Processing math: 100%
Research article

Set-valued fractional programming problems with σ-arcwisely connectivity

  • In this paper, we determine the sufficient Karush-Kuhn-Tucker (KKT) conditions of optimality of a set-valued fractional programming problem (in short, SVFP) (FP) under the suppositions of contingent epidifferentiation and σ-arcwisely connectivity. We additionally explore the results of duality of parametric (PD), Mond-Weir (MWD), Wolfe (WD), and mixed (MD) kinds for the problem (FP).

    Citation: Koushik Das, Savin Treanţă, Muhammad Bilal Khan. Set-valued fractional programming problems with σ-arcwisely connectivity[J]. AIMS Mathematics, 2023, 8(6): 13181-13204. doi: 10.3934/math.2023666

    Related Papers:

    [1] Koushik Das, Savin Treanţă, Thongchai Botmart . Set-valued minimax programming problems under σ-arcwisely connectivity. AIMS Mathematics, 2023, 8(5): 11238-11258. doi: 10.3934/math.2023569
    [2] Javid Iqbal, Imran Ali, Puneet Kumar Arora, Waseem Ali Mir . Set-valued variational inclusion problem with fuzzy mappings involving XOR-operation. AIMS Mathematics, 2021, 6(4): 3288-3304. doi: 10.3934/math.2021197
    [3] Na Mi, Juhe Sun, Li Wang, Yu Liu . Alternating direction method for the fixed point problem of set-valued mappings with second-order cone double constraints. AIMS Mathematics, 2023, 8(3): 6389-6406. doi: 10.3934/math.2023323
    [4] Adel Lachouri, Naas Adjimi, Mohammad Esmael Samei, Manuel De la Sen . Non-separated inclusion problem via generalized Hilfer and Caputo operators. AIMS Mathematics, 2025, 10(3): 6448-6468. doi: 10.3934/math.2025294
    [5] M. E. Elbrolosy . Semi-(E,F)-convexity in complex programming problems. AIMS Mathematics, 2022, 7(6): 11119-11131. doi: 10.3934/math.2022621
    [6] Murugesan Manigandan, Kannan Manikandan, Hasanen A. Hammad, Manuel De la Sen . Applying fixed point techniques to solve fractional differential inclusions under new boundary conditions. AIMS Mathematics, 2024, 9(6): 15505-15542. doi: 10.3934/math.2024750
    [7] Yuna Oh, Jun Moon . The infinite-dimensional Pontryagin maximum principle for optimal control problems of fractional evolution equations with endpoint state constraints. AIMS Mathematics, 2024, 9(3): 6109-6144. doi: 10.3934/math.2024299
    [8] Ziran Yin, Chongyang Liu, Xiaoyu Chen, Jihong Zhang, Jinlong Yuan . A comprehensive characterization of the robust isolated calmness of Ky Fan k-norm regularized convex matrix optimization problems. AIMS Mathematics, 2025, 10(3): 4955-4969. doi: 10.3934/math.2025227
    [9] Morris W. Hirsch . Monotone Dynamical Systems with Polyhedral Order Cones and Dense Periodic Points. AIMS Mathematics, 2017, 2(1): 24-27. doi: 10.3934/Math.2017.1.24
    [10] Nashat Faried, Sahar Mohamed Ali Abou Bakr, H. Abd El-Ghaffar, S. S. Solieman Almassri . Towards coupled coincidence theorems of generalized admissible types of mappings on partial satisfactory cone metric spaces and some applications. AIMS Mathematics, 2023, 8(4): 8431-8459. doi: 10.3934/math.2023425
  • In this paper, we determine the sufficient Karush-Kuhn-Tucker (KKT) conditions of optimality of a set-valued fractional programming problem (in short, SVFP) (FP) under the suppositions of contingent epidifferentiation and σ-arcwisely connectivity. We additionally explore the results of duality of parametric (PD), Mond-Weir (MWD), Wolfe (WD), and mixed (MD) kinds for the problem (FP).



    The theory of fixed points is considered to be the most delightful and energetic field of investigations in the development of mathematical analysis. In this scope, the notion of metric space [1] is one of pillars of not only mathematics but also physical sciences. Due to its noteworthy and remarkable contribution in different fields, it has been extended, improved and generalized in various ways.

    In recent years, many interesting generalizations (or extensions) of the metric space concept appeared. The famous extensions of the concept of metric spaces have been done by Bakhtin [2] which was formally defined by Czerwik [3] in 1993. Czerwik [3] gave the idea of b -metric space which broaden the notion of metric space by improving the triangle equality metric axiom by putting a constant s1 multiplied to the right-hand side, is one of the enormous applied extensions for metric spaces. Khamsi et al. [4] reintroduced this notion under the name metric-type and proved some fixed point results in this newly introduced space. In [5], Branciari gave the notion of rectangular metric space and generalized the classical metric space by replacing the triangle inequality with more general inequality that is called rectangular inequality. This inequality involves distance of four points. In 2018, Jleli et al. [6] gave a compulsive extension of a metric space, b -metric space and rectangular metric space which is known as F -metric space. Later on, Al-Mazrooei et al. [7] utilized F -metric space and investigated some fixed point theorems for rational contraction which involves non-negative constants. For more details, we refer the researchers [8,9,10,11,12,13,14,15,16,17,18,19,20]

    In this research article, we improve rational contraction of Al-Mazrooei et al. [7] by adding one more rational expression in it and replacing non-negative constants with control functions of two variables. We prove some common fixed point results which are generalizations of fixed point results in the context of F-metric spaces. As outcomes of our main results, we derive common fixed point theorems for rational contractions involving control functions of one variable. In this way, we derive the leading results of Jleli et al. [6] and Ahmad et al. [7]. We also establish some results in F-metric space equipped with a directed graph G. As an application, we investigate the solution to nonlinear neutral differential equation.

    Let us recall some related material to be used to establish our main results. Recall that Czerwik [3] gave the notion of b-metric space as follows:

    Definition 1. (see [3]) Let Θ and s1 be a constant. A function ς:Θ×Θ [0,) is called a b-metric if the following assertions hold:

    (b1) ς(ϱ,)0 and ς(ϱ,)=0 if and only if ϱ=;

    (b2) ς(ϱ,)=ς(,ϱ);

    (b3) ς(ϱ,φ)s[ς(ϱ,)+ς(,φ)];

    for all ϱ,,φΘ.

    The pair (Θ,ς) is then said to be a b-metric space.

    Jleli et al. [6] gave a fascinating extension of metric space and b -metric space as follows. Let F be a set of functions f:(0,+)R satisfying

    (F1) f is non-decreasing,

    (F2) for each {ϱȷ}R+, limȷϱȷ=0 if and only if limȷf(ϱȷ)=.

    Definition 2. (see [6]) Let Θ and ς:Θ×Θ[0,+). Assume that there exists (f,h)F×[0,+) such that

    (D1) (ϱ,)Θ×Θ, ς(ϱ,)=0 if and only if ϱ=,

    (D2) ς(ϱ,)=ς(,ϱ), for all (ϱ,)Θ×Θ,

    (D3) for every (ϱ,)Θ×Θ, for every NN, N2, and for every (ϱi)Ni=1Θ, with

    (ϱ1,ϱN)=(ϱ,),

    we have

    ς(ϱ,)>0   implies f(ς(ϱ,))f(N1i=1ς(ϱi,ϱi+1))+h.

    Then (Θ,ς) is called a F-metric space.

    Example 1. Let Θ=R and ς:Θ×Θ[0,+) be defined by

    ς(ϱ,)={(ϱ)2 if(ϱ,)[0,2]×[0,2]|ϱ| if(ϱ,)[0,2]×[0,2]

    with f(t)=ln(t) and h=ln(2), then (Θ,ς) is a F-metric space.

    Definition 3. (see [6]) Let (Θ,ς) be F-metric space,

    (i) a sequence {ϱȷ} in Θ is said to be F-convergent to ϱΘ if {ϱȷ} is convergent to ϱ with respect to the F-metric ς;

    (ii) a sequence {ϱȷ} is F-Cauchy, if

    limȷ,mς(ϱȷ,ϱm)=0;

    (iii) if every F-Cauchy sequence in Θ is F -convergent to a point of Θ, then (Θ,ς) is said to be a F-complete.

    Theorem 1. (see [6]) Let (Θ,ς) be a F-complete F-metric space and :ΘΘ. Assume that there exists α[0,1) such that

    ς((ϱ),())ας(ϱ,)

    for all ϱ,Θ, then has a unique fixed point ϱΘ. Moreover, for any ϱ0Θ, the sequence {ϱȷ}Θ defined by

    ϱȷ+1=(ϱȷ), ȷN,

    is F-convergent to ϱ.

    Subsequently, Hussain et al. [14] defined α-ψ-contraction in the background of F-metric spaces and generalized the main result of Jleli et al. [6]. Later on, Ahmad et al. [7] defined a rational contraction in F-metric space and proved the following result as generalization of main theorem of Jleli et al. [6].

    Theorem 2. (see [7]) Let (Θ,ς) be a F-complete F-metric space and :ΘΘ. Assume that there exists α,β[0,1) such that

    ς((ϱ),())ας(ϱ,)+βς(ϱ,ϱ)ς(,)1+ς(ϱ,)

    for all ϱ,Θ, then has a unique fixed point.

    We start this section with the following proposition which is helpful in proving our main result.

    Proposition 1. Let (Θ,ς) be a F-metric space and 1,2:(Θ,ς)(Θ,ς). Let ϱ0 Θ. Define the sequence {ϱȷ} by

    ϱ2ȷ+1=1ϱ2ȷandϱ2ȷ+2=2ϱ2ȷ+1 (3.1)

    for all ȷ=0,1,2,....

    Assume that there exist α:Θ×Θ[0,1) satisfying

    α(21ϱ,)α(ϱ,) and α(ϱ,12)α(ϱ,)

    for all ϱ,Θ. Then

    α(ϱ2ȷ,)α(ϱ0,) and α(ϱ,ϱ2ȷ+1)α(ϱ,ϱ1)

    for all ϱ,Θ and ȷ=0,1,2,....

    Proof. Let ϱ,Θ and ȷ=0,1,2,... Then we have

    α(ϱ2ȷ,)=α(21ϱ2ȷ2,)α(ϱ2ȷ2,)= α(21ϱ2ȷ4,)α(ϱ2ȷ4,)α(ϱ0,).

    Similarly, we have

    α(ϱ,ϱ2ȷ+1)=α(ϱ,12ϱ2ȷ1)α(ϱ,ϱ2ȷ1)=α(ϱ,12ϱ2ȷ3)α(ϱ,ϱ2ȷ3)α(ϱ,ϱ1).

    Hence, the proof is completed.

    Lemma 1. Let (Θ,ς) be a F-metric space and α,β:Θ×Θ[0,1). If 1,2:Θ Θ satisfy

    ς(1ϱ,21ϱ)α(ϱ,1ϱ)ς(ϱ,1ϱ)+β(ϱ,1ϱ)ς(ϱ,1ϱ)ς(1ϱ,21ϱ)1+ς(ϱ,1ϱ)

    and

    ς(12,2)α(2,)ς(2,)+β(2,)ς(2,12)ς(,2)1+ς(2,)

    for all ϱ, Θ, then

    ς(1ϱ,21ϱ)α(ϱ,1ϱ)ς(ϱ,1ϱ)+β(ϱ,1ϱ)ς(1ϱ,21ϱ)

    and

    ς(12,2)α(2,)ς(2,)+β(2,)ς(2,12).

    Proof. Using the hypothesis, we have

    ς(1ϱ,21ϱ)α(ϱ,1ϱ)ς(ϱ,1ϱ)+β(ϱ,1ϱ)ς(ϱ,1ϱ)ς(1ϱ,21ϱ)1+ς(ϱ,1ϱ)α(ϱ,1ϱ)ς(ϱ,1ϱ)+β(ϱ,1ϱ)ς(ϱ,1ϱ)1+ς(ϱ,1ϱ)ς(1ϱ,21ϱ)α(ϱ,1ϱ)ς(ϱ,1ϱ)+β(ϱ,1ϱ)ς(1ϱ,21ϱ).

    Similarly, we have

    ς(12,2)α(2,)ς(2,)+β(2,)ς(2,12)ς(,2)1+ς(2,)α(2,)ς(2,)+β(2,)ς(,2)1+ς(2,)ς(2,12)α(2,)ς(2,)+β(2,)ς(2,12).

    Theorem 3. Let (Θ,ς) be a F-complete F-metric space and 1,2:Θ Θ. If there exist mappings α,β,γ:Θ×Θ[0,1) such that

    (a) α(21ϱ,)α(ϱ,) and α(ϱ,12)α(ϱ,)

         β(21ϱ,)β(ϱ,) and β(ϱ,12)β(ϱ,)

         γ(21ϱ,)γ(ϱ,) and γ(ϱ,12)γ(ϱ,),

    (b) α(ϱ,)+β(ϱ,)+γ(ϱ,)<1,

    (c)

    ς(1ϱ,2)α(ϱ,)ς(ϱ,)+β(ϱ,)ς(ϱ,1ϱ)ς(,2)1+ς(ϱ,)+γ(ϱ,)ς(,1ϱ)ς(ϱ,2)1+ς(ϱ,) , (3.2)

    for all ϱ, Θ, then 1 and 2 have a unique common fixed point.

    Proof. Let ϱ,Θ. From (3.2), we have

    ς(1ϱ,21ϱ)α(ϱ,1ϱ)ς(ϱ,1ϱ)+β(ϱ,1ϱ)ς(ϱ,1ϱ)ς(1ϱ,21ϱ)1+ς(ϱ,1ϱ)=α(ϱ,1ϱ)ς(ϱ,1ϱ)+β(ϱ,1ϱ)ς(ϱ,1ϱ)ς(1ϱ,21ϱ)1+ς(ϱ,1ϱ).

    By Lemma 1, we get

    ς(1ϱ,21ϱ)α(ϱ,1ϱ)ς(ϱ,1ϱ)+β(ϱ,1ϱ)ς(1ϱ,21ϱ). (3.3)

    Similarly, we have

    ς(12,2)α(2,)ς(2,)+β(2,)ς(2,12)ς(,2)1+ς(2,)+γ(ϱ,)ς(,12)ς(2,2)1+ς(2,)=α(2,)ς(2,)+β(2,)ς(2,12)ς(,2)1+ς(2,).

    By Lemma 1, we get

    ς(12,2)α(2,)ς(2,)+β(2,)ς(2,12). (3.4)

    Let ϱ0 Θ and the sequence {ϱȷ} be defined by (3.1). From Proposition 1, (3.3), (3.4) and for all ȷ=0,1,2,...

    ς(ϱ2ȷ+1,ϱ2ȷ)=ς(12ϱ2ȷ1,2ϱ2ȷ1)α(2ϱ2ȷ1,ϱ2ȷ1)ς(2ϱ2ȷ1,ϱ2ȷ1)+β(2ϱ2ȷ1,ϱ2ȷ1)ς(2ϱ2ȷ1,12ϱ2ȷ1)=α(ϱ2ȷ,ϱ2ȷ1)ς(ϱ2ȷ,ϱ2ȷ1)+β(ϱ2ȷ,ϱ2ȷ1)ς(ϱ2ȷ,ϱ2ȷ+1)α(ϱ0,ϱ2ȷ1)ς(ϱ2ȷ,ϱ2ȷ1)+β(ϱ0,ϱ2ȷ1)ς(ϱ2ȷ,ϱ2ȷ+1)α(ϱ0,ϱ1)ς(ϱ2ȷ,ϱ2ȷ1)+β(ϱ0,ϱ1)ς(ϱ2ȷ,ϱ2ȷ+1)

    which implies that

    ς(ϱ2ȷ+1,ϱ2ȷ)α(ϱ0,ϱ1)1β(ϱ0,ϱ1)ς(ϱ2ȷ,ϱ2ȷ1). (3.5)

    Similarly, we have

    ς(ϱ2ȷ+2,ϱ2ȷ+1)=ς(21ϱ2ȷ,1ϱ2ȷ)α(ϱ2ȷ,1ϱ2ȷ)ς(ϱ2ȷ,1ϱ2ȷ)+β(ϱ2ȷ,1ϱ2ȷ)ς(1ϱ2ȷ,21ϱ2ȷ)=α(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ2ȷ,ϱ2ȷ+1)+β(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ2ȷ+1,ϱ2ȷ+2)α(ϱ0,ϱ2ȷ+1)ς(ϱ2ȷ,ϱ2ȷ+1)+β(ϱ0,ϱ2ȷ+1)ς(ϱ2ȷ+1,ϱ2ȷ+2)α(ϱ0,ϱ1)ς(ϱ2ȷ,ϱ2ȷ+1)+β(ϱ0,ϱ1)ς(ϱ2ȷ+1,ϱ2ȷ+2),

    which implies that

    ς(ϱ2ȷ+2,ϱ2ȷ+1)α(ϱ0,ϱ1)1β(ϱ0,ϱ1)ς(ϱ2ȷ,ϱ2ȷ+1)=α(ϱ0,ϱ1)1β(ϱ0,ϱ1)ς(ϱ2ȷ+1,ϱ2ȷ). (3.6)

    Let λ= α(ϱ0,ϱ1)1β(ϱ0,ϱ1)<1. Then from (3.5) and (3.6), we have

    ς(ϱȷ+1,ϱȷ)λς(ϱȷ,ϱȷ1)

    for all ȷN. Inductively, we can construct a sequence {ϱȷ} in Θ such that

    ς(ϱȷ+1,ϱȷ)λς(ϱȷ,ϱȷ1)ς(ϱȷ+1,ϱȷ)λ2ς(ϱȷ1,ϱȷ2)ς(ϱȷ+1,ϱȷ)λȷς(ϱ1,ϱ0)=λȷς(ϱ0,ϱ1)

    for all ȷN. Let (f,h)F×[0,+) be such that (D3) is satisfied. Let ϵ>0 be fixed. By (F2), there exists δ>0 such that

    0<t<δf(t)<f(δ)h. (3.7)

    Hence, by (3.7), (F1) and (F2), we have

    f(m1i=ȷς(ϱi,ϱi+1))f(m1i=ȷλȷ(ς(ϱ0,ϱ1)))f(ȷȷ(ϵ)λȷς(ϱ0,ϱ1))<f(ϵ)h (3.8)

    for m>ȷȷ(ϵ). Using (D3) and (3.8), we obtain ς(ϱȷ,ϱm)>0, m>ȷȷ(ϵ) implies

    f(ς(ϱȷ,ϱm))f(m1i=ȷς(ϱi,ϱi+1))+h<f(ϵ),

    which yields by (F1) that ς(ϱȷ,ϱm)<ϵ, m>ȷȷ(ϵ). It shows that {ϱȷ} is F-Cauchy. As (Θ,ς) is F-complete, so there exists ϱΘ such that {ϱȷ} is F -convergent to ϱ, i.e.,

    limȷς(ϱȷ,ϱ)=0. (3.9)

    Now, we show that ϱ is fixed point of 1. We contrary suppose that ς(ϱ,1ϱ)>0. Then from (3.2), (F1) and (D3), we have

    f(ς(ϱ,1ϱ))f(ς(ϱ,2ϱ2ȷ+1)+ς(2ϱ2ȷ+1,1ϱ))+hf(ς(ϱ,2ϱ2ȷ+1)+ς(1ϱ,2ϱ2ȷ+1))+hf(ς(ϱ,ϱ2ȷ+2)+(α(ϱ,ϱ2ȷ+1)ς(ϱ,ϱ2ȷ+1)+β(ϱ,ϱ2ȷ+1)ς(ϱ,1ϱ)ς(ϱ2ȷ+1,2ϱ2ȷ+1)1+ς(ϱ,ϱ2ȷ+1)+γ(ϱ,ϱ2ȷ+1)ς(ϱ2ȷ+1,1ϱ)ς(ϱ,2ϱ2ȷ+1)1+ς(ϱ,ϱ2ȷ+1)))+hf(ς(ϱ,ϱ2ȷ+2)+(α(ϱ,ϱ2ȷ+1)ς(ϱ,ϱ2ȷ+1)+β(ϱ,ϱ2ȷ+1)ς(ϱ,1ϱ)ς(ϱ2ȷ+1,ϱ2ȷ+2)1+ς(ϱ,ϱ2ȷ+1)+γ(ϱ,ϱ2ȷ+1)ς(ϱ2ȷ+1,1ϱ)ς(ϱ,ϱ2ȷ+2)1+ς(ϱ,ϱ2ȷ+1)))+h.

    Taking the limit as ȷ and using (F2) and (8), we have

    limȷf(ς(ϱ,1ϱ))limȷf(ς(ϱ,ϱ2ȷ+2)+(α(ϱ,ϱ2ȷ+1)ς(ϱ,ϱ2ȷ+1)+β(ϱ,ϱ2ȷ+1)ς(ϱ,1ϱ)ς(ϱ2ȷ+1,ϱ2ȷ+2)1+ς(ϱ,ϱ2ȷ+1)+γ(ϱ,ϱ2ȷ+1)ς(ϱ2ȷ+1,1ϱ)ς(ϱ,ϱ2ȷ+2)1+ς(ϱ,ϱ2ȷ+1)))+h=,

    which implies that ς(ϱ,1ϱ)=0, a contradiction. Thus ϱ=1ϱ. Now we prove that ϱ is fixed point of 2. Then from (3.2), (F1) and (D3), we have

    f(ς(ϱ,2ϱ))f(ς(ϱ,1ϱ2ȷ)+ς(1ϱ2ȷ,2ϱ))+hf(ς(ϱ,ϱ2ȷ+1)+(α(ϱ2ȷ,ϱ)ς(ϱ2ȷ,ϱ)+β(ϱ2ȷ,ϱ)ς(ϱ2ȷ,1ϱ2ȷ)ς(ϱ,2ϱ)1+ς(ϱ2ȷ,ϱ)+γ(ϱ2ȷ,ϱ)ς(ϱ,1ϱ2ȷ)ς(ϱ2ȷ,2ϱ)1+ς(ϱ2ȷ,ϱ)))+hf(ς(ϱ,ϱ2ȷ+1)+(ς(ϱ,ϱ2ȷ+1)+α(ϱ2ȷ,ϱ)ς(ϱ2ȷ,ϱ)+β(ϱ2ȷ,ϱ)ς(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ,2ϱ)1+ς(ϱ2ȷ,ϱ)+γ(ϱ2ȷ,ϱ)ς(ϱ,ϱ2ȷ+1)ς(ϱ2ȷ,2ϱ)1+ς(ϱ2ȷ,ϱ)))+h.

    Taking the limit as ȷ and using (F2) and (8), we have

    limȷf(ς(ϱ,2ϱ))limȷf(ς(ϱ,ϱ2ȷ+1)+(ς(ϱ,ϱ2ȷ+1)+α(ϱ2ȷ,ϱ)ς(ϱ2ȷ,ϱ)+β(ϱ2ȷ,ϱ)ς(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ,2ϱ)1+ς(ϱ2ȷ,ϱ)+γ(ϱ2ȷ,ϱ)ς(ϱ,ϱ2ȷ+1)ς(ϱ2ȷ,2ϱ)1+ς(ϱ2ȷ,ϱ)))+h=,

    which implies that ς(ϱ,1ϱ)=0, a contradiction. Thus ϱ=2ϱ.Thus ϱ is a common fixed point of 1 and 2. Now we prove that ϱ is unique. We suppose that

    ϱ/=1ϱ/=2ϱ/

    but ϱϱ/. Now from (3.2), we have

    ς(ϱ,ϱ/)=ς(1ϱ,2ϱ/)α(ϱ,ϱ/)ς(ϱ,ϱ/)+β(ϱ,ϱ/)ς(ϱ,ϱ)ς(ϱ/,2ϱ/)1+ς(ϱ,ϱ/)+γ(ϱ,ϱ/)ς(ϱ/,1ϱ)ς(ϱ,2ϱ/)1+ς(ϱ,ϱ/)=α(ϱ,ϱ/)ς(ϱ,ϱ/)+β(ϱ,ϱ/)ς(ϱ,ϱ)ς(ϱ/,ϱ/)1+ς(ϱ,ϱ/)+γ(ϱ,ϱ/)ς(ϱ/,ϱ)ς(ϱ,ϱ/)1+ς(ϱ,ϱ/).

    This implies that, we have

    ς(ϱ,ϱ/)α(ϱ,ϱ/)ς(ϱ,ϱ/)+γ(ϱ,ϱ/)ς(ϱ,ϱ/)ς(ϱ,ϱ/)1+ς(ϱ,ϱ/)α(ϱ,ϱ/)ς(ϱ,ϱ/)+γ(ϱ,ϱ/)ς(ϱ,ϱ/)=(α(ϱ,ϱ/)+γ(ϱ,ϱ/))ς(ϱ,ϱ/).

    As α(ϱ,ϱ/)+γ(ϱ,ϱ/)<1, we have

    ς(ϱ,ϱ/)=0.

    Thus ϱ=ϱ/. Hence, the proof is completed.

    Now, let us introduce the following example.

    Example 2. Let Θ={Sȷ=2ȷ+1:ȷN} be endowed with the F-metric

    ς(ϱ,)={0,ifϱ=,e|ϱ|,ifϱ,

    for all ϱ,Θ and f(t)=lnt. Then (Θ,ς) is an F-complete F-metric space. Define the mapping 1,2:ΘΘ by

    1(Sȷ)={S1,    ifȷ=1,S2,    ifȷ=2,Sȷ2,     ifȷ3,

    and

    2(Sȷ)={S1,    ifȷ=1,2,Sȷ1,     ifȷ3.

    Suppose that mȷ, then

    ς(1(Sȷ),2(Sm))=e|Sȷ2Sm1|=e|2(ȷm)2|<e1e|2(ȷm)|=ας(Sȷ,Sm)α(Sȷ,Sm)ς(Sȷ,Sm)+β(Sȷ,Sm)ς(Sȷ,1Sȷ)ς(Sm,2Sm)1+ς(Sȷ,Sm)+γ(Sȷ,Sm)ς(Sm,1Sȷ)ς(Sȷ,2Sm)1+ς(Sȷ,Sm).

    Thus all the assertions of Theorem 3 are satisfied with α:Θ×Θ[0,1) defined by α(Sȷ,Sm)=e1 and any β,γ:Θ×Θ[0,1). Hence S1 is a unique common fixed point of 1 and 2.

    Consequently, from Theorem 3, we have the following corollaries:

    Corollary 1. Let (Θ,ς) be a F-complete F-metric space and 1,2:Θ Θ. If there exist mappings α,β:Θ×Θ[0,1) such that

    (a) α(21ϱ,)α(ϱ,) and α(ϱ,12)α(ϱ,),

    β(21ϱ,)β(ϱ,) and β(ϱ,12)β(ϱ,);

    (b) α(ϱ,)+β(ϱ,)<1;

    (c)

    ς(1ϱ,2)α(ϱ,)ς(ϱ,)+β(ϱ,)ς(ϱ,1ϱ)ς(,2)1+ς(ϱ,) 

    for all ϱ, Θ, then 1 and 2 have a unique common fixed point.

    Proof. Setting γ:Θ×Θ[0,1) by γ(ϱ,)=0 in Theorem 3.

    Corollary 2. Let (Θ,ς) be a F-complete F-metric space and 1,2:ΘΘ. If there exist mappings α,γ:Θ×Θ[0,1) such that

    (a) α(21ϱ,)α(ϱ,) and α(ϱ,12)α(ϱ,),

    γ(21ϱ,)γ(ϱ,) and γ(ϱ,12)γ(ϱ,);

    (b) α(ϱ,)+γ(ϱ,)<1;

    (c)

    ς(1ϱ,2)α(ϱ,)ς(ϱ,)+γ(ϱ,)ς(,1ϱ)ς(ϱ,2)1+ς(ϱ,) ,

    for all ϱ, Θ, then 1 and 2 have a unique common fixed point.

    Proof. Setting β:Θ×Θ[0,1) by β(ϱ,)=0 in Theorem 3.

    Corollary 3. Let (Θ,ς) be a F-complete F-metric space and 1,2:ΘΘ. If there exists a mapping α:Θ×Θ[0,1) such that

    (a) α(21ϱ,)α(ϱ,) and α(ϱ,12)α(ϱ,);

    (b)

    ς(1ϱ,2)α(ϱ,)ς(ϱ,),

    for all ϱ, Θ, then 1 and 2 have a unique common fixed point.

    Proof. Setting β,γ:Θ×Θ[0,1) by β(ϱ,)=γ(ϱ,)=0 in Theorem 3.1.

    Corollary 4. Let (Θ,ς) be a F -complete F-metric space and :Θ Θ. If there exists mapping α:Θ×Θ[0,1) such that

    (a) α(ϱ,)α(ϱ,) and α(ϱ,)α(ϱ,);

    (b)

    ς(ϱ,)α(ϱ,)ς(ϱ,),

    for all ϱ, Θ, then has a unique fixed point.

    Corollary 5. Let (Θ,ς) be a F-complete F-metric space and :Θ Θ. If there exist mappings α,β,γ:Θ×Θ[0,1) such that

    (a) α(ϱ,)α(ϱ,) and α(ϱ,)α(ϱ,),

    β(ϱ,)β(ϱ,) and β(ϱ,)β(ϱ,),

    γ(ϱ,)γ(ϱ,) and γ(ϱ,)γ(ϱ,);

    (b) α(ϱ,)+β(ϱ,)+γ(ϱ,)<1;

    (c)

    ς(ϱ,)α(ϱ,)ς(ϱ,)+β(ϱ,)ς(ϱ,ϱ)ς(,)1+ς(ϱ,)+γ(ϱ,)ς(,ϱ)ς(ϱ,)1+ς(ϱ,) 

    for all ϱ, Θ, then has a unique fixed point.

    Proof. Setting 1=2= in Theorem 3.

    Corollary 6. Let (Θ,ς) be a F-complete F-metric space and :Θ Θ. If there exist mappings α,β,γ:Θ×Θ[0,1) such that

    (a) α(ϱ,)α(ϱ,) and α(ϱ,)α(ϱ,),

    β(ϱ,)β(ϱ,) and β(ϱ,)β(ϱ,),

    γ(ϱ,)γ(ϱ,) and γ(ϱ,)γ(ϱ,);

    (b) α(ϱ,)+β(ϱ,)+γ(ϱ,)<1;

    (c)

    ς(nϱ,n)α(ϱ,)ς(ϱ,)+β(ϱ,)ς(ϱ,nϱ)ς(,n)1+ς(ϱ,)+γ(ϱ,)ς(,nϱ)ς(ϱ,n)1+ς(ϱ,)  (3.10)

    for all ϱ, Θ, then has a unique fixed point.

    Proof. From the Corollary (5), we have ϱΘ such that nϱ=ϱ. Now from

    ς(ϱ,ϱ)=ς(nϱ,nϱ)=ς(nϱ,nϱ)α(ϱ,ϱ)ς(ϱ,ϱ)+β(ϱ,ϱ)ς(ϱ,nϱ)ς(ϱ,nϱ)1+ς(ϱ,ϱ)+γ(ϱ,ϱ)ς(ϱ,nϱ)ς(ϱ,nϱ)1+ς(ϱ,ϱ) α(ϱ,ϱ)ς(ϱ,ϱ)+β(ϱ,ϱ)ς(ϱ,ϱ)ς(ϱ,ϱ)1+ς(ϱ,ϱ)+γ(ϱ,ϱ)ς(ϱ,ϱ)ς(ϱ,ϱ)1+ς(ϱ,ϱ)=α(ϱ,ϱ)ς(ϱ,ϱ)+γ(ϱ,ϱ)ς(ϱ,ϱ)ς(ϱ,ϱ)1+ς(ϱ,ϱ),

    which implies that

    ς(ϱ,ϱ)α(ϱ,ϱ)ς(ϱ,ϱ)+γ(ϱ,ϱ)ς(ϱ,ϱ)=(α(ϱ,ϱ)+γ(ϱ,ϱ))ς(ϱ,ϱ),

    which is possible only whenever ς(ϱ,ϱ)=0. Thus ϱ=ϱ.

    Corollary 7. Let (Θ,ς) be a F-complete F-metric space and 1,2:Θ Θ. If there exist mappings α,β,γ:Θ[0,1) such that

    (a) α(21ϱ)α(ϱ),

    β(21ϱ)β(ϱ),

    γ(21ϱ)γ(ϱ);

    (b) α(ϱ)+β(ϱ)+γ(ϱ)<1;

    (c)

    ς(1ϱ,2)α(ϱ)ς(ϱ,)+β(ϱ)ς(ϱ,1ϱ)ς(,2)1+ς(ϱ,)+γ(ϱ)ς(,1ϱ)ς(ϱ,2)1+ς(ϱ,) ,

    for all ϱ, Θ, then 1 and 2 have a unique common fixed point.

    Proof. Define α,β,γ:Θ×Θ[0,1) by

    α(ϱ,)=α(ϱ),β(ϱ,)=β(ϱ)andγ(ϱ,)=γ(ϱ)

    for all ϱ,Θ. Then for all ϱ,Θ, we have

    (a) α(21ϱ,)=α(21ϱ)α(ϱ)=α(ϱ,) and α(ϱ,12)=α(ϱ)=α(ϱ,),

    β(21ϱ,)=β(21ϱ)β(ϱ)=β(ϱ,) and β(ϱ,12)=β(ϱ)=β(ϱ,),

    γ(21ϱ,)=γ(21ϱ)γ(ϱ)=γ(ϱ,) and γ(ϱ,12)=γ(ϱ)=γ(ϱ,);

    (b) α(ϱ,)+β(ϱ,)+γ(ϱ,)=α(ϱ)+β(ϱ)+γ(ϱ)<1;

    (c)

    ς(1ϱ,2)α(ϱ)ς(ϱ,)+β(ϱ)ς(ϱ,1ϱ)ς(,2)1+ς(ϱ,)+γ(ϱ)ς(,1ϱ)ς(ϱ,2)1+ς(ϱ,) =α(ϱ,)ς(ϱ,)+β(ϱ,)ς(ϱ,1ϱ)ς(,2)1+ς(ϱ,)+γ(ϱ,)ς(,1ϱ)ς(ϱ,2)1+ς(ϱ,);

    (d) λ=α(ϱ0,ϱ1)1β(ϱ0,ϱ1)=α(ϱ0)1β(ϱ0)<1.

    By Theorem 3, 1 and 2 have a unique common fixed point.

    Corollary 8. Let 1,2:Θ Θ. If there exist α,β, γ[0,1) with α+β+γ<1 such that

    ς(1ϱ,2)ας(ϱ,)+βς(ϱ,1ϱ)ς(,2)1+ς(ϱ,)+γς(,1ϱ)ς(ϱ,2)1+ς(ϱ,) ,

    for all ϱ, Θ, then 1 and 2 have a unique common fixed point.

    Proof. Taking α()=α, β()=β and γ()=γ in Corollary 7.

    Corollary 9. Let (Θ,ς) be a F-complete F-metric space and 1,2:Θ Θ. If there exist α,β[0,1) with α+β<1 such that

    ς(1ϱ,2)ας(ϱ,)+βς(ϱ,1ϱ)ς(,2)1+ς(ϱ,)

    for all ϱ, Θ, then 1 and 2 have a unique common fixed point.

    Proof. Taking γ=0 in Corollary 8.

    Remark 1. If we set 1=2= in the Corollary 9, the we get the main result of Al-Mazrooei et al. [7].

    Corollary 10. Let (Θ,ς) be a F-complete F-metric space and 1,2:Θ Θ. If there exists α[0,1) such that

    ς(1ϱ,2)ας(ϱ,)

    for all ϱ, Θ, then 1 and 2 have a unique common fixed point.

    Proof. Taking β=0 in Corollary 9.

    Remark 2. If we set 1=2= in the Corollary 10, the we get the main result of Samet et al. [6].

    Let (Θ,ς) be an F-metric space and G be a directed graph. Let us represent by G1 the graph generated from G by changing the direction of E(G). Hence,

    E(G1)={(ϱ,)Θ×Θ(,ϱ)E(G)}.

    Definition 4. An element ϱ Θ is said to be a common fixed point of the pair (1,2), if 1(ϱ)=2(ϱ)=ϱ. We denote by CFix(1,2), the family of all common fixed points of the pair (1,2), that is,

    CFix(1,2)={ϱΘ:1(ϱ)=2(ϱ)=ϱ}.

    Definition 5. Let (Θ,ς) be an F-complete F-metric space equipped with a directed graph G and let 1,2 :ΘΘ. Then the pair (1,2) is called a G-orbital cyclic pair, if

    (ϱ,1ϱ)E(G)(1ϱ,2(1ϱ))E(G),
    (ϱ,2ϱ)E(G)(2ϱ,1(2ϱ))E(G)

    for any ϱ Θ. Let us consider the following sets

    Θ1={ϱΘ(ϱ,1ϱ)E(G)},Θ2={ϱΘ(ϱ,2ϱ)E(G)}.

    Remark 3. If (1,2) is a G-orbital-cyclic pair, then Θ1Θ2.

    Proof. Let ϱ0Θ1. Then (ϱ0,1ϱ0)E(G)(1ϱ0,2(1ϱ0))E(G). If we represent by ϱ1=1ϱ0, then we get that (ϱ1,2(ϱ1))E(G), thus Θ2. Now let us prove the following main theorem.

    Theorem 4. Let (Θ,ς) be a F-complete F-metric space equipped with a directed graph G and 1,2:ΘΘ is G-orbital cyclic pair. Assume that there exists α[0,1) such that

    (ⅰ) Θ1,

    (ⅱ) ϱΘ1 and Θ2

    ς(1ϱ,2)αmax{ς(ϱ,),ς(ϱ,1ϱ)ς(,2)1+ς(ϱ,),ς(ϱ,2)ς(,1ϱ)1+ς(ϱ,)}, (5.1)

    (iii) 1 and 2 are continuous, or (ϱȷ)ȷNΘ, with ϱȷϱ as , and (ϱȷ,ϱȷ+1)E(G) for , we have ϱΘ1Θ2. In these conditions CFix(1,2),

    (iv) if (ϱ,ϱ/)CFix(1,2) implies ϱΘ1 and ϱ/Θ2, then the pair (1,2) has a unique common fixed point.

    Proof. Let ϱ0Θ1. Thus (ϱ0,1ϱ0)E(G). As the pair (1,2) is G-orbital cyclic, we get (1ϱ0,21ϱ0)E(G). Construct ϱ1 by ϱ1=1ϱ0, we have (ϱ1,2ϱ1)E(G) and from here (2ϱ1,12ϱ1)E(G). Denoting by ϱ2=2ϱ1, we have (ϱ2,1ϱ2)E(G). Pursuing along these lines, we generate a sequence (ϱȷ)ȷN with ϱ2ȷ=2ϱ2ȷ1 and ϱ2ȷ+1=1ϱ2ȷ, such that (ϱ2ȷ,ϱ2ȷ+1)E(G). We assume that ϱȷϱȷ+1. If, there exists N, such that ϱȷ0=ϱȷ0+1, then in the view of the fact that ΔE(G), (ϱȷ0,ϱȷ0+1)E(G) and thus ϱ=ϱȷ0 is a fixed point of 1. Now to manifest that ϱCFix(1,2), we shall discuss these two cases for . If is even, then . Then, ϱ2ȷ=ϱ2ȷ+1=1ϱ2ȷ and thus, ϱ2ȷ is a fixed point of 1. Assume that ϱ2ȷ=ϱ2ȷ+1=1ϱ2ȷ but ς(1ϱ2ȷ,2ϱ2ȷ+1)>0, and let ϱ=ϱ2ȷΘ1 and =ϱ2ȷ+1Θ2. So

    0<ς(ϱ2ȷ+1,ϱ2ȷ+2)=ς(1ϱ2ȷ,2ϱ2ȷ+1)αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,1ϱ2ȷ)ς(ϱ2ȷ+1,2ϱ2ȷ+1)1+ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,2ϱ2ȷ+1)ς(ϱ2ȷ+1,1ϱ2ȷ)1+ς(ϱ2ȷ,ϱ2ȷ+1)}=αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ2ȷ+1,ϱ2ȷ+2)1+ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ϱ2ȷ+2)ς(ϱ2ȷ+1,ϱ2ȷ+1)1+ς(ϱ2ȷ,ϱ2ȷ+1)}αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ+1,ϱ2ȷ+2)}=ας(ϱ2ȷ+1,ϱ2ȷ+2), (5.2)

    that is contradiction because α<1. Hence ϱ2ȷ is a fixed point of 2 too. Likewise if is odd number, then ϱΘ such that 1ϱ2ϱ=ϱ. So we assume that ϱȷϱȷ+1 for all N. Now we shall show that (ϱȷ)ȷN is Cauchy sequence. We have these two possible cases to discuss:

    Case 1. ϱ=ϱ2ȷΘ1 and =ϱ2ȷ+1Θ2.

    0<ς(ϱ2ȷ+1,ϱ2ȷ+2)=ς(1ϱ2ȷ,2ϱ2ȷ+1)αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,1ϱ2ȷ)ς(ϱ2ȷ+1,2ϱ2ȷ+1)1+ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,2ϱ2ȷ+1)ς(ϱ2ȷ+1,1ϱ2ȷ)1+ς(ϱ2ȷ,ϱ2ȷ+1)}=αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ2ȷ+1,ϱ2ȷ+2)1+ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ϱ2ȷ+2)ς(ϱ2ȷ+1,ϱ2ȷ+1)1+ς(ϱ2ȷ,ϱ2ȷ+1)}=αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ+1,ϱ2ȷ+2)}α[ς(ϱ2ȷ,ϱ2ȷ+1)+ς(ϱ2ȷ+1,ϱ2ȷ+2)]

    that is

    (1α)ς(ϱ2ȷ+1,ϱ2ȷ+2)ας(ϱ2ȷ,ϱ2ȷ+1)

    which implies

    ς(ϱ2ȷ+1,ϱ2ȷ+2)α1ας(ϱ2ȷ,ϱ2ȷ+1). (5.3)

    Case 2. ϱ=ϱ2ȷΘ1 and =ϱ2ȷ1Θ2.

    0<ς(ϱ2ȷ+1,ϱ2ȷ)=ς(1ϱ2ȷ,2ϱ2ȷ1)αmax{ς(ϱ2ȷ,ϱ2ȷ1),ς(ϱ2ȷ,1ϱ2ȷ)ς(ϱ2ȷ1,2ϱ2ȷ1)1+ς(ϱ2ȷ,ϱ2ȷ1),ς(ϱ2ȷ,2ϱ2ȷ1)ς(ϱ2ȷ1,1ϱ2ȷ)1+ς(ϱ2ȷ,ϱ2ȷ1)}=αmax{ς(ϱ2ȷ,ϱ2ȷ1),ς(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ2ȷ1,ϱ2ȷ)1+ς(ϱ2ȷ,ϱ2ȷ1),ς(ϱ2ȷ,ϱ2ȷ)ς(ϱ2ȷ1,ϱ2ȷ+1)1+ς(ϱ2ȷ,ϱ2ȷ1)}αmax{ς(ϱ2ȷ,ϱ2ȷ1),ς(ϱ2ȷ,ϱ2ȷ+1)}=αmax{ς(ϱ2ȷ1,ϱ2ȷ),ς(ϱ2ȷ,ϱ2ȷ+1)}α[ς(ϱ2ȷ1,ϱ2ȷ)+ς(ϱ2ȷ,ϱ2ȷ+1)]

    that is

    (1α)ς(ϱ2ȷ+1,ϱ2ȷ)ας(ϱ2ȷ,ϱ2ȷ1)

    which implies

    ς(ϱ2ȷ,ϱ2ȷ+1)α1ας(ϱ2ȷ1,ϱ2ȷ). (5.4)

    Since τ=α1α, so we have

    ς(ϱȷ,ϱȷ+1)τς(ϱȷ1,ϱȷ). (5.5)

    Thus, we have

    ς(ϱȷ,ϱȷ+1)τς(ϱȷ1,ϱȷ)τ2ς(ϱȷ2,ϱȷ1)τȷς(ϱ0,ϱ1). (5.6)

    Let (f,h)F×[0,+) be such that (D3) is satisfied. Let ϵ>0 be fixed. By (F2), δ>0 such that

    0<t<δf(t)<f(δ)h. (5.7)

    Hence, by (5.6), (F1) and (F2), we have

    f(m1i=ȷς(ϱi,ϱi+1))f(m1i=ȷλȷ(ς(ϱ0,ϱ1)))f(ȷn(ϵ)λȷς(ϱ0,ϱ1))<f(ϵ)h (5.8)

    for . By (D3) and (5.7), we get ς(ϱȷ,ϱm)>0, implies

    f(ς(ϱȷ,ϱm))f(m1i=ȷς(ϱi,ϱi+1))+h<f(ϵ)

    which yields by (F1) that ς(ϱȷ,ϱm)<ϵ, . It shows that {ϱȷ} is F-Cauchy. As (Θ,ς) is F-complete, so ϱΘ such that {ϱȷ} is F-convergent to ϱ, i.e.,

    limȷς(ϱȷ,ϱ)=0. (5.9)

    that is ϱȷϱ as . It is obvious that

    limȷϱ2ȷ=limȷϱ2ȷ+1=ϱ. (5.10)

    As 1 and 2 are continuous, so we have

    ϱ=limȷϱ2ȷ+1=limȷ1(ϱ2ȷ)=1(ϱ)ϱ=limȷϱ2ȷ+2=limȷ2(ϱ2ȷ+1)=2(ϱ). (5.11)

    Now letting ϱ=ϱΘ1 and =ϱ2ȷ+2Θ2, we have We contrary suppose that ς(ϱ,1ϱ)>0. Then from (3.2), (F1) and (D3), we have

    f(ς(1ϱ,ϱ))f(ς(ϱ1ϱ,2ϱ2ȷ+1)+ς(2ϱ2ȷ+1,ϱ))+hf(ς(ϱ,2ϱ2ȷ+1)+ς(ϱ2ȷ+2,ϱ))+hf(αmax{ς(ϱ,ϱ2ȷ+1),ς(ϱ,1ϱ)ς(ϱ2ȷ+1,2(ϱ2ȷ+1)1+ς(ϱ,ϱ2ȷ+1),ς(ϱ,2(ϱ2ȷ+1)ς(ϱ2ȷ+1,1ϱ)1+ς(ϱ,ϱ2ȷ+1)}+ς(ϱ2ȷ+2,ϱ))+h=f(αmax{ς(ϱ,ϱ2ȷ+1),ς(ϱ,1ϱ)ς(ϱ2ȷ+1,ϱ2ȷ+2)1+ς(ϱ,ϱ2ȷ+1),ς(ϱ,ϱ2ȷ+2)ς(ϱ2ȷ+1,1ϱ)1+ς(ϱ,ϱ2ȷ+1)}+ς(ϱ2ȷ+2,ϱ))+h.

    Taking and using (F2), (5.10) and (5.11), we get

    limȷf(ς(1ϱ,ϱ))=,

    which is a contradiction. Thus, we have ς(ϱ,1ϱ)=0. This yields that ϱ=1ϱ. Similarly, suppose that ϱ=ϱ2ȷ+1Θ1 and =ϱΘ2, we have

    f(ς(ϱ,2ϱ))f(ς(ϱ,1(ϱ2ȷ))+ς(1(ϱ2ȷ),2ϱ))+hf(ς(ϱ,1(ϱ2ȷ))+ς(1(ϱ2ȷ),2ϱ))+hf(ς(ϱ,1(ϱ2ȷ))+αmax{ς(ϱ2ȷ,ϱ),ς(ϱ2ȷ,1(ϱ2ȷ))ς(ϱ,2ϱ)1+ς(ϱ2ȷ,ϱ),ς(ϱ2ȷ,2ϱ)ς(ϱ,1(ϱ2ȷ))1+ς(ϱ2ȷ,ϱ)})+h.

    Taking the limit as and using (F2), (5.10) and (5.11), we have

    limȷf(ς(ϱ,2ϱ))=,

    which is a contradiction. Thus, we have ς(ϱ,2ϱ)=0. This yields that ϱ=2ϱ.

    Corollary 11. Let (Θ,ς) be a F-complete F-metric space equipped with a directed graph G and :ΘΘ is a G-orbital-cyclic. Suppose that there exists α[0,1) such that

    (i) Θ,

    (ii) ϱ,Θ, we have

    ς(ϱ,)αmax{ς(ϱ,),ς(ϱ,ϱ)ς(,)1+ς(ϱ,),ς(ϱ,)ς(,ϱ)1+ς(ϱ,)},

    (iii) is continuous, or (ϱȷ)ȷNΘ, with ϱȷϱ as ȷ, and (ϱȷ,ϱȷ+1)E(G) for ȷN, we have ϱΘ.

    Then has a unique fixed point.

    A representative stability result based on fixed point theory arguments follows a number of basic arguments adapted to the special structure of the equation under consideration. It leads to large number of results in the literature for different classes of equations, see [21,22]. In the present section, we investigate the existence of solution to differential equation

    ϱ/(t)=a(t)ϱ(t)+b(t)g(ϱ(tr(t)))+c(t)ϱ/(tr(t)). (6.1)

    We state a lemma of Djoudi et al.[23] which will be used in proving of our theorem.

    Lemma 2. (see [23]) Assume that r/(t)1 tR. Then ϱ(t) is a solution of (6.1) if and only if

    ϱ(t)=(ϱ(0)c(0)1r/(0)ϱ(r(0)))et0a(s)ds+c(t)1r/(t)ϱ(tr(t))t0(h(υ))ϱ(υr(υ)))b(υ)g(ϱ(υr(υ))))etυa(s)dsdυ, (6.2)

    where

    h(υ)=r//(υ)c(υ)+(c/(υ)+c(υ)a(υ))(1r/(υ))(1r/(υ))2. (6.3)

    Now suppose that ϑ:(,0]R is a bounded and continuous function, then ϱ(t)=ϱ(t,0,ϑ) is a solution of (6.1) if ϱ(t)=ϑ(t) for t0 and satisfies (6.1) for t0. Assume that C is the collection of ϱ:RR which are continuous. Define ϑ by

    ϑ={ϱ:RRsuchthatϑ(t)=ϱ(t)ift0,ϱ(t)0ast,ϱC}.

    Then ϑ is a Banach space endowed with .

    Lemma 3. (see [14]) The space (ϑ,) with the F-metric d defined by

    d(t,t)=||tt||=supϱI|t(ϱ)t(ϱ)|

    for all t,tϑ, is F-metric space.

    Theorem 5. Let :ϑϑ be a mapping defined by

    (ϱ)(t)=(ϱ(0)c(0)1r/(0)ϱ(r(0)))et0a(s)ds+c(t)1r/(t)τ(tr(t))t0(h(υ)ϱ(υr(υ))b(υ)g(ϱ(υr(υ))))etυa(s)dsdυ,t0 (6.4)

    for all ϱϑ. Assume that there exists α:ϑ×ϑ[0,1) such that

    α(ϱ(t),(t))={|c(t)1r/(t)|+t0(|h(υ)|+|b(υ)|)etυa(s)ds}<1.

    Then has a fixed point.

    Proof. It follows from (6.3) that (ϱ),() ϑ. Now from (6.4), we have

    |(ϱ)(t)()(t)||c(t)1r/(t)|ϱ+t0|h(υ)(ϱ(υr(υ)))(υr(υ))|etυa(s)ds+t0|(b(υ))g(ϱ(υr(υ)))g((υr(υ)))|etυa(s)ds{|c(t)1r/(t)|+t0(|h(υ)|+|b(υ)|)etυa(s)ds}ϱα(ϱ,)ϱ.

    Hence,

    d(ϱ,)α(ϱ,)d(ϱ,).

    Thus all the assumptions of Corollary 4 are satisfied and has a unique fixed point in ϑ which solves (6.1).

    1) Can the notion of F-metric space be extended to graphical F-metric space?

    2) Can the results proved in this article be extended to multivalued mappings and fuzzy set valued mappings?

    3) Can differential inclusions can be solved as applications of fixed point results for multivalued mappings in the context of F-metric space?

    In this article, we have utilized the notion of F-metric spaces and obtained common fixed point results for generalized rational contractions involving control functions of two variables. We have derived common fixed points and fixed points of single valued mappings for contractions involving control functions of one variable and constants. We also have established some common fixed point theorems in F-metric spaces endowed with graph. We expect that the obtained theorems in this article will make new relations for those people who are employing in F-metric spaces.

    The second author Ahmad Al-Rawashdeh is financially supported by the Grants: UPAR-2019, Fund No. 31S397, and the Post-Doc-2019, Fund No. 31S404.

    The authors declare that they have no conflicts of interest.



    [1] D. Agarwal, P. Singh, M. A. El Sayed, The Karush-Kuhn-Tucker (KKT) optimality conditions for fuzzy-valued fractional optimization problems, Math. Comput. Simulat., 205 (2023), 861–877. https://doi.org/10.1016/j.matcom.2022.10.024 doi: 10.1016/j.matcom.2022.10.024
    [2] J. P. Aubin, Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions, In: Mathematical Analysis and Applications, Part A, New York: Academic Press, 1981,160–229.
    [3] J. P. Aubin, H. Frankowska, Set-valued analysis, Boston: Birhäuser, 1990.
    [4] M. Avriel, Nonlinear programming: Theory and method, Englewood Cliffs, New Jersey: Prentice-Hall, 1976.
    [5] D. Bhatia, P. K. Garg, Duality for non smooth non linear fractional multiobjective programs via (F, ρ)-convexity, Optimization, 43 (1998), 185–197. https://doi.org/10.1080/02331939808844382 doi: 10.1080/02331939808844382
    [6] D. Bhatia, A. Mehra, Lagrangian duality for preinvex set-valued functions, J. Math. Anal. Appl., 214 (1997), 599–612. https://doi.org/10.1006/jmaa.1997.5599 doi: 10.1006/jmaa.1997.5599
    [7] D. Bhatia, A. Mehra, Fractional programming involving set-valued functions, Indian J. Pure Appl. Math., 29 (1998), 525–540.
    [8] J. Borwein, Multivalued convexity and optimization: A unified approach to inequality and equality constraints, Math. Program., 13 (1977), 183–199. https://doi.org/10.1007/BF01584336 doi: 10.1007/BF01584336
    [9] K. Das, On constrained set-valued optimization problems with ρ-cone arcwise connectedness, SeMA J., 2022, 1–16. https://doi.org/10.1007/s40324-022-00295-0
    [10] K. Das, C. Nahak, Sufficient optimality conditions and duality theorems for set-valued optimization problem under generalized cone convexity, Rend. Circ. Mat. Palerm., 63 (2014), 329–345. https://doi.org/10.1007/s12215-014-0163-9 doi: 10.1007/s12215-014-0163-9
    [11] K. Das, C. Nahak, Optimality conditions for approximate quasi efficiency in set-valued equilibrium problems, SeMA J., 73 (2016), 183–199. https://doi.org/10.1007/s40324-016-0063-3 doi: 10.1007/s40324-016-0063-3
    [12] K. Das, C. Nahak, Set-valued fractional programming problems under generalized cone convexity, Opsearch, 53 (2016), 157–177. https://doi.org/10.1007/s12597-015-0222-9 doi: 10.1007/s12597-015-0222-9
    [13] K. Das, C. Nahak, Approximate quasi efficiency of set-valued optimization problems via weak subdifferential, SeMA J., 74 (2017), 523–542. https://doi.org/10.1007/s40324-016-0099-4 doi: 10.1007/s40324-016-0099-4
    [14] K. Das, C. Nahak, Optimality conditions for set-valued minimax fractional programming problems, SeMA J., 77 (2020), 161–179. https://doi.org/10.1007/s40324-019-00209-7 doi: 10.1007/s40324-019-00209-7
    [15] K. Das, C. Nahak, Set-valued optimization problems via second-order contingent epiderivative, Yugosl. J. Oper. Res., 31 (2021), 75–94. https://doi.org/10.2298/YJOR191215041D doi: 10.2298/YJOR191215041D
    [16] K. Das, S. Treanţă, On constrained set-valued semi-infinite programming problems with ρ-cone arcwise connectedness, Axioms, 10 (2021), 302. https://doi.org/10.3390/axioms10040302 doi: 10.3390/axioms10040302
    [17] K. Das, S. Treanţă, Constrained controlled optimization problems involving second-order derivatives, Quaest. Math., 2022, 1–11. https://doi.org/10.2989/16073606.2022.2055506
    [18] K. Das, S. Treanţă, T. Saeed, Mond-weir and wolfe duality of set-valued fractional minimax problems in terms of contingent epi-derivative of second-order, Mathematics, 10 (2022), 938. https://doi.org/10.3390/math10060938 doi: 10.3390/math10060938
    [19] M. A. Elsisy, M. A. El Sayed, Y. A.-Elnaga, A novel algorithm for generating Pareto frontier of bi-level multi-objective rough nonlinear programming problem, Ain Shams Eng. J., 12 (2021), 2125–2133. https://doi.org/10.1016/j.asej.2020.11.006 doi: 10.1016/j.asej.2020.11.006
    [20] M. A. Elsisy, A. S. Elsaadany, M. A. El Sayed, Using interval operations in the hungarian method to solve the fuzzy assignment problem and its application in the rehabilitation problem of valuable buildings in Egypt, Complexity, 2020, 1–11. https://doi.org/10.1155/2020/6623049
    [21] J. Y. Fu, Y. H. Wang, Arcwise connected cone-convex functions and mathematical programming, J. Optim. Theory Appl., 118 (2003), 339–352. https://doi.org/10.1023/A:1025451422581 doi: 10.1023/A:1025451422581
    [22] N. Gadhi, A. Jawhar, Necessary optimality conditions for a set-valued fractional extremal programming problem under inclusion constraints, J. Global Optim., 56 (2013), 489–501. https://doi.org/10.1007/s10898-012-9849-8 doi: 10.1007/s10898-012-9849-8
    [23] J. Jahn, R Rauh, Contingent epiderivatives and set-valued optimization, Math. Method. Oper. Res., 46 (1997), 193–211. https://doi.org/10.1007/BF03354124 doi: 10.1007/BF03354124
    [24] H. Jiao, Y. Shang, R. Chen, A potential practical algorithm for minimizing the sum of affine fractional functions, Optimization, 2022, 1–31. https://doi.org/10.1080/02331934.2022.2032051
    [25] H. Jiao, W. Wang, Y. Shang, Outer space branch-reduction-bound algorithm for solving generalized affine multiplicative problem, J. Comput. Appl. Math., 419 (2023), 114784. https://doi.org/10.1016/j.cam.2022.114784 doi: 10.1016/j.cam.2022.114784
    [26] R. N. Kaul, V. Lyall, A note on nonlinear fractional vector maximization, Opsearch, 26 (1989), 108–121. https://doi.org/10.1515/pm-1989-260303 doi: 10.1515/pm-1989-260303
    [27] M. B. Khan, G. Santos-García, S. Treanţă, M. A. Noor, M. S. Soliman, Perturbed mixed variational-like inequalities and auxiliary principle pertaining to a fuzzy environment, Symmetry, 14 (2022), 2503.
    [28] M. B. Khan, G. Santos-García, H. Budak, S. Treanţă, M. S. Soliman, Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for (p, F)-convex fuzzy-interval-valued functions, AIMS Math., 8 (2023), 7437–7470.
    [29] M. B. Khan, H. A. Othman, G. Santos-García, T. Saeed, M. S. Soliman, On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings, Chaos Soliton. Fract., 169 (2023), 113274.
    [30] M. B. Khan, G. Santos-García, M. A. Noor, M. S. Soliman, Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities, Chaos Soliton. Fract., 164 (2022), 112692.
    [31] C. S. Lalitha, J. Dutta, M. G. Govil, Optimality criteria in set-valued optimization, J. Aust. Math. Soc., 75 (2003), 221–232. https://doi.org/10.1017/S1446788700003736 doi: 10.1017/S1446788700003736
    [32] J. C. Lee, S. C. Ho, Optimality and duality for multiobjective fractional problems with r-invexity, Taiwanese J. Math., 12 (2008), 719–740. https://doi.org/10.11650/twjm/1500574161 doi: 10.11650/twjm/1500574161
    [33] J. Ma, H. Jiao, J. Yin, Y. Shang, Outer space branching search method for solving generalized affine fractional optimization problem, AIMS Math., 8 (2023), 1959–1974. https://doi.org/10.3934/math.2023101 doi: 10.3934/math.2023101
    [34] Z. Peng, Y. Xu, Second-order optimality conditions for cone-subarcwise connected set-valued optimization problems, Acta Math. Appl. Sin.-E., 34 (2018), 183–196. https://doi.org/10.1007/s10255-018-0738-x doi: 10.1007/s10255-018-0738-x
    [35] Q. S. Qiu, X. M. Yang, Connectedness of henig weakly efficient solution set for set-valued optimization problems, J. Optim. Theory Appl., 152 (2012), 439–449. https://doi.org/10.1007/s10957-011-9906-3 doi: 10.1007/s10957-011-9906-3
    [36] L. Rodríguez-Marín, M. Sama, About contingent epiderivatives, J. Math. Anal. Appl., 327 (2007), 745–762. https://doi.org/10.1016/j.jmaa.2006.04.060 doi: 10.1016/j.jmaa.2006.04.060
    [37] M. A. El Sayed, M. A. Abo-Sinna, A novel approach for fully intuitionistic fuzzy multi-objective fractional transportation problem, Alex. Eng. J., 60 (2021), 1447–1463. https://doi.org/10.1016/j.aej.2020.10.063 doi: 10.1016/j.aej.2020.10.063
    [38] M. A. El Sayed, I. A. Baky, P. Singh, A modified TOPSIS approach for solving stochastic fuzzy multi-level multi-objective fractional decision making problem, Opsearch, 57 (2020), 1374–1403. https://doi.org/10.1007/s12597-020-00461-w doi: 10.1007/s12597-020-00461-w
    [39] M. A. El Sayed, F. A. Farahat, M. A. Elsisy, A novel interactive approach for solving uncertain bi-level multi-objective supply chain model, Comput. Ind. Eng., 169 (2022), 108225. https://doi.org/10.1016/j.cie.2022.108225 doi: 10.1016/j.cie.2022.108225
    [40] I. M. Stancu-Minasian, A eighth bibliography of fractional programming, Optimization, 66 (2017), 439–470. https://doi.org/10.1080/02331934.2016.1276179 doi: 10.1080/02331934.2016.1276179
    [41] I. M. Stancu-Minasian, A ninth bibliography of fractional programming, Optimization, 68 (2019), 2125–2169. https://doi.org/10.1080/02331934.2019.1632250 doi: 10.1080/02331934.2019.1632250
    [42] T. V. Su, D. D. Hang, Second-order optimality conditions in locally Lipschitz multiobjective fractional programming problem with inequality constraints, Optimization, 2021, 1–28. https://doi.org/10.1080/02331934.2021.2002328
    [43] S. K. Suneja, S. Gupta, Duality in multiple objective fractional programming problems involving nonconvex functions, Opsearch, 27 (1990), 239–253. https://doi.org/10.1515/tsd-1990-270418 doi: 10.1515/tsd-1990-270418
    [44] S. K. Suneja, C. S. Lalitha, Multiobjective fractional programming involving ρ-invex and related functions, Opsearch, 30 (1993), 1–14.
    [45] N. T. T. Thuy, T. V. Su, Robust optimality conditions and duality for nonsmooth multiobjective fractional semi-infinite programming problems with uncertain data, Optimization, 2022, 1–31. https://doi.org/10.1080/02331934.2022.2038154
    [46] S. Treanţă, K. Das, On robust saddle-point criterion in optimization problems with curvilinear integral functionals, Mathematics, 9 (2021), 1790. https://doi.org/10.3390/math9151790 doi: 10.3390/math9151790
    [47] T. V. Su, D. D. Hang, Optimality and duality in nonsmooth multiobjective fractional programming problem with constraints, 4OR-Q. J. Oper. Res., 20 (2022), 105–137. https://doi.org/10.1007/s10288-020-00470-x doi: 10.1007/s10288-020-00470-x
    [48] X. U. Yihong, L. I. Min, Optimality conditions for weakly efficient elements of set-valued optimization with α-order near cone-arcwise connectedness, J. Syst. Sci. Math. Sci., 36 (2016), 1721–1729. https://doi.org/10.12341/jssms12925 doi: 10.12341/jssms12925
    [49] G. Yu, Optimality of global proper efficiency for cone-arcwise connected set-valued optimization using contingent epiderivative, Asia Pac. J. Oper. Res., 30 (2013), 1340004. https://doi.org/10.1142/S0217595913400046 doi: 10.1142/S0217595913400046
    [50] G. Yu, Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps, Numer. Algebr. Control, 6 (2016), 35–44. https://doi.org/10.3934/naco.2016.6.35 doi: 10.3934/naco.2016.6.35
  • This article has been cited by:

    1. Koushik Das, Chandal Nahak, Sufficiency and duality for set-valued optimization problems with κ
    -cone arcwise connectedness of higher-order, 2025, 0030-3887, 10.1007/s12597-025-00922-0
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1226) PDF downloads(62) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog