The paper presents a novel analysis of interrelations between ordinary (crisp) $ \sigma $-algebras and soft $ \sigma $-algebras. It is known that each soft $ \sigma $-algebra produces a system of crisp (parameterized) $ \sigma $-algebras. The other way round is also possible. That is to say, one can generate a soft $ \sigma $-algebra from a system of crisp $ \sigma $-algebras. Different methods of producing soft $ \sigma $-algebras are discussed by implementing two formulas. It is demonstrated how these formulas can be used in practice with the aid of some examples. Furthermore, we study the fundamental properties of soft $ \sigma $-algebras. Lastly, we show that elements of a soft $ \sigma $-algebra contain information about a specific event.
Citation: Tareq M. Al-shami, Zanyar A. Ameen, Abdelwaheb Mhemdi. The connection between ordinary and soft $ \sigma $-algebras with applications to information structures[J]. AIMS Mathematics, 2023, 8(6): 14850-14866. doi: 10.3934/math.2023759
The paper presents a novel analysis of interrelations between ordinary (crisp) $ \sigma $-algebras and soft $ \sigma $-algebras. It is known that each soft $ \sigma $-algebra produces a system of crisp (parameterized) $ \sigma $-algebras. The other way round is also possible. That is to say, one can generate a soft $ \sigma $-algebra from a system of crisp $ \sigma $-algebras. Different methods of producing soft $ \sigma $-algebras are discussed by implementing two formulas. It is demonstrated how these formulas can be used in practice with the aid of some examples. Furthermore, we study the fundamental properties of soft $ \sigma $-algebras. Lastly, we show that elements of a soft $ \sigma $-algebra contain information about a specific event.
[1] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[2] | Z. Pawlak, Rough sets, Int. J. Comput. Informa. Sci., 11 (1982), 341–356. |
[3] | M. B. Gorzałczany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Sets Syst., 21 (1987), 1–17. https://doi.org/10.1016/0165-0114(87)90148-5 doi: 10.1016/0165-0114(87)90148-5 |
[4] | D. Molodtsov, Soft set theory-First results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5 |
[5] | F. Feng, Q. Wang, R. R. Yager, J. C. R. Alcantud, L. Y. Zhang, Maximal association analysis using logical formulas over soft sets, Expert Syst. Appl., 159 (2020), 113557. https://doi.org/10.1016/j.eswa.2020.113557 doi: 10.1016/j.eswa.2020.113557 |
[6] | G. Santos-García, J. C. R. Alcantud, Ranked soft sets, Expert Syst., 2023, e13231. https://doi.org/10.1111/exsy.13231 doi: 10.1111/exsy.13231 |
[7] | D. W. Pei, D. Q. Miao, From soft sets to information systems, In: 2005 IEEE international conference on granular computing, 2005. https://doi.org/10.1109/GRC.2005.1547365 |
[8] | J. M. Zhan, J. C. R. Alcantud, A survey of parameter reduction of soft sets and corresponding algorithms, Artif. Intell. Rev., 52 (2019), 1839–1872. https://doi.org/10.1007/s10462-017-9592-0 doi: 10.1007/s10462-017-9592-0 |
[9] | T. M. Al-shami, Soft somewhat open sets: Soft separation axioms and medical application to nutrition, Comput. Appl. Math., 41 (2022), 216. https://doi.org/10.1007/s40314-022-01919-x doi: 10.1007/s40314-022-01919-x |
[10] | O. Dalkılıç, N. Demirtaş, Algorithms for Covid-19 outbreak using soft set theory: estimation and application, Soft Comput., 27 (2022), 3203–3211. |
[11] | P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. https://doi.org/10.1016/S0898-1221(02)00216-X doi: 10.1016/S0898-1221(02)00216-X |
[12] | S. Yuksel, T. Dizman, G. Yildizdan, U. Sert, Application of soft sets to diagnose the prostate cancer risk, J. Inequal. Appl., 2013 (2013), 229. |
[13] | H. Aktaş, N. Çaǧman, Soft sets and soft groups, Inform. Sci., 177 (2007), 2726–2735. https://doi.org/10.1016/j.ins.2006.12.008 doi: 10.1016/j.ins.2006.12.008 |
[14] | U. Acar, F. Koyuncu, B. Tanay, Soft sets and soft rings, Comput. Math. Appl., 59 (2010), 3458–3463. https://doi.org/10.1016/j.camwa.2010.03.034 doi: 10.1016/j.camwa.2010.03.034 |
[15] | S. K. Sardar, S. Gupta, Soft category theory-an introduction, J. Hyperstructures, 2 (2013). |
[16] | M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006 doi: 10.1016/j.camwa.2011.02.006 |
[17] | T. M. Al-shami, Z. A. Ameen, A. A. Azzam, M. E. El-Shafei, Soft separation axioms via soft topological operators, AIMS mathematics, 7 (2022), 15107–15119. http://doi.org/10.3934/math.2022828 doi: 10.3934/math.2022828 |
[18] | T. M. Al-shami, New soft structure: Infra soft topological spaces, Math. Probl. Eng., 2021 (2021), 3361604. https://doi.org/10.1155/2021/3361604 doi: 10.1155/2021/3361604 |
[19] | T. M. Al-shami, M. E. El-Shafei, Two types of separation axioms on supra soft topological spaces, Demonstr. Math., 52 (2019), 147–165. https://doi.org/10.1515/dema-2019-0016 doi: 10.1515/dema-2019-0016 |
[20] | T. M. Al-shami, M. E. El-Shafei, On supra soft topological ordered spaces, Arab J. Basic Appl. Sci., 26 (2019), 433–445. https://doi.org/10.1080/25765299.2019.1664101 doi: 10.1080/25765299.2019.1664101 |
[21] | Z. A. Ameen, T. M. Al-shami, A. Mhemdi, M. E. El-Shafei, The role of soft $\theta$-Topological operators in characterizing various soft separation axioms, J. Math., 2022 (2022), 9073944. https://doi.org/10.1155/2022/9073944 doi: 10.1155/2022/9073944 |
[22] | B. A. Asaad, T. M. Al-shami, Z. A. Ameen, On soft somewhere dense open functions and soft Baire spaces, Iraqi J. Sci., 64 (2023), 373–384. https://doi.org/10.24996/ijs.2023.64.1.35 doi: 10.24996/ijs.2023.64.1.35 |
[23] | T. M. Al-shami, A. Mhemdi, R. Abu-Gdairid, A Novel framework for generalizations of soft open sets and its applications via soft topologies, Mathematics, 11 (2023), 840. https://doi.org/10.3390/math11040840 doi: 10.3390/math11040840 |
[24] | T. M. Al-shami, A. Mhemdi, A weak form of soft $\alpha$-open sets and its applications via soft topologies, AIMS mathematics, 8 (2023), 11373–11396. https://doi.org/10.3934/math.2023576 doi: 10.3934/math.2023576 |
[25] | Z. A. Ameen, B. A. Asaad, T. M. Al-shami, Soft somewhat continuous and soft somewhat open functions, TWMS J. Appl. Eng. Math., 13 (2023), 792–806. https://doi.org/10.48550/arXiv.2112.15201 doi: 10.48550/arXiv.2112.15201 |
[26] | D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst., 17 (1990), 191–209. https://doi.org/10.1080/03081079008935107 doi: 10.1080/03081079008935107 |
[27] | F. Feng, C. X. Li, B. Davvaz, M. I. Ali, Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Comput., 14 (2010), 899–911. |
[28] | T. M. Al-shami J. C. R. Alcantud, A. Mhemdi, New generalization of fuzzy soft sets: $(a, b)$-Fuzzy soft sets, AIMS Mathematics, 8 (2023), 2995–3025. https://doi.org/10.3934/math.2023155 doi: 10.3934/math.2023155 |
[29] | M. Saqlain, M. Riaz, R. Imran, F. Jarad, Distance and similarity measures of intuitionistic fuzzy hypersoft sets with application: Evaluation of air pollution in cities based on air quality index, AIMS Mathematics, 8 (2023), 6880–6899. https://doi.org/10.3934/math.2023348 doi: 10.3934/math.2023348 |
[30] | J. Sanabria, K. Rojo, F. Abad, A new approach of soft rough sets and a medical application for the diagnosis of Coronavirus disease, AIMS Mathematics, 8 (2023), 2686–2707. https://doi.org/10.3934/math.2023141 doi: 10.3934/math.2023141 |
[31] | H. Z. Ibrahim, T. M. Al-shami, A. Mhemdi, Applications of $n^th$ power root fuzzy sets in multicriteria decision making, J. Math., 2023 (2023), 1487724. https://doi.org/10.1155/2023/1487724 doi: 10.1155/2023/1487724 |
[32] | H. S. Witsenhausen, Separation of estimation and control for discrete time systems, Proc. IEEE, 59 (1971), 1557–1566. https://doi.org/10.1109/PROC.1971.8488 doi: 10.1109/PROC.1971.8488 |
[33] | J. Marschak, R. Radner, Economic Theory of Teams, New Haven: Yale University Press, 1972. |
[34] | X. S. Lin, Introductory Stochastic Analysis for Finance and Insurance, John Wiley & Sons, 2006. |
[35] | A. Z. Khameneh, A. Kilicman, On soft $\sigma$-algebras, Malays. J. Math. Sci., 7 (2013), 17–29. |
[36] | M. Riaz, K. Naeem, M. O. Ahmad, Novel concepts of soft sets with applications, Annal. Fuzzy Math. Inform., 13 (2017), 239–251. |
[37] | M. I. Ali, F. Feng, X. Y. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009 doi: 10.1016/j.camwa.2008.11.009 |
[38] | S. Das, S. K. Samanta, Soft metric, Ann. Fuzzy Math. Inform., 6 (2013), 77–94. |
[39] | P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6 doi: 10.1016/S0898-1221(03)00016-6 |
[40] | M. Terepeta, On separating axioms and similarity of soft topological spaces, Soft Comput., 23 (2019), 1049–1057. |
[41] | K. Kytölä, Probability Theory, Helsinki: Aalto University, 2020. |
[42] | A. Kharal, B. Ahmad, Mappings on soft classes, New Math. Nat. Comput., 7 (2011), 471–481. https://doi.org/10.1142/S1793005711002025 doi: 10.1142/S1793005711002025 |
[43] | İ. Zorlutuna, M. Akdag, W. K. Min, S. Atmaca, Remarks on soft topological spaces, Annal. fuzzy Math. Inform., 3 (2012), 171–185. |