Time to expiry

1 2 3 4 5 6 7 8 9 10

S
tr

ik
e

 p
ri
ce

 f
o

r 
vo

la
til

ity
 s

w
a

p
s

28

30

32

34

36

38

40

volatility swap with regime switching

volatility swap without regime switching

(b) Volatility swaps.

Figure 3. Strike prices of the He–Chen model and ours when v̄1 > v̄2. Parameters are
λ12 = 10; λ21 = 20; v̄1 = 0.08; v̄2 = 0.02.
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Figure 4. Strike prices of the He–Chen model and ours when v̄1 < v̄2. Parameters are
λ12 = 10; λ21 = 20; v̄1 = 0.02; v̄2 = 0.08.

Naturally, one may draw the conclusion that the variance and volatility swap prices with regime
switching will always be lower than those without regime switching. In order to prove the incorrectness
of this viewpoint, we reverse the values of v̄1 and v̄2, and the results in this situation are presented in
Figure 4. Clearly, if the constant mean-reversion level for current state is lower compared with the
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other one, our variance and volatility swap price are larger than those obtained under the He–Chen
model without regime switching, which is shown in Figure 4. Also, the variance and volatility swap
prices in both models decrease when we lower the constant long-term mean for the current state.

One may also be interested in the difference between our model and the well-known Heston
model. We show the corresponding comparison results in Figure 5. One can clearly see that variance
(volatility) swap prices under our model exceed those under the Heston model when λ is positive, while
our prices would be lower than the Heston prices with a negative λ. This can be understood from the
fact that λ controls the trend of long-run volatility, with positive (or negative) λ indicating increasing
(or decreasing) long-run volatility, leading to higher (or smaller) risks. This also reflects the greater
flexibility of our model compared to the Heston model.
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0 5 10 15 20 25 30

Sampling frequency

21.75

21.8

21.85

21.9

21.95

22

22.05

22.1

22.15

22.2

22.25

S
tr

ik
e

 p
ri
ce

 f
o

r 
vo

la
til

ity
 s

w
a

p
s

Our price (positive )

Our price (negative )

Heston price

(b) Volatility swaps.

Figure 5. Strike prices of the Heston model and ours. Parameters are λ12 = 10; λ21 =

20; v̄1 = v̄2 = 0.02.

4. Conclusions

This article proposes a particular regime switching stochastic volatility model, dividing the long-run
mean into two parts, with one being characterized by a normal distribution and the other incorporating
regime switching mechanics. After successfully working out the analytical pricing formulae, we
have also shown through the numerical experiments that adding regime switching in the modeling
framework has a large impact, which thus implies that this model can be used as an alternative to the
existing models in practice.
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Appendix A

We now prove Proposition 2.1. We can express

µ(ϕ; v0, θ0, t,T |Xt, t ∈ [0,T ]) = E
(
e jϕyT |y0, v0, θ0, XT

)
= E

[
E

(
e jϕyT |yt, vt, θt, XT

)
|y0, v0, θ0, XT

]
. (A-1)

AIMS Mathematics Volume 9, Issue 8, 22225–22238.

https://dx.doi.org/https://doi.org/10.1016/j.eneco.2009.05.001
https://dx.doi.org/https://doi.org/10.1080/14697688.2012.676208
https://dx.doi.org/https://doi.org/10.3905/jod.2022.1.147
https://dx.doi.org/https://doi.org/10.1002/fut.22403
https://dx.doi.org/https://doi.org/10.1016/j.eswa.2023.119592
https://dx.doi.org/https://doi.org/10.1002/fut.22531
https://dx.doi.org/https://doi.org/10.1016/j.cam.2023.115662
https://dx.doi.org/https://doi.org/10.1016/j.amc.2019.02.063
https://dx.doi.org/https://doi.org/10.1016/j.eswa.2024.123203
https://dx.doi.org/https://doi.org/10.1016/j.matcom.2023.12.020
https://dx.doi.org/https://doi.org/10.1080/15326349.2024.2332326


22236

As a result, we will firstly deal with the inner expectation

h(ϕ; vs, θs, Xs, s,T ) = E
(
e jϕyT |ys, vs, θs, XT

)
, s ∈ [t,T ],

which should satisfy the following PDE
∂h
∂s
+

1
2

v
∂2h
∂y2 +

1
2
σ2

1v
∂2h
∂v2 +

1
2
σ2

2
∂2h
∂θ2
+ ρσ1v

∂2h
∂v∂y

+ (r − 1
2v)∂h
∂y + k(v̄ + θ − v)∂h

∂v + λ
∂h
∂θ
= 0,

h(ϕ; vs, θs, Xs, s,T )|s=T = e jϕyT .

(A-2)

Following a number of different literature [21–23], if we write

h(ϕ; vs, θs, Xs, s,T ) = eC(ϕ,τ)+D(ϕ,τ)vs+E(ϕ,τ)θs+ jϕys , (A-3)

with τ defined as T − s, then substituting it into PDE (A-2) could yield the three ODEs (ordinary
differential equations)

∂D
∂τi

=
1
2
σ2

1D2 + (ρσϕ j − k)D −
1
2

( jϕ + ϕ2),

∂E
∂τi

= kD,

∂C
∂τi

=
1
2
σ2

2E2 + λE + kv̄D + r( jϕ − 1).

From this, we could obtain the solutions to the first two ODEs presented in Proposition 2.1 with s = t.
Then, directly integrating the ODE for C derives

C(ϕ, τ) =
∫ τ

0

1
2
σ2

2E2(ϕ; s) + λE(ϕ; s)ds + jrϕτ +
∫ T

t
kv̄tD(T − s)ds. (A-4)

Since we have ys = 0 when s = t, we can write

h(ϕ; vt, θt, Xt, t,T ) = eC(ϕ,τ)+D(ϕ,τ)vt+E(ϕ,τ)θt . (A-5)

We now reformulate Eq (A-1) so that

µ(ϕ; v0, θ0, t,T |Xt, t ∈ [0,T ]) = eC(ϕ,τ)E[eD(ϕ,τ)vt+E(ϕ,τ)θt |y0, v0, θ0, XT ]. (A-6)

If we define
f (ϕ; v0, θ0, t,T |Xt, t ∈ [0,T ]) = E[eD(ϕ,τ)vt+E(ϕ,τ)θt |y0, v0, θ0, XT ],

and considering the fact that f is independent of y, f (ϕ; vs, θs, s, t,T |Xa, a ∈ [0,T ]) is a solution to
∂ f
∂s
+

1
2
σ2

1v
∂2 f
∂v2 +

1
2
σ2

2
∂2 f
∂θ2
+ k(v̄ + θ − v)

∂ f
∂v
+ λ
∂ f
∂θ
= 0,

f (ϕ; vs, θs, s, t,T |Xa, a ∈ [0,T ])|s=t = eD(ϕ,τ)vt+E(ϕ,τ)θt .
(A-7)

Similarly, by guessing that the solution to PDE (A-7) be

f (ϕ; vs, θs, s, t,T |Xa, a ∈ [0,T ]) = eC̄(ϕ;τ,t−s)+D̄(ϕ;τ,t−s)vs+Ē(ϕ;τ,t−s)θs , (A-8)
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and substituting it into PDE (A-7), we could obtain

∂D̄
∂τs

+
1
2
σ2

1D̄2 − kD̄ = 0,

∂Ē
∂τs

+ kD̄ = 0,

∂C̄
∂τs

+
1
2
σ2

2Ē2 + kv̄D̄ + λĒ = 0,

with τs = t − s, and the initial condition

D̄(ϕ; τ, 0) = D(ϕ, τ), Ē(ϕ; τ, 0) = E(ϕ, τ), C̄(ϕ; τ, 0) = 0.

Obviously, the first two ODEs can be directly solved, which could contribute to solving the ODE for
C̄(ϕ; τ, τs), so that

C̄(ϕ; τ, τs) =
∫ τs

0

1
2
σ2

2Ē2(ϕ; τ, p) + λĒ(ϕ; τ, p)dp +
∫ τs

0
kv̄tD̄(ϕ; τ, p)dp. (A-9)

As a result, by letting s = 0, we could finally reach our target. This has completed the proof.

Appendix B

We now prove Proposition 2.2. The variance swap price is equal to

Kvar =
1002

T

N∑
i=1

E
(S ti − S ti−1

S ti−1

)2
=

1002

T

N∑
i=1

E
[
(eyti − 1)2

]
=

1002

T

N∑
i=1

E
(
e2yti − 2eyti + 1

)
=

1002

T

N∑
i=1

[µ(−2 j; ti−1, ti, v0, θ0, X0) − 2µ(− j; ti−1, ti, v0, θ0, X0) + 1], (B-1)

according to the specific formulation of the forward characteristic function.
We now start to deal with volatility swaps. We can compute

E[|
S ti − S ti−1

S ti−1

|] =
∫ +∞

0
(eyti − 1)p(yti)dyti +

∫ 0

−∞

(1 − eyti )p(yti)dyti ,

= −

∫ +∞

0
p(yti)dyti +

∫ 0

−∞

p(yti)dyti

+

∫ +∞

0
eyti p(yti)dyti −

∫ 0

−∞

eyti p(yti)dyti , (B-2)
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with p(yti) defined as the forward density function of yti . Clearly, all we need to do is to work out the
four integrations. In fact, considering the fact that p(yti) is a density function, we could easily obtain∫ +∞

0
p(yti)dyti =

1
2
+

1
π

∫ +∞

0
RE

[
µ(ϕ; v0, θ0, X0, ti−1, ti)

jϕ

]
dϕ, (B-3)

which is a famous theory relating the characteristic function and the density. Moreover, it should also
be pointed out that ∫ +∞

−∞

eyti p(yti)dyti = µ(− j; v0, θ0, X0, ti−1, ti), (B-4)

which would lead to the conclusion that

µ̄(ϕ; v0, θ0, X0, ti−1, ti) =
µ(ϕ − j; v0, θ0, X0, ti−1, ti)
µ(− j; v0, θ0, X0, ti−1, ti)

(B-5)

denotes a characteristic function corresponding to a density
eyti p(yti)

µ(− j; v0, θ0, X0, ti−1, ti)
. Therefore, one

could obtain∫ +∞

0

eyti p(yti)
µ(− j; v0, θ0, X0, ti−1, ti)

dyti =
1
2
+

1
π

∫ +∞

0
RE

[
µ(ϕ − j; v0, θ0, X0, ti−1, ti)
jϕµ(− j; v0, θ0, X0, ti−1, ti)

]
dϕ. (B-6)

Combining Eqs (B-3) and (B-6) will lead us to the following equality

E
[∣∣∣∣∣∣S ti − S ti−1

S ti−1

∣∣∣∣∣∣
]
=

2
π

∫ +∞

0
RE

[
µ(ϕ − j; v0, θ0, X0, ti−1, ti) − µ(ϕ; v0, θ0, X0, ti−1, ti)

jϕ

]
dϕ, (B-7)

from which we could reach

Kvol = 100
√
π

2NT

N∑
i=1

E
[∣∣∣∣∣∣S ti − S ti−1

S ti−1

∣∣∣∣∣∣
]

= 100

√
2
πNT

∫ +∞

0

N∑
i=1

RE
[
µ(ϕ − j; v0, θ0, X0, ti−1, ti) − µ(ϕ; v0, θ0, X0, ti−1, ti)

jϕ

]
dϕ. (B-8)
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