This article delves deeply into some mathematical basic theorems and their diverse applications in a variety of domains. The major issue of interest is the Banach Fixed Point Theorem (BFPT), which states the existence of a unique fixed point in fractional metric spaces. The significance of this theorem stems from its utility in a variety of mathematical situations for approximating solutions and resolving iterative problems. On this foundational basis, the study expands by introducing the concept of fractional geometric contraction mappings, which provide a new perspective on how convergence develops in fractional metric spaces.
Citation: Haitham Qawaqneh, Hasanen A. Hammad, Hassen Aydi. Exploring new geometric contraction mappings and their applications in fractional metric spaces[J]. AIMS Mathematics, 2024, 9(1): 521-541. doi: 10.3934/math.2024028
This article delves deeply into some mathematical basic theorems and their diverse applications in a variety of domains. The major issue of interest is the Banach Fixed Point Theorem (BFPT), which states the existence of a unique fixed point in fractional metric spaces. The significance of this theorem stems from its utility in a variety of mathematical situations for approximating solutions and resolving iterative problems. On this foundational basis, the study expands by introducing the concept of fractional geometric contraction mappings, which provide a new perspective on how convergence develops in fractional metric spaces.
[1] | S. Banach, Sur opérations dans les ensembles abstraits et leur application auxéquations integrales, Fund. Math., 3 (1922), 133–181. |
[2] | I. H. Jebril, S. K. Datta, R. Sarkar, N. Biswas, Common fixed point theorem in probabilistic metric space using Lukasiecz $t$-norm and product $t$-norm, J. Stat. Appl. Prob., 10 (2021), 635–639. http://doi.org/10.18576/jsap/100303 doi: 10.18576/jsap/100303 |
[3] | H. Qawaqneh, M. S. M. Noorani, W. Shatanawi, Fixed point theorems for $(\alpha, k, \theta)$-contractive multi-valued mapping in $b$-metric space and applications, Int. J. Math. Comput. Sci., 14 (2018), 263–283. |
[4] | H. Qawaqneh, M. S. M. Noorani, W. Shatanawi, H. Aydi, H. Alsamir, Fixed point results for multi-valued contractions in $b$-metric spaces and an application, Mathematics, 7 (2019), 132. https://doi.org/10.3390/math7020132 doi: 10.3390/math7020132 |
[5] | H. R. Marasi, H. Aydi, Existence and uniqueness results for two-term nonlinear fractional differential equations via a fixed point technique, J. Math., 2021 (2021), 6670176. https://doi.org/10.1155/2021/6670176 doi: 10.1155/2021/6670176 |
[6] | H. Jafari, R. M. Ganji, N. S. Nkomo, Y. P. Lv, A numerical study of fractional order population dynamics model, Results phys., 27 (2021), 104456. https://doi.org/10.1016/j.rinp.2021.104456 doi: 10.1016/j.rinp.2021.104456 |
[7] | H. A. Hammad, M. Zayed, Solving systems of coupled nonlinear Atangana-Baleanu-type fractional differential equations, Bound. Value Probl., 2022 (2022), 101. https://doi.org/10.1186/s13661-022-01684-0 doi: 10.1186/s13661-022-01684-0 |
[8] | H. A. Hammad, M. De la Sen, H. Aydi, Generalized dynamic process for an extended multi-valued $F$-contraction in metric-like spaces with applications, Alex. Eng. J., 59 (2020), 3817–3825. https://doi.org/10.1016/j.aej.2020.06.037 doi: 10.1016/j.aej.2020.06.037 |
[9] | I. Beg, M. Abbas, Common fixed points and best approximation in convex metric spaces, Soochow J. Math., 33 (2007), 729. |
[10] | D. Burago, Y. Burago, S. Ivanov, A course in metric geometry, American Mathematical Society, 33 (2001). https://doi.org/10.1090/gsm/033 |
[11] | R. Kannan, Some results on fixed points, Bull. Cal. Math. Soc., 60 (1968), 71–76. |
[12] | N. A. Abdul-Razaq, H. S. Mohammed, N. L. Housen, Existence and uniqueness solutions for nonlinear fractional differential equations with fractional integral boundary conditions, J. Interdiscip. Math., 24 (2021), 1831–1840. https://doi.org/10.1080/09720502.2021.1963519 doi: 10.1080/09720502.2021.1963519 |
[13] | A. Ahmed, B. Ahmad, A. Assolami, S. K. Ntouyas, On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions, AIMS Mathematics, 7 (2022), 12718–12741. https://doi.org/10.3934/math.2022704 doi: 10.3934/math.2022704 |
[14] | A. Alsaedi, F. M. Alotaibi, B. Ahmad, Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions, AIMS Mathematics, 7 (2022), 8314–8329. https://doi.org/10.3934/math.2022463 doi: 10.3934/math.2022463 |
[15] | V. Stojiljković, A new conformable fractional derivative and applications, Selecciones Matemáticas, 9 (2022), 370–380. https://doi.org/10.17268/sel.mat.2022.02.12 doi: 10.17268/sel.mat.2022.02.12 |
[16] | C. S. V. Bose, R. Udhayakumar, M. Savatovć, A. Deiveegan, V. Todorčevć, S. Radenovć, Existence of mild solution of the Hilfer fractional differential equations with infinite delay on an infinite interval, Fractal Fract., 7 (2023), 724. https://doi.org/10.3390/fractalfract7100724 doi: 10.3390/fractalfract7100724 |
[17] | E. V. Denardo, Contraction mappings in the theory underlying dynamic programming, SIAM Rev., 9 (1967), 165–177. https://doi.org/10.1137/100903 doi: 10.1137/100903 |
[18] | W. Rudin, Principles of mathematical analysis, 3 Eds., McGraw-Hill, Inc., 1976. |
[19] | M. Caputo, Linear model of dissipation whose Q is almost frequency independent-II, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x |
[20] | H. M. Srivastava, R. K. Saxena, Operators of fractional integration and their applications, Appl. Math. Comput., 118 (2001), 1–52. https://doi.org/10.1016/S0096-3003(99)00208-8 doi: 10.1016/S0096-3003(99)00208-8 |
[21] | J. Brzdek, E. Karapınar, A. Petruşel, A fixed point theorem and the Ulam stability in generalized dq-metric spaces, J. Math. Anal. Appl., 467 (2018), 501–520. https://doi.org/10.1016/j.jmaa.2018.07.022 doi: 10.1016/j.jmaa.2018.07.022 |
[22] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993. |
[23] | U. Khristenko, B. Wohlmuth, Solving time-fractional differential equations via rational approximation, IMA J. Numer. Anal., 43 (2023), 1263–1290. https://doi.org/10.1093/imanum/drac022 doi: 10.1093/imanum/drac022 |
[24] | A. E. Matouk, I. Khan, Complex dynamics and control of a novel physical model using nonlocal fractional differential operator with singular kernel, J. Adv. Res., 24 (2020), 463–474. https://doi.org/10.1016/j.jare.2020.05.003 doi: 10.1016/j.jare.2020.05.003 |
[25] | M. I. Troparevsky, S. A. Seminara, M. A. Fabio, A Review on fractional differential equations and a numerical method to solve some boundary value problems, In: Nonlinear systems-theoretical aspects and recent applications, 2019. https://doi.org/10.5772/intechopen.86273 |
[26] | C. Li, Y. Chen, J. Kurths, Fractional calculus and its applications, Phil. Trans. R. Soc. A., 371 (2013), 20130037. https://doi.org/10.1098/rsta.2013.0037 doi: 10.1098/rsta.2013.0037 |
[27] | M. D. Johansyah, A. K. Supriatna, E. Rusyaman, J. Saputra, Application of fractional differential equation in economic growth model: A systematic review approach, AIMS Mathematics, 6 (2021), 10266–10280. https://doi.org/10.3934/math.2021594 doi: 10.3934/math.2021594 |
[28] | S. N. T. Polat, A. T. Dincel, Euler wavelet method as a numerical approach for the solution of nonlinear systems of fractional differential equations, Fractal Fract., 7 (2023), 246. https://doi.org/10.3390/fractalfract7030246 doi: 10.3390/fractalfract7030246 |
[29] | D. Pumplun, The metric completion of convex sets and modules, Result Math., 41 (2002), 346–360. https://doi.org/10.1007/BF03322777 doi: 10.1007/BF03322777 |
[30] | Humaira, H. A. Hammad, M. Sarwar, M. De la Sen, Existence theorem for a unique solution to a coupled system of impulsive fractional differential equations in complex-valued fuzzy metric spaces, Adv. Differ. Equ., 2021 (2021), 242. https://doi.org/10.1186/s13662-021-03401-0 doi: 10.1186/s13662-021-03401-0 |
[31] | R. Almeida, N. R. O. Bastos, M. T. T. Monteiro, Modeling some real phenomena by fractional differential equations, Math. Methods Appl. Sci., 39 (2016), 4846–4855. https://doi.org/10.1002/mma.3818 doi: 10.1002/mma.3818 |