In this paper, we determine the sufficient Karush-Kuhn-Tucker (KKT) conditions of optimality of a set-valued fractional programming problem (in short, SVFP) (FP) under the suppositions of contingent epidifferentiation and σ-arcwisely connectivity. We additionally explore the results of duality of parametric (PD), Mond-Weir (MWD), Wolfe (WD), and mixed (MD) kinds for the problem (FP).
Citation: Koushik Das, Savin Treanţă, Muhammad Bilal Khan. Set-valued fractional programming problems with σ-arcwisely connectivity[J]. AIMS Mathematics, 2023, 8(6): 13181-13204. doi: 10.3934/math.2023666
[1] | Koushik Das, Savin Treanţă, Thongchai Botmart . Set-valued minimax programming problems under σ-arcwisely connectivity. AIMS Mathematics, 2023, 8(5): 11238-11258. doi: 10.3934/math.2023569 |
[2] | Javid Iqbal, Imran Ali, Puneet Kumar Arora, Waseem Ali Mir . Set-valued variational inclusion problem with fuzzy mappings involving XOR-operation. AIMS Mathematics, 2021, 6(4): 3288-3304. doi: 10.3934/math.2021197 |
[3] | Na Mi, Juhe Sun, Li Wang, Yu Liu . Alternating direction method for the fixed point problem of set-valued mappings with second-order cone double constraints. AIMS Mathematics, 2023, 8(3): 6389-6406. doi: 10.3934/math.2023323 |
[4] | Adel Lachouri, Naas Adjimi, Mohammad Esmael Samei, Manuel De la Sen . Non-separated inclusion problem via generalized Hilfer and Caputo operators. AIMS Mathematics, 2025, 10(3): 6448-6468. doi: 10.3934/math.2025294 |
[5] | M. E. Elbrolosy . Semi-(E,F)-convexity in complex programming problems. AIMS Mathematics, 2022, 7(6): 11119-11131. doi: 10.3934/math.2022621 |
[6] | Murugesan Manigandan, Kannan Manikandan, Hasanen A. Hammad, Manuel De la Sen . Applying fixed point techniques to solve fractional differential inclusions under new boundary conditions. AIMS Mathematics, 2024, 9(6): 15505-15542. doi: 10.3934/math.2024750 |
[7] | Yuna Oh, Jun Moon . The infinite-dimensional Pontryagin maximum principle for optimal control problems of fractional evolution equations with endpoint state constraints. AIMS Mathematics, 2024, 9(3): 6109-6144. doi: 10.3934/math.2024299 |
[8] | Ziran Yin, Chongyang Liu, Xiaoyu Chen, Jihong Zhang, Jinlong Yuan . A comprehensive characterization of the robust isolated calmness of Ky Fan k-norm regularized convex matrix optimization problems. AIMS Mathematics, 2025, 10(3): 4955-4969. doi: 10.3934/math.2025227 |
[9] | Morris W. Hirsch . Monotone Dynamical Systems with Polyhedral Order Cones and Dense Periodic Points. AIMS Mathematics, 2017, 2(1): 24-27. doi: 10.3934/Math.2017.1.24 |
[10] | Nashat Faried, Sahar Mohamed Ali Abou Bakr, H. Abd El-Ghaffar, S. S. Solieman Almassri . Towards coupled coincidence theorems of generalized admissible types of mappings on partial satisfactory cone metric spaces and some applications. AIMS Mathematics, 2023, 8(4): 8431-8459. doi: 10.3934/math.2023425 |
In this paper, we determine the sufficient Karush-Kuhn-Tucker (KKT) conditions of optimality of a set-valued fractional programming problem (in short, SVFP) (FP) under the suppositions of contingent epidifferentiation and σ-arcwisely connectivity. We additionally explore the results of duality of parametric (PD), Mond-Weir (MWD), Wolfe (WD), and mixed (MD) kinds for the problem (FP).
The theory of fixed points is considered to be the most delightful and energetic field of investigations in the development of mathematical analysis. In this scope, the notion of metric space [1] is one of pillars of not only mathematics but also physical sciences. Due to its noteworthy and remarkable contribution in different fields, it has been extended, improved and generalized in various ways.
In recent years, many interesting generalizations (or extensions) of the metric space concept appeared. The famous extensions of the concept of metric spaces have been done by Bakhtin [2] which was formally defined by Czerwik [3] in 1993. Czerwik [3] gave the idea of b -metric space which broaden the notion of metric space by improving the triangle equality metric axiom by putting a constant s≥1 multiplied to the right-hand side, is one of the enormous applied extensions for metric spaces. Khamsi et al. [4] reintroduced this notion under the name metric-type and proved some fixed point results in this newly introduced space. In [5], Branciari gave the notion of rectangular metric space and generalized the classical metric space by replacing the triangle inequality with more general inequality that is called rectangular inequality. This inequality involves distance of four points. In 2018, Jleli et al. [6] gave a compulsive extension of a metric space, b -metric space and rectangular metric space which is known as F -metric space. Later on, Al-Mazrooei et al. [7] utilized F -metric space and investigated some fixed point theorems for rational contraction which involves non-negative constants. For more details, we refer the researchers [8,9,10,11,12,13,14,15,16,17,18,19,20]
In this research article, we improve rational contraction of Al-Mazrooei et al. [7] by adding one more rational expression in it and replacing non-negative constants with control functions of two variables. We prove some common fixed point results which are generalizations of fixed point results in the context of F-metric spaces. As outcomes of our main results, we derive common fixed point theorems for rational contractions involving control functions of one variable. In this way, we derive the leading results of Jleli et al. [6] and Ahmad et al. [7]. We also establish some results in F-metric space equipped with a directed graph G. As an application, we investigate the solution to nonlinear neutral differential equation.
Let us recall some related material to be used to establish our main results. Recall that Czerwik [3] gave the notion of b-metric space as follows:
Definition 1. (see [3]) Let Θ≠∅ and s≥1 be a constant. A function ς:Θ×Θ→ [0,∞) is called a b-metric if the following assertions hold:
(b1) ς(ϱ,ℏ)≥0 and ς(ϱ,ℏ)=0 if and only if ϱ=ℏ;
(b2) ς(ϱ,ℏ)=ς(ℏ,ϱ);
(b3) ς(ϱ,φ)≤s[ς(ϱ,ℏ)+ς(ℏ,φ)];
for all ϱ,ℏ,φ∈Θ.
The pair (Θ,ς) is then said to be a b-metric space.
Jleli et al. [6] gave a fascinating extension of metric space and b -metric space as follows. Let F be a set of functions f:(0,+∞)→R satisfying
(F1) f is non-decreasing,
(F2) for each {ϱȷ}⊆R+, limȷ→∞ϱȷ=0 if and only if limȷ→∞f(ϱȷ)=−∞.
Definition 2. (see [6]) Let Θ≠∅ and ς:Θ×Θ→[0,+∞). Assume that there exists (f,h)∈F×[0,+∞) such that
(D1) (ϱ,ℏ)∈Θ×Θ, ς(ϱ,ℏ)=0 if and only if ϱ=ℏ,
(D2) ς(ϱ,ℏ)=ς(ℏ,ϱ), for all (ϱ,ℏ)∈Θ×Θ,
(D3) for every (ϱ,ℏ)∈Θ×Θ, for every N∈N, N≥2, and for every (ϱi)Ni=1⊂Θ, with
(ϱ1,ϱN)=(ϱ,ℏ), |
we have
ς(ϱ,ℏ)>0 implies f(ς(ϱ,ℏ))≤f(N−1∑i=1ς(ϱi,ϱi+1))+h. |
Then (Θ,ς) is called a F-metric space.
Example 1. Let Θ=R and ς:Θ×Θ→[0,+∞) be defined by
ς(ϱ,ℏ)={(ϱ−ℏ)2 if(ϱ,ℏ)∈[0,2]×[0,2]|ϱ−ℏ| if(ϱ,ℏ)∉[0,2]×[0,2] |
with f(t)=ln(t) and h=ln(2), then (Θ,ς) is a F-metric space.
Definition 3. (see [6]) Let (Θ,ς) be F-metric space,
(i) a sequence {ϱȷ} in Θ is said to be F-convergent to ϱ∈Θ if {ϱȷ} is convergent to ϱ with respect to the F-metric ς;
(ii) a sequence {ϱȷ} is F-Cauchy, if
limȷ,m→∞ς(ϱȷ,ϱm)=0; |
(iii) if every F-Cauchy sequence in Θ is F -convergent to a point of Θ, then (Θ,ς) is said to be a F-complete.
Theorem 1. (see [6]) Let (Θ,ς) be a F-complete F-metric space and ℜ:Θ→Θ. Assume that there exists α∈[0,1) such that
ς(ℜ(ϱ),ℜ(ℏ))≤ας(ϱ,ℏ) |
for all ϱ,ℏ∈Θ, then ℜ has a unique fixed point ϱ∗∈Θ. Moreover, for any ϱ0∈Θ, the sequence {ϱȷ}⊂Θ defined by
ϱȷ+1=ℜ(ϱȷ), ȷ∈N, |
is F-convergent to ϱ∗.
Subsequently, Hussain et al. [14] defined α-ψ-contraction in the background of F-metric spaces and generalized the main result of Jleli et al. [6]. Later on, Ahmad et al. [7] defined a rational contraction in F-metric space and proved the following result as generalization of main theorem of Jleli et al. [6].
Theorem 2. (see [7]) Let (Θ,ς) be a F-complete F-metric space and ℜ:Θ→Θ. Assume that there exists α,β∈[0,1) such that
ς(ℜ(ϱ),ℜ(ℏ))≤ας(ϱ,ℏ)+βς(ϱ,ℜϱ)ς(ℏ,ℜℏ)1+ς(ϱ,ℏ) |
for all ϱ,ℏ∈Θ, then ℜ has a unique fixed point.
We start this section with the following proposition which is helpful in proving our main result.
Proposition 1. Let (Θ,ς) be a F-metric space and ℜ1,ℜ2:(Θ,ς)→(Θ,ς). Let ϱ0∈ Θ. Define the sequence {ϱȷ} by
ϱ2ȷ+1=ℜ1ϱ2ȷandϱ2ȷ+2=ℜ2ϱ2ȷ+1 | (3.1) |
for all ȷ=0,1,2,....
Assume that there exist α:Θ×Θ→[0,1) satisfying
α(ℜ2ℜ1ϱ,ℏ)≤α(ϱ,ℏ) and α(ϱ,ℜ1ℜ2ℏ)≤α(ϱ,ℏ) |
for all ϱ,ℏ∈Θ. Then
α(ϱ2ȷ,ℏ)≤α(ϱ0,ℏ) and α(ϱ,ϱ2ȷ+1)≤α(ϱ,ϱ1) |
for all ϱ,ℏ∈Θ and ȷ=0,1,2,....
Proof. Let ϱ,ℏ∈Θ and ȷ=0,1,2,... Then we have
α(ϱ2ȷ,ℏ)=α(ℜ2ℜ1ϱ2ȷ−2,ℏ)≤α(ϱ2ȷ−2,ℏ)= α(ℜ2ℜ1ϱ2ȷ−4,ℏ)≤α(ϱ2ȷ−4,ℏ)≤⋅⋅⋅≤α(ϱ0,ℏ). |
Similarly, we have
α(ϱ,ϱ2ȷ+1)=α(ϱ,ℜ1ℜ2ϱ2ȷ−1)≤α(ϱ,ϱ2ȷ−1)=α(ϱ,ℜ1ℜ2ϱ2ȷ−3)≤α(ϱ,ϱ2ȷ−3)≤⋅⋅⋅≤α(ϱ,ϱ1). |
Hence, the proof is completed.
Lemma 1. Let (Θ,ς) be a F-metric space and α,β:Θ×Θ→[0,1). If ℜ1,ℜ2:Θ →Θ satisfy
ς(ℜ1ϱ,ℜ2ℜ1ϱ)≤α(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)+β(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)ς(ℜ1ϱ,ℜ2ℜ1ϱ)1+ς(ϱ,ℜ1ϱ) |
and
ς(ℜ1ℜ2ℏ,ℜ2ℏ)≤α(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℏ)+β(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℜ1ℜ2ℏ)ς(ℏ,ℜ2ℏ)1+ς(ℜ2ℏ,ℏ) |
for all ϱ,ℏ∈ Θ, then
ς(ℜ1ϱ,ℜ2ℜ1ϱ)≤α(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)+β(ϱ,ℜ1ϱ)ς(ℜ1ϱ,ℜ2ℜ1ϱ) |
and
ς(ℜ1ℜ2ℏ,ℜ2ℏ)≤α(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℏ)+β(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℜ1ℜ2ℏ). |
Proof. Using the hypothesis, we have
ς(ℜ1ϱ,ℜ2ℜ1ϱ)≤α(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)+β(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)ς(ℜ1ϱ,ℜ2ℜ1ϱ)1+ς(ϱ,ℜ1ϱ)≤α(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)+β(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)1+ς(ϱ,ℜ1ϱ)ς(ℜ1ϱ,ℜ2ℜ1ϱ)≤α(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)+β(ϱ,ℜ1ϱ)ς(ℜ1ϱ,ℜ2ℜ1ϱ). |
Similarly, we have
ς(ℜ1ℜ2ℏ,ℜ2ℏ)≤α(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℏ)+β(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℜ1ℜ2ℏ)ς(ℏ,ℜ2ℏ)1+ς(ℜ2ℏ,ℏ)≤α(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℏ)+β(ℜ2ℏ,ℏ)ς(ℏ,ℜ2ℏ)1+ς(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℜ1ℜ2ℏ)≤α(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℏ)+β(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℜ1ℜ2ℏ). |
Theorem 3. Let (Θ,ς) be a F-complete F-metric space and ℜ1,ℜ2:Θ →Θ. If there exist mappings α,β,γ:Θ×Θ→[0,1) such that
(a) α(ℜ2ℜ1ϱ,ℏ)≤α(ϱ,ℏ) and α(ϱ,ℜ1ℜ2ℏ)≤α(ϱ,ℏ)
β(ℜ2ℜ1ϱ,ℏ)≤β(ϱ,ℏ) and β(ϱ,ℜ1ℜ2ℏ)≤β(ϱ,ℏ)
γ(ℜ2ℜ1ϱ,ℏ)≤γ(ϱ,ℏ) and γ(ϱ,ℜ1ℜ2ℏ)≤γ(ϱ,ℏ),
(b) α(ϱ,ℏ)+β(ϱ,ℏ)+γ(ϱ,ℏ)<1,
(c)
ς(ℜ1ϱ,ℜ2ℏ)≤α(ϱ,ℏ)ς(ϱ,ℏ)+β(ϱ,ℏ)ς(ϱ,ℜ1ϱ)ς(ℏ,ℜ2ℏ)1+ς(ϱ,ℏ)+γ(ϱ,ℏ)ς(ℏ,ℜ1ϱ)ς(ϱ,ℜ2ℏ)1+ς(ϱ,ℏ) , | (3.2) |
for all ϱ,ℏ∈ Θ, then ℜ1 and ℜ2 have a unique common fixed point.
Proof. Let ϱ,ℏ∈Θ. From (3.2), we have
ς(ℜ1ϱ,ℜ2ℜ1ϱ)≤α(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)+β(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)ς(ℜ1ϱ,ℜ2ℜ1ϱ)1+ς(ϱ,ℜ1ϱ)=α(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)+β(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)ς(ℜ1ϱ,ℜ2ℜ1ϱ)1+ς(ϱ,ℜ1ϱ). |
By Lemma 1, we get
ς(ℜ1ϱ,ℜ2ℜ1ϱ)≤α(ϱ,ℜ1ϱ)ς(ϱ,ℜ1ϱ)+β(ϱ,ℜ1ϱ)ς(ℜ1ϱ,ℜ2ℜ1ϱ). | (3.3) |
Similarly, we have
ς(ℜ1ℜ2ℏ,ℜ2ℏ)≤α(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℏ)+β(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℜ1ℜ2ℏ)ς(ℏ,ℜ2ℏ)1+ς(ℜ2ℏ,ℏ)+γ(ϱ,ℏ)ς(ℏ,ℜ1ℜ2ℏ)ς(ℜ2ℏ,ℜ2ℏ)1+ς(ℜ2ℏ,ℏ)=α(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℏ)+β(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℜ1ℜ2ℏ)ς(ℏ,ℜ2ℏ)1+ς(ℜ2ℏ,ℏ). |
By Lemma 1, we get
ς(ℜ1ℜ2ℏ,ℜ2ℏ)≤α(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℏ)+β(ℜ2ℏ,ℏ)ς(ℜ2ℏ,ℜ1ℜ2ℏ). | (3.4) |
Let ϱ0 ∈Θ and the sequence {ϱȷ} be defined by (3.1). From Proposition 1, (3.3), (3.4) and for all ȷ=0,1,2,...
ς(ϱ2ȷ+1,ϱ2ȷ)=ς(ℜ1ℜ2ϱ2ȷ−1,ℜ2ϱ2ȷ−1)≤α(ℜ2ϱ2ȷ−1,ϱ2ȷ−1)ς(ℜ2ϱ2ȷ−1,ϱ2ȷ−1)+β(ℜ2ϱ2ȷ−1,ϱ2ȷ−1)ς(ℜ2ϱ2ȷ−1,ℜ1ℜ2ϱ2ȷ−1)=α(ϱ2ȷ,ϱ2ȷ−1)ς(ϱ2ȷ,ϱ2ȷ−1)+β(ϱ2ȷ,ϱ2ȷ−1)ς(ϱ2ȷ,ϱ2ȷ+1)≤α(ϱ0,ϱ2ȷ−1)ς(ϱ2ȷ,ϱ2ȷ−1)+β(ϱ0,ϱ2ȷ−1)ς(ϱ2ȷ,ϱ2ȷ+1)≤α(ϱ0,ϱ1)ς(ϱ2ȷ,ϱ2ȷ−1)+β(ϱ0,ϱ1)ς(ϱ2ȷ,ϱ2ȷ+1) |
which implies that
ς(ϱ2ȷ+1,ϱ2ȷ)≤α(ϱ0,ϱ1)1−β(ϱ0,ϱ1)ς(ϱ2ȷ,ϱ2ȷ−1). | (3.5) |
Similarly, we have
ς(ϱ2ȷ+2,ϱ2ȷ+1)=ς(ℜ2ℜ1ϱ2ȷ,ℜ1ϱ2ȷ)≤α(ϱ2ȷ,ℜ1ϱ2ȷ)ς(ϱ2ȷ,ℜ1ϱ2ȷ)+β(ϱ2ȷ,ℜ1ϱ2ȷ)ς(ℜ1ϱ2ȷ,ℜ2ℜ1ϱ2ȷ)=α(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ2ȷ,ϱ2ȷ+1)+β(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ2ȷ+1,ϱ2ȷ+2)≤α(ϱ0,ϱ2ȷ+1)ς(ϱ2ȷ,ϱ2ȷ+1)+β(ϱ0,ϱ2ȷ+1)ς(ϱ2ȷ+1,ϱ2ȷ+2)≤α(ϱ0,ϱ1)ς(ϱ2ȷ,ϱ2ȷ+1)+β(ϱ0,ϱ1)ς(ϱ2ȷ+1,ϱ2ȷ+2), |
which implies that
ς(ϱ2ȷ+2,ϱ2ȷ+1)≤α(ϱ0,ϱ1)1−β(ϱ0,ϱ1)ς(ϱ2ȷ,ϱ2ȷ+1)=α(ϱ0,ϱ1)1−β(ϱ0,ϱ1)ς(ϱ2ȷ+1,ϱ2ȷ). | (3.6) |
Let λ= α(ϱ0,ϱ1)1−β(ϱ0,ϱ1)<1. Then from (3.5) and (3.6), we have
ς(ϱȷ+1,ϱȷ)≤λς(ϱȷ,ϱȷ−1) |
for all ȷ∈N. Inductively, we can construct a sequence {ϱȷ} in Θ such that
ς(ϱȷ+1,ϱȷ)≤λς(ϱȷ,ϱȷ−1)ς(ϱȷ+1,ϱȷ)≤λ2ς(ϱȷ−1,ϱȷ−2)⋅⋅⋅ς(ϱȷ+1,ϱȷ)≤λȷς(ϱ1,ϱ0)=λȷς(ϱ0,ϱ1) |
for all ȷ∈N. Let (f,h)∈F×[0,+∞) be such that (D3) is satisfied. Let ϵ>0 be fixed. By (F2), there exists δ>0 such that
0<t<δ⟹f(t)<f(δ)−h. | (3.7) |
Hence, by (3.7), (F1) and (F2), we have
f(m−1∑i=ȷς(ϱi,ϱi+1))≤f(m−1∑i=ȷλȷ(ς(ϱ0,ϱ1)))≤f(∑ȷ≥ȷ(ϵ)λȷς(ϱ0,ϱ1))<f(ϵ)−h | (3.8) |
for m>ȷ≥ȷ(ϵ). Using (D3) and (3.8), we obtain ς(ϱȷ,ϱm)>0, m>ȷ≥ȷ(ϵ) implies
f(ς(ϱȷ,ϱm))≤f(m−1∑i=ȷς(ϱi,ϱi+1))+h<f(ϵ), |
which yields by (F1) that ς(ϱȷ,ϱm)<ϵ, m>ȷ≥ȷ(ϵ). It shows that {ϱȷ} is F-Cauchy. As (Θ,ς) is F-complete, so there exists ϱ∗∈Θ such that {ϱȷ} is F -convergent to ϱ∗, i.e.,
limȷ→∞ς(ϱȷ,ϱ∗)=0. | (3.9) |
Now, we show that ϱ∗ is fixed point of ℜ1. We contrary suppose that ς(ϱ∗,ℜ1ϱ∗)>0. Then from (3.2), (F1) and (D3), we have
f(ς(ϱ∗,ℜ1ϱ∗))≤f(ς(ϱ∗,ℜ2ϱ2ȷ+1)+ς(ℜ2ϱ2ȷ+1,ℜ1ϱ∗))+h≤f(ς(ϱ∗,ℜ2ϱ2ȷ+1)+ς(ℜ1ϱ∗,ℜ2ϱ2ȷ+1))+h≤f(ς(ϱ∗,ϱ2ȷ+2)+(α(ϱ∗,ϱ2ȷ+1)ς(ϱ∗,ϱ2ȷ+1)+β(ϱ∗,ϱ2ȷ+1)ς(ϱ∗,ℜ1ϱ∗)ς(ϱ2ȷ+1,ℜ2ϱ2ȷ+1)1+ς(ϱ∗,ϱ2ȷ+1)+γ(ϱ∗,ϱ2ȷ+1)ς(ϱ2ȷ+1,ℜ1ϱ∗)ς(ϱ∗,ℜ2ϱ2ȷ+1)1+ς(ϱ∗,ϱ2ȷ+1)))+h≤f(ς(ϱ∗,ϱ2ȷ+2)+(α(ϱ∗,ϱ2ȷ+1)ς(ϱ∗,ϱ2ȷ+1)+β(ϱ∗,ϱ2ȷ+1)ς(ϱ∗,ℜ1ϱ∗)ς(ϱ2ȷ+1,ϱ2ȷ+2)1+ς(ϱ∗,ϱ2ȷ+1)+γ(ϱ∗,ϱ2ȷ+1)ς(ϱ2ȷ+1,ℜ1ϱ∗)ς(ϱ∗,ϱ2ȷ+2)1+ς(ϱ∗,ϱ2ȷ+1)))+h. |
Taking the limit as ȷ→∞ and using (F2) and (8), we have
limȷ→∞f(ς(ϱ∗,ℜ1ϱ∗))≤limȷ→∞f(ς(ϱ∗,ϱ2ȷ+2)+(α(ϱ∗,ϱ2ȷ+1)ς(ϱ∗,ϱ2ȷ+1)+β(ϱ∗,ϱ2ȷ+1)ς(ϱ∗,ℜ1ϱ∗)ς(ϱ2ȷ+1,ϱ2ȷ+2)1+ς(ϱ∗,ϱ2ȷ+1)+γ(ϱ∗,ϱ2ȷ+1)ς(ϱ2ȷ+1,ℜ1ϱ∗)ς(ϱ∗,ϱ2ȷ+2)1+ς(ϱ∗,ϱ2ȷ+1)))+h=−∞, |
which implies that ς(ϱ∗,ℜ1ϱ∗)=0, a contradiction. Thus ϱ∗=ℜ1ϱ∗. Now we prove that ϱ∗ is fixed point of ℜ2. Then from (3.2), (F1) and (D3), we have
f(ς(ϱ∗,ℜ2ϱ∗))≤f(ς(ϱ∗,ℜ1ϱ2ȷ)+ς(ℜ1ϱ2ȷ,ℜ2ϱ∗))+h≤f(ς(ϱ∗,ϱ2ȷ+1)+(α(ϱ2ȷ,ϱ∗)ς(ϱ2ȷ,ϱ∗)+β(ϱ2ȷ,ϱ∗)ς(ϱ2ȷ,ℜ1ϱ2ȷ)ς(ϱ∗,ℜ2ϱ∗)1+ς(ϱ2ȷ,ϱ∗)+γ(ϱ2ȷ,ϱ∗)ς(ϱ∗,ℜ1ϱ2ȷ)ς(ϱ2ȷ,ℜ2ϱ∗)1+ς(ϱ2ȷ,ϱ∗)))+h≤f(ς(ϱ∗,ϱ2ȷ+1)+(ς(ϱ∗,ϱ2ȷ+1)+α(ϱ2ȷ,ϱ∗)ς(ϱ2ȷ,ϱ∗)+β(ϱ2ȷ,ϱ∗)ς(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ∗,ℜ2ϱ∗)1+ς(ϱ2ȷ,ϱ∗)+γ(ϱ2ȷ,ϱ∗)ς(ϱ∗,ϱ2ȷ+1)ς(ϱ2ȷ,ℜ2ϱ∗)1+ς(ϱ2ȷ,ϱ∗)))+h. |
Taking the limit as ȷ→∞ and using (F2) and (8), we have
limȷ→∞f(ς(ϱ∗,ℜ2ϱ∗))≤limȷ→∞f(ς(ϱ∗,ϱ2ȷ+1)+(ς(ϱ∗,ϱ2ȷ+1)+α(ϱ2ȷ,ϱ∗)ς(ϱ2ȷ,ϱ∗)+β(ϱ2ȷ,ϱ∗)ς(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ∗,ℜ2ϱ∗)1+ς(ϱ2ȷ,ϱ∗)+γ(ϱ2ȷ,ϱ∗)ς(ϱ∗,ϱ2ȷ+1)ς(ϱ2ȷ,ℜ2ϱ∗)1+ς(ϱ2ȷ,ϱ∗)))+h=−∞, |
which implies that ς(ϱ∗,ℜ1ϱ∗)=0, a contradiction. Thus ϱ∗=ℜ2ϱ∗.Thus ϱ∗ is a common fixed point of ℜ1 and ℜ2. Now we prove that ϱ∗ is unique. We suppose that
ϱ/=ℜ1ϱ/=ℜ2ϱ/ |
but ϱ∗≠ϱ/. Now from (3.2), we have
ς(ϱ∗,ϱ/)=ς(ℜ1ϱ∗,ℜ2ϱ/)≤α(ϱ∗,ϱ/)ς(ϱ∗,ϱ/)+β(ϱ∗,ϱ/)ς(ϱ∗,ℜϱ∗)ς(ϱ/,ℜ2ϱ/)1+ς(ϱ∗,ϱ/)+γ(ϱ∗,ϱ/)ς(ϱ/,ℜ1ϱ∗)ς(ϱ∗,ℜ2ϱ/)1+ς(ϱ∗,ϱ/)=α(ϱ∗,ϱ/)ς(ϱ∗,ϱ/)+β(ϱ∗,ϱ/)ς(ϱ∗,ϱ∗)ς(ϱ/,ϱ/)1+ς(ϱ∗,ϱ/)+γ(ϱ∗,ϱ/)ς(ϱ/,ϱ∗)ς(ϱ∗,ϱ/)1+ς(ϱ∗,ϱ/). |
This implies that, we have
ς(ϱ∗,ϱ/)≤α(ϱ∗,ϱ/)ς(ϱ∗,ϱ/)+γ(ϱ∗,ϱ/)‖ς(ϱ∗,ϱ/)‖ς(ϱ∗,ϱ/)1+ς(ϱ∗,ϱ/)≤α(ϱ∗,ϱ/)ς(ϱ∗,ϱ/)+γ(ϱ∗,ϱ/)ς(ϱ∗,ϱ/)=(α(ϱ∗,ϱ/)+γ(ϱ∗,ϱ/))ς(ϱ∗,ϱ/). |
As α(ϱ∗,ϱ/)+γ(ϱ∗,ϱ/)<1, we have
ς(ϱ∗,ϱ/)=0. |
Thus ϱ∗=ϱ/. Hence, the proof is completed.
Now, let us introduce the following example.
Example 2. Let Θ={Sȷ=2ȷ+1:ȷ∈N} be endowed with the F-metric
ς(ϱ,ℏ)={0,ifϱ=ℏ,e|ϱ−ℏ|,ifϱ≠ℏ, |
for all ϱ,ℏ∈Θ and f(t)=lnt. Then (Θ,ς) is an F-complete F-metric space. Define the mapping ℜ1,ℜ2:Θ→Θ by
ℜ1(Sȷ)={S1, ifȷ=1,S2, ifȷ=2,Sȷ−2, ifȷ≥3, |
and
ℜ2(Sȷ)={S1, ifȷ=1,2,Sȷ−1, ifȷ≥3. |
Suppose that m≠ȷ, then
ς(ℜ1(Sȷ),ℜ2(Sm))=e|Sȷ−2−Sm−1|=e|2(ȷ−m)−2|<e−1⋅e|2(ȷ−m)|=ας(Sȷ,Sm)≤α(Sȷ,Sm)ς(Sȷ,Sm)+β(Sȷ,Sm)ς(Sȷ,ℜ1Sȷ)ς(Sm,ℜ2Sm)1+ς(Sȷ,Sm)+γ(Sȷ,Sm)ς(Sm,ℜ1Sȷ)ς(Sȷ,ℜ2Sm)1+ς(Sȷ,Sm). |
Thus all the assertions of Theorem 3 are satisfied with α:Θ×Θ→[0,1) defined by α(Sȷ,Sm)=e−1 and any β,γ:Θ×Θ→[0,1). Hence S1 is a unique common fixed point of ℜ1 and ℜ2.
Consequently, from Theorem 3, we have the following corollaries:
Corollary 1. Let (Θ,ς) be a F-complete F-metric space and ℜ1,ℜ2:Θ →Θ. If there exist mappings α,β:Θ×Θ→[0,1) such that
(a) α(ℜ2ℜ1ϱ,ℏ)≤α(ϱ,ℏ) and α(ϱ,ℜ1ℜ2ℏ)≤α(ϱ,ℏ),
β(ℜ2ℜ1ϱ,ℏ)≤β(ϱ,ℏ) and β(ϱ,ℜ1ℜ2ℏ)≤β(ϱ,ℏ);
(b) α(ϱ,ℏ)+β(ϱ,ℏ)<1;
(c)
ς(ℜ1ϱ,ℜ2ℏ)≤α(ϱ,ℏ)ς(ϱ,ℏ)+β(ϱ,ℏ)ς(ϱ,ℜ1ϱ)ς(ℏ,ℜ2ℏ)1+ς(ϱ,ℏ) |
for all ϱ,ℏ∈ Θ, then ℜ1 and ℜ2 have a unique common fixed point.
Proof. Setting γ:Θ×Θ→[0,1) by γ(ϱ,ℏ)=0 in Theorem 3.
Corollary 2. Let (Θ,ς) be a F-complete F-metric space and ℜ1,ℜ2:Θ→Θ. If there exist mappings α,γ:Θ×Θ→[0,1) such that
(a) α(ℜ2ℜ1ϱ,ℏ)≤α(ϱ,ℏ) and α(ϱ,ℜ1ℜ2ℏ)≤α(ϱ,ℏ),
γ(ℜ2ℜ1ϱ,ℏ)≤γ(ϱ,ℏ) and γ(ϱ,ℜ1ℜ2ℏ)≤γ(ϱ,ℏ);
(b) α(ϱ,ℏ)+γ(ϱ,ℏ)<1;
(c)
ς(ℜ1ϱ,ℜ2ℏ)≤α(ϱ,ℏ)ς(ϱ,ℏ)+γ(ϱ,ℏ)ς(ℏ,ℜ1ϱ)ς(ϱ,ℜ2ℏ)1+ς(ϱ,ℏ) , |
for all ϱ,ℏ∈ Θ, then ℜ1 and ℜ2 have a unique common fixed point.
Proof. Setting β:Θ×Θ→[0,1) by β(ϱ,ℏ)=0 in Theorem 3.
Corollary 3. Let (Θ,ς) be a F-complete F-metric space and ℜ1,ℜ2:Θ→Θ. If there exists a mapping α:Θ×Θ→[0,1) such that
(a) α(ℜ2ℜ1ϱ,ℏ)≤α(ϱ,ℏ) and α(ϱ,ℜ1ℜ2ℏ)≤α(ϱ,ℏ);
(b)
ς(ℜ1ϱ,ℜ2ℏ)≤α(ϱ,ℏ)ς(ϱ,ℏ), |
for all ϱ,ℏ∈ Θ, then ℜ1 and ℜ2 have a unique common fixed point.
Proof. Setting β,γ:Θ×Θ→[0,1) by β(ϱ,ℏ)=γ(ϱ,ℏ)=0 in Theorem 3.1.
Corollary 4. Let (Θ,ς) be a F -complete F-metric space and ℜ:Θ →Θ. If there exists mapping α:Θ×Θ→[0,1) such that
(a) α(ℜϱ,ℏ)≤α(ϱ,ℏ) and α(ϱ,ℜℏ)≤α(ϱ,ℏ);
(b)
ς(ℜϱ,ℜℏ)≤α(ϱ,ℏ)ς(ϱ,ℏ), |
for all ϱ,ℏ∈ Θ, then ℜ has a unique fixed point.
Corollary 5. Let (Θ,ς) be a F-complete F-metric space and ℜ:Θ →Θ. If there exist mappings α,β,γ:Θ×Θ→[0,1) such that
(a) α(ℜϱ,ℏ)≤α(ϱ,ℏ) and α(ϱ,ℜℏ)≤α(ϱ,ℏ),
β(ℜϱ,ℏ)≤β(ϱ,ℏ) and β(ϱ,ℜℏ)≤β(ϱ,ℏ),
γ(ℜϱ,ℏ)≤γ(ϱ,ℏ) and γ(ϱ,ℜℏ)≤γ(ϱ,ℏ);
(b) α(ϱ,ℏ)+β(ϱ,ℏ)+γ(ϱ,ℏ)<1;
(c)
ς(ℜϱ,ℜℏ)≤α(ϱ,ℏ)ς(ϱ,ℏ)+β(ϱ,ℏ)ς(ϱ,ℜϱ)ς(ℏ,ℜℏ)1+ς(ϱ,ℏ)+γ(ϱ,ℏ)ς(ℏ,ℜϱ)ς(ϱ,ℜℏ)1+ς(ϱ,ℏ) |
for all ϱ,ℏ∈ Θ, then ℜ has a unique fixed point.
Proof. Setting ℜ1=ℜ2=ℜ in Theorem 3.
Corollary 6. Let (Θ,ς) be a F-complete F-metric space and ℜ:Θ →Θ. If there exist mappings α,β,γ:Θ×Θ→[0,1) such that
(a) α(ℜϱ,ℏ)≤α(ϱ,ℏ) and α(ϱ,ℜℏ)≤α(ϱ,ℏ),
β(ℜϱ,ℏ)≤β(ϱ,ℏ) and β(ϱ,ℜℏ)≤β(ϱ,ℏ),
γ(ℜϱ,ℏ)≤γ(ϱ,ℏ) and γ(ϱ,ℜℏ)≤γ(ϱ,ℏ);
(b) α(ϱ,ℏ)+β(ϱ,ℏ)+γ(ϱ,ℏ)<1;
(c)
ς(ℜnϱ,ℜnℏ)≤α(ϱ,ℏ)ς(ϱ,ℏ)+β(ϱ,ℏ)ς(ϱ,ℜnϱ)ς(ℏ,ℜnℏ)1+ς(ϱ,ℏ)+γ(ϱ,ℏ)ς(ℏ,ℜnϱ)ς(ϱ,ℜnℏ)1+ς(ϱ,ℏ) | (3.10) |
for all ϱ,ℏ∈ Θ, then ℜ has a unique fixed point.
Proof. From the Corollary (5), we have ϱ∈Θ such that ℜnϱ=ϱ. Now from
ς(ℜϱ,ϱ)=ς(ℜℜnϱ,ℜnϱ)=ς(ℜnℜϱ,ℜnϱ)≤α(ℜϱ,ϱ)ς(ℜϱ,ϱ)+β(ℜϱ,ϱ)ς(ℜϱ,ℜnℜϱ)ς(ϱ,ℜnϱ)1+ς(ℜϱ,ϱ)+γ(ℜϱ,ϱ)ς(ϱ,ℜnℜϱ)ς(ℜϱ,ℜnϱ)1+ς(ℜϱ,ϱ) ≤α(ℜϱ,ϱ)ς(ℜϱ,ϱ)+β(ℜϱ,ϱ)ς(ℜϱ,ℜϱ)ς(ϱ,ϱ)1+ς(ℜϱ,ϱ)+γ(ℜϱ,ϱ)ς(ϱ,ℜϱ)ς(ℜϱ,ϱ)1+ς(ℜϱ,ϱ)=α(ℜϱ,ϱ)ς(ℜϱ,ϱ)+γ(ℜϱ,ϱ)ς(ϱ,ℜϱ)ς(ℜϱ,ϱ)1+ς(ℜϱ,ϱ), |
which implies that
ς(ℜϱ,ϱ)≤α(ℜϱ,ϱ)ς(ℜϱ,ϱ)+γ(ℜϱ,ϱ)ς(ϱ,ℜϱ)=(α(ℜϱ,ϱ)+γ(ℜϱ,ϱ))ς(ϱ,ℜϱ), |
which is possible only whenever ς(ℜϱ,ϱ)=0. Thus ℜϱ=ϱ.
Corollary 7. Let (Θ,ς) be a F-complete F-metric space and ℜ1,ℜ2:Θ →Θ. If there exist mappings α,β,γ:Θ→[0,1) such that
(a) α(ℜ2ℜ1ϱ)≤α(ϱ),
β(ℜ2ℜ1ϱ)≤β(ϱ),
γ(ℜ2ℜ1ϱ)≤γ(ϱ);
(b) α(ϱ)+β(ϱ)+γ(ϱ)<1;
(c)
ς(ℜ1ϱ,ℜ2ℏ)≤α(ϱ)ς(ϱ,ℏ)+β(ϱ)ς(ϱ,ℜ1ϱ)ς(ℏ,ℜ2ℏ)1+ς(ϱ,ℏ)+γ(ϱ)ς(ℏ,ℜ1ϱ)ς(ϱ,ℜ2ℏ)1+ς(ϱ,ℏ) , |
for all ϱ,ℏ∈ Θ, then ℜ1 and ℜ2 have a unique common fixed point.
Proof. Define α,β,γ:Θ×Θ→[0,1) by
α(ϱ,ℏ)=α(ϱ),β(ϱ,ℏ)=β(ϱ)andγ(ϱ,ℏ)=γ(ϱ) |
for all ϱ,ℏ∈Θ. Then for all ϱ,ℏ∈Θ, we have
(a) α(ℜ2ℜ1ϱ,ℏ)=α(ℜ2ℜ1ϱ)≤α(ϱ)=α(ϱ,ℏ) and α(ϱ,ℜ1ℜ2ℏ)=α(ϱ)=α(ϱ,ℏ),
β(ℜ2ℜ1ϱ,ℏ)=β(ℜ2ℜ1ϱ)≤β(ϱ)=β(ϱ,ℏ) and β(ϱ,ℜ1ℜ2ℏ)=β(ϱ)=β(ϱ,ℏ),
γ(ℜ2ℜ1ϱ,ℏ)=γ(ℜ2ℜ1ϱ)≤γ(ϱ)=γ(ϱ,ℏ) and γ(ϱ,ℜ1ℜ2ℏ)=γ(ϱ)=γ(ϱ,ℏ);
(b) α(ϱ,ℏ)+β(ϱ,ℏ)+γ(ϱ,ℏ)=α(ϱ)+β(ϱ)+γ(ϱ)<1;
(c)
ς(ℜ1ϱ,ℜ2ℏ)≤α(ϱ)ς(ϱ,ℏ)+β(ϱ)ς(ϱ,ℜ1ϱ)ς(ℏ,ℜ2ℏ)1+ς(ϱ,ℏ)+γ(ϱ)ς(ℏ,ℜ1ϱ)ς(ϱ,ℜ2ℏ)1+ς(ϱ,ℏ) =α(ϱ,ℏ)ς(ϱ,ℏ)+β(ϱ,ℏ)ς(ϱ,ℜ1ϱ)ς(ℏ,ℜ2ℏ)1+ς(ϱ,ℏ)+γ(ϱ,ℏ)ς(ℏ,ℜ1ϱ)ς(ϱ,ℜ2ℏ)1+ς(ϱ,ℏ); |
(d) λ=α(ϱ0,ϱ1)1−β(ϱ0,ϱ1)=α(ϱ0)1−β(ϱ0)<1.
By Theorem 3, ℜ1 and ℜ2 have a unique common fixed point.
Corollary 8. Let ℜ1,ℜ2:Θ →Θ. If there exist α,β, γ∈[0,1) with α+β+γ<1 such that
ς(ℜ1ϱ,ℜ2ℏ)≤ας(ϱ,ℏ)+βς(ϱ,ℜ1ϱ)ς(ℏ,ℜ2ℏ)1+ς(ϱ,ℏ)+γς(ℏ,ℜ1ϱ)ς(ϱ,ℜ2ℏ)1+ς(ϱ,ℏ) , |
for all ϱ,ℏ∈ Θ, then ℜ1 and ℜ2 have a unique common fixed point.
Proof. Taking α(⋅)=α, β(⋅)=β and γ(⋅)=γ in Corollary 7.
Corollary 9. Let (Θ,ς) be a F-complete F-metric space and ℜ1,ℜ2:Θ →Θ. If there exist α,β∈[0,1) with α+β<1 such that
ς(ℜ1ϱ,ℜ2ℏ)≤ας(ϱ,ℏ)+βς(ϱ,ℜ1ϱ)ς(ℏ,ℜ2ℏ)1+ς(ϱ,ℏ) |
for all ϱ,ℏ∈ Θ, then ℜ1 and ℜ2 have a unique common fixed point.
Proof. Taking γ=0 in Corollary 8.
Remark 1. If we set ℜ1=ℜ2=ℜ in the Corollary 9, the we get the main result of Al-Mazrooei et al. [7].
Corollary 10. Let (Θ,ς) be a F-complete F-metric space and ℜ1,ℜ2:Θ →Θ. If there exists α∈[0,1) such that
ς(ℜ1ϱ,ℜ2ℏ)≤ας(ϱ,ℏ) |
for all ϱ,ℏ∈ Θ, then ℜ1 and ℜ2 have a unique common fixed point.
Proof. Taking β=0 in Corollary 9.
Remark 2. If we set ℜ1=ℜ2=ℜ in the Corollary 10, the we get the main result of Samet et al. [6].
Let (Θ,ς) be an F-metric space and G be a directed graph. Let us represent by G−1 the graph generated from G by changing the direction of E(G). Hence,
E(G−1)={(ϱ,ℏ)∈Θ×Θ: (ℏ,ϱ)∈E(G)}. |
Definition 4. An element ϱ∈ Θ is said to be a common fixed point of the pair (ℜ1,ℜ2), if ℜ1(ϱ)=ℜ2(ϱ)=ϱ. We denote by CFix(ℜ1,ℜ2), the family of all common fixed points of the pair (ℜ1,ℜ2), that is,
CFix(ℜ1,ℜ2)={ϱ∈Θ:ℜ1(ϱ)=ℜ2(ϱ)=ϱ}. |
Definition 5. Let (Θ,ς) be an F-complete F-metric space equipped with a directed graph G and let ℜ1,ℜ2 :Θ→Θ. Then the pair (ℜ1,ℜ2) is called a G-orbital cyclic pair, if
(ϱ,ℜ1ϱ)∈E(G)⟹(ℜ1ϱ,ℜ2(ℜ1ϱ))∈E(G), |
(ϱ,ℜ2ϱ)∈E(G)⟹(ℜ2ϱ,ℜ1(ℜ2ϱ))∈E(G) |
for any ϱ∈ Θ. Let us consider the following sets
Θℜ1={ϱ∈Θ: (ϱ,ℜ1ϱ)∈E(G)},Θℜ2={ϱ∈Θ: (ϱ,ℜ2ϱ)∈E(G)}. |
Remark 3. If (ℜ1,ℜ2) is a G-orbital-cyclic pair, then Θℜ1≠∅⟺Θℜ2≠∅.
Proof. Let ϱ0∈Θℜ1. Then (ϱ0,ℜ1ϱ0)∈E(G)⟹(ℜ1ϱ0,ℜ2(ℜ1ϱ0))∈E(G). If we represent by ϱ1=ℜ1ϱ0, then we get that (ϱ1,ℜ2(ϱ1))∈E(G), thus Θℜ2≠∅. Now let us prove the following main theorem.
Theorem 4. Let (Θ,ς) be a F-complete F-metric space equipped with a directed graph G and ℜ1,ℜ2:Θ→Θ is G-orbital cyclic pair. Assume that there exists α∈[0,1) such that
(ⅰ) Θℜ1≠∅,
(ⅱ) ∀ ϱ∈Θℜ1 and ℏ∈Θℜ2
ς(ℜ1ϱ,ℜ2ℏ)≤αmax{ς(ϱ,ℏ),ς(ϱ,ℜ1ϱ)ς(ℏ,ℜ2ℏ)1+ς(ϱ,ℏ),ς(ϱ,ℜ2ℏ)ς(ℏ,ℜ1ϱ)1+ς(ϱ,ℏ)}, | (5.1) |
(iii) ℜ1 and ℜ2 are continuous, or ∀ (ϱȷ)ȷ∈N⊂Θ, with ϱȷ→ϱ as , and (ϱȷ,ϱȷ+1)∈E(G) for
, we have ϱ∈Θℜ1∩Θℜ2. In these conditions CFix(ℜ1,ℜ2)≠∅,
(iv) if (ϱ∗,ϱ/)∈CFix(ℜ1,ℜ2) implies ϱ∗∈Θℜ1 and ϱ/∈Θℜ2, then the pair (ℜ1,ℜ2) has a unique common fixed point.
Proof. Let ϱ0∈Θℜ1. Thus (ϱ0,ℜ1ϱ0)∈E(G). As the pair (ℜ1,ℜ2) is G-orbital cyclic, we get (ℜ1ϱ0,ℜ2ℜ1ϱ0)∈E(G). Construct ϱ1 by ϱ1=ℜ1ϱ0, we have (ϱ1,ℜ2ϱ1)∈E(G) and from here (ℜ2ϱ1,ℜ1ℜ2ϱ1)∈E(G). Denoting by ϱ2=ℜ2ϱ1, we have (ϱ2,ℜ1ϱ2)∈E(G). Pursuing along these lines, we generate a sequence (ϱȷ)ȷ∈N with ϱ2ȷ=ℜ2ϱ2ȷ−1 and ϱ2ȷ+1=ℜ1ϱ2ȷ, such that (ϱ2ȷ,ϱ2ȷ+1)∈E(G). We assume that ϱȷ≠ϱȷ+1. If, there exists ∈N, such that ϱȷ0=ϱȷ0+1, then in the view of the fact that Δ⊂E(G), (ϱȷ0,ϱȷ0+1)∈E(G) and thus ϱ∗=ϱȷ0 is a fixed point of ℜ1. Now to manifest that ϱ∗∈CFix(ℜ1,ℜ2), we shall discuss these two cases for
. If
is even, then
. Then, ϱ2ȷ=ϱ2ȷ+1=ℜ1ϱ2ȷ and thus, ϱ2ȷ is a fixed point of ℜ1. Assume that ϱ2ȷ=ϱ2ȷ+1=ℜ1ϱ2ȷ but ς(ℜ1ϱ2ȷ,ℜ2ϱ2ȷ+1)>0, and let ϱ=ϱ2ȷ∈Θℜ1 and ℏ=ϱ2ȷ+1∈Θℜ2. So
0<ς(ϱ2ȷ+1,ϱ2ȷ+2)=ς(ℜ1ϱ2ȷ,ℜ2ϱ2ȷ+1)≤αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ℜ1ϱ2ȷ)ς(ϱ2ȷ+1,ℜ2ϱ2ȷ+1)1+ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ℜ2ϱ2ȷ+1)ς(ϱ2ȷ+1,ℜ1ϱ2ȷ)1+ς(ϱ2ȷ,ϱ2ȷ+1)}=αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ2ȷ+1,ϱ2ȷ+2)1+ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ϱ2ȷ+2)ς(ϱ2ȷ+1,ϱ2ȷ+1)1+ς(ϱ2ȷ,ϱ2ȷ+1)}≤αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ+1,ϱ2ȷ+2)}=ας(ϱ2ȷ+1,ϱ2ȷ+2), | (5.2) |
that is contradiction because α<1. Hence ϱ2ȷ is a fixed point of ℜ2 too. Likewise if is odd number, then ∃ϱ∗∈Θ such that ℜ1ϱ∗∩ℜ2ϱ∗=ϱ∗. So we assume that ϱȷ≠ϱȷ+1 for all
∈N. Now we shall show that (ϱȷ)ȷ∈N is Cauchy sequence. We have these two possible cases to discuss:
Case 1. ϱ=ϱ2ȷ∈Θℜ1 and ℏ=ϱ2ȷ+1∈Θℜ2.
0<ς(ϱ2ȷ+1,ϱ2ȷ+2)=ς(ℜ1ϱ2ȷ,ℜ2ϱ2ȷ+1)≤αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ℜ1ϱ2ȷ)ς(ϱ2ȷ+1,ℜ2ϱ2ȷ+1)1+ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ℜ2ϱ2ȷ+1)ς(ϱ2ȷ+1,ℜ1ϱ2ȷ)1+ς(ϱ2ȷ,ϱ2ȷ+1)}=αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ2ȷ+1,ϱ2ȷ+2)1+ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ϱ2ȷ+2)ς(ϱ2ȷ+1,ϱ2ȷ+1)1+ς(ϱ2ȷ,ϱ2ȷ+1)}=αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ+1,ϱ2ȷ+2)}≤α[ς(ϱ2ȷ,ϱ2ȷ+1)+ς(ϱ2ȷ+1,ϱ2ȷ+2)] |
that is
(1−α)ς(ϱ2ȷ+1,ϱ2ȷ+2)≤ας(ϱ2ȷ,ϱ2ȷ+1) |
which implies
ς(ϱ2ȷ+1,ϱ2ȷ+2)≤α1−ας(ϱ2ȷ,ϱ2ȷ+1). | (5.3) |
Case 2. ϱ=ϱ2ȷ∈Θℜ1 and ℏ=ϱ2ȷ−1∈Θℜ2.
0<ς(ϱ2ȷ+1,ϱ2ȷ)=ς(ℜ1ϱ2ȷ,ℜ2ϱ2ȷ−1)≤αmax{ς(ϱ2ȷ,ϱ2ȷ−1),ς(ϱ2ȷ,ℜ1ϱ2ȷ)ς(ϱ2ȷ−1,ℜ2ϱ2ȷ−1)1+ς(ϱ2ȷ,ϱ2ȷ−1),ς(ϱ2ȷ,ℜ2ϱ2ȷ−1)ς(ϱ2ȷ−1,ℜ1ϱ2ȷ)1+ς(ϱ2ȷ,ϱ2ȷ−1)}=αmax{ς(ϱ2ȷ,ϱ2ȷ−1),ς(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ2ȷ−1,ϱ2ȷ)1+ς(ϱ2ȷ,ϱ2ȷ−1),ς(ϱ2ȷ,ϱ2ȷ)ς(ϱ2ȷ−1,ϱ2ȷ+1)1+ς(ϱ2ȷ,ϱ2ȷ−1)}≤αmax{ς(ϱ2ȷ,ϱ2ȷ−1),ς(ϱ2ȷ,ϱ2ȷ+1)}=αmax{ς(ϱ2ȷ−1,ϱ2ȷ),ς(ϱ2ȷ,ϱ2ȷ+1)}≤α[ς(ϱ2ȷ−1,ϱ2ȷ)+ς(ϱ2ȷ,ϱ2ȷ+1)] |
that is
(1−α)ς(ϱ2ȷ+1,ϱ2ȷ)≤ας(ϱ2ȷ,ϱ2ȷ−1) |
which implies
ς(ϱ2ȷ,ϱ2ȷ+1)≤α1−ας(ϱ2ȷ−1,ϱ2ȷ). | (5.4) |
Since τ=α1−α, so we have
ς(ϱȷ,ϱȷ+1)≤τς(ϱȷ−1,ϱȷ). | (5.5) |
Thus, we have
ς(ϱȷ,ϱȷ+1)≤τς(ϱȷ−1,ϱȷ)≤τ2ς(ϱȷ−2,ϱȷ−1)≤⋅⋅⋅≤τȷς(ϱ0,ϱ1). | (5.6) |
Let (f,h)∈F×[0,+∞) be such that (D3) is satisfied. Let ϵ>0 be fixed. By (F2), ∃δ>0 such that
0<t<δ⟹f(t)<f(δ)−h. | (5.7) |
Hence, by (5.6), (F1) and (F2), we have
f(m−1∑i=ȷς(ϱi,ϱi+1))≤f(m−1∑i=ȷλȷ(ς(ϱ0,ϱ1)))≤f(∑ȷ≥n(ϵ)λȷς(ϱ0,ϱ1))<f(ϵ)−h | (5.8) |
for . By (D3) and (5.7), we get ς(ϱȷ,ϱm)>0,
implies
f(ς(ϱȷ,ϱm))≤f(m−1∑i=ȷς(ϱi,ϱi+1))+h<f(ϵ) |
which yields by (F1) that ς(ϱȷ,ϱm)<ϵ, . It shows that {ϱȷ} is F-Cauchy. As (Θ,ς) is F-complete, so ∃ϱ∗∈Θ such that {ϱȷ} is F-convergent to ϱ∗, i.e.,
limȷ→∞ς(ϱȷ,ϱ∗)=0. | (5.9) |
that is ϱȷ→ϱ∗ as . It is obvious that
limȷ→∞ϱ2ȷ=limȷ→∞ϱ2ȷ+1=ϱ∗. | (5.10) |
As ℜ1 and ℜ2 are continuous, so we have
ϱ∗=limȷ→∞ϱ2ȷ+1=limȷ→∞ℜ1(ϱ2ȷ)=ℜ1(ϱ∗)ϱ∗=limȷ→∞ϱ2ȷ+2=limȷ→∞ℜ2(ϱ2ȷ+1)=ℜ2(ϱ∗). | (5.11) |
Now letting ϱ=ϱ∗∈Θℜ1 and ℏ=ϱ2ȷ+2∈Θℜ2, we have We contrary suppose that ς(ϱ∗,ℜ1ϱ∗)>0. Then from (3.2), (F1) and (D3), we have
f(ς(ℜ1ϱ∗,ϱ∗))≤f(ς(ϱℜ1ϱ∗,ℜ2ϱ2ȷ+1)+ς(ℜ2ϱ2ȷ+1,ϱ∗))+h≤f(ς(ϱ∗,ℜ2ϱ2ȷ+1)+ς(ϱ2ȷ+2,ϱ∗))+h≤f(αmax{ς(ϱ∗,ϱ2ȷ+1),ς(ϱ∗,ℜ1ϱ∗)ς(ϱ2ȷ+1,ℜ2(ϱ2ȷ+1)1+ς(ϱ∗,ϱ2ȷ+1),ς(ϱ∗,ℜ2(ϱ2ȷ+1)ς(ϱ2ȷ+1,ℜ1ϱ∗)1+ς(ϱ∗,ϱ2ȷ+1)}+ς(ϱ2ȷ+2,ϱ∗))+h=f(αmax{ς(ϱ∗,ϱ2ȷ+1),ς(ϱ∗,ℜ1ϱ∗)ς(ϱ2ȷ+1,ϱ2ȷ+2)1+ς(ϱ∗,ϱ2ȷ+1),ς(ϱ∗,ϱ2ȷ+2)ς(ϱ2ȷ+1,ℜ1ϱ∗)1+ς(ϱ∗,ϱ2ȷ+1)}+ς(ϱ2ȷ+2,ϱ∗))+h. |
Taking and using (F2), (5.10) and (5.11), we get
limȷ→∞f(ς(ℜ1ϱ∗,ϱ∗))=−∞, |
which is a contradiction. Thus, we have ς(ϱ∗,ℜ1ϱ∗)=0. This yields that ϱ∗=ℜ1ϱ∗. Similarly, suppose that ϱ=ϱ2ȷ+1∈Θℜ1 and ℏ=ϱ∗∈Θℜ2, we have
f(ς(ϱ∗,ℜ2ϱ∗))≤f(ς(ϱ∗,ℜ1(ϱ2ȷ))+ς(ℜ1(ϱ2ȷ),ℜ2ϱ∗))+h≤f(ς(ϱ∗,ℜ1(ϱ2ȷ))+ς(ℜ1(ϱ2ȷ),ℜ2ϱ∗))+h≤f(ς(ϱ∗,ℜ1(ϱ2ȷ))+αmax{ς(ϱ2ȷ,ϱ∗),ς(ϱ2ȷ,ℜ1(ϱ2ȷ))ς(ϱ∗,ℜ2ϱ∗)1+ς(ϱ2ȷ,ϱ∗),ς(ϱ2ȷ,ℜ2ϱ∗)ς(ϱ∗,ℜ1(ϱ2ȷ))1+ς(ϱ2ȷ,ϱ∗)})+h. |
Taking the limit as and using (F2), (5.10) and (5.11), we have
limȷ→∞f(ς(ϱ∗,ℜ2ϱ∗))=−∞, |
which is a contradiction. Thus, we have ς(ϱ∗,ℜ2ϱ∗)=0. This yields that ϱ∗=ℜ2ϱ∗.
Corollary 11. Let (Θ,ς) be a F-complete F-metric space equipped with a directed graph G and ℜ:Θ→Θ is a G-orbital-cyclic. Suppose that there exists α∈[0,1) such that
(i) Θℜ≠∅,
(ii) ∀ ϱ,ℏ∈Θℜ, we have
ς(ℜϱ,ℜℏ)≤αmax{ς(ϱ,ℏ),ς(ϱ,ℜϱ)ς(ℏ,ℜℏ)1+ς(ϱ,ℏ),ς(ϱ,ℜℏ)ς(ℏ,ℜϱ)1+ς(ϱ,ℏ)}, |
(iii) ℜ is continuous, or ∀ (ϱȷ)ȷ∈N⊂Θ, with ϱȷ→ϱ as ȷ→∞, and (ϱȷ,ϱȷ+1)∈E(G) for ȷ∈N, we have ϱ∈Θℜ.
Then ℜ has a unique fixed point.
A representative stability result based on fixed point theory arguments follows a number of basic arguments adapted to the special structure of the equation under consideration. It leads to large number of results in the literature for different classes of equations, see [21,22]. In the present section, we investigate the existence of solution to differential equation
ϱ/(t)=−a(t)ϱ(t)+b(t)g(ϱ(t−r(t)))+c(t)ϱ/(t−r(t)). | (6.1) |
We state a lemma of Djoudi et al.[23] which will be used in proving of our theorem.
Lemma 2. (see [23]) Assume that r/(t)≠1 ∀t∈R. Then ϱ(t) is a solution of (6.1) if and only if
ϱ(t)=(ϱ(0)−c(0)1−r/(0)ϱ(−r(0)))e−∫t0a(s)ds+c(t)1−r/(t)ϱ(t−r(t))−∫t0(h(υ))ϱ(υ−r(υ)))−b(υ)g(ϱ(υ−r(υ))))e−∫tυa(s)dsdυ, | (6.2) |
where
h(υ)=r//(υ)c(υ)+(c/(υ)+c(υ)a(υ))(1−r/(υ))(1−r/(υ))2. | (6.3) |
Now suppose that ϑ:(−∞,0]→R is a bounded and continuous function, then ϱ(t)=ϱ(t,0,ϑ) is a solution of (6.1) if ϱ(t)=ϑ(t) for t≤0 and satisfies (6.1) for t≥0. Assume that C is the collection of ϱ:R→R which are continuous. Define ℵϑ by
ℵϑ={ϱ:R→Rsuchthatϑ(t)=ϱ(t)ift≤0,ϱ(t)→0ast→∞,ϱ∈C}. |
Then ℵϑ is a Banach space endowed with ‖⋅‖.
Lemma 3. (see [14]) The space (ℵϑ,∥⋅∥) with the F-metric d defined by
d(t,t∗)=||t−t∗||=supϱ∈I|t(ϱ)−t∗(ϱ)| |
for all t,t∗∈ℵϑ, is F-metric space.
Theorem 5. Let ℜ:ℵϑ→ℵϑ be a mapping defined by
(ℜϱ)(t)=(ϱ(0)−c(0)1−r/(0)ϱ(−r(0)))e−∫t0a(s)ds+c(t)1−r/(t)τ(t−r(t))−∫t0(h(υ)ϱ(υ−r(υ))−b(υ)g(ϱ(υ−r(υ))))e−∫tυa(s)dsdυ,t≥0 | (6.4) |
for all ϱ∈ℵϑ. Assume that there exists α:ℵϑ×ℵϑ→[0,1) such that
α(ϱ(t),ℏ(t))={|c(t)1−r/(t)|+∫t0(|h(υ)|+|b(υ)|)e−∫tυa(s)ds}<1. |
Then ℜ has a fixed point.
Proof. It follows from (6.3) that ℜ(ϱ),ℜ(ℏ)∈ ℵϑ. Now from (6.4), we have
|(ℜϱ)(t)−(ℜℏ)(t)|≤|c(t)1−r/(t)|‖ϱ−ℏ‖+∫t0|h(υ)(ϱ(υ−r(υ)))−ℏ(υ−r(υ))|e−∫tυa(s)ds+∫t0|(b(υ))g(ϱ(υ−r(υ)))−g(ℏ(υ−r(υ)))|e−∫tυa(s)ds≤{|c(t)1−r/(t)|+∫t0(|h(υ)|+|b(υ)|)e−∫tυa(s)ds}‖ϱ−ℏ‖≤α(ϱ,ℏ)‖ϱ−ℏ‖. |
Hence,
d(ℜϱ,ℜℏ)≤α(ϱ,ℏ)d(ϱ,ℏ). |
Thus all the assumptions of Corollary 4 are satisfied and ℜ has a unique fixed point in ℵϑ which solves (6.1).
1) Can the notion of F-metric space be extended to graphical F-metric space?
2) Can the results proved in this article be extended to multivalued mappings and fuzzy set valued mappings?
3) Can differential inclusions can be solved as applications of fixed point results for multivalued mappings in the context of F-metric space?
In this article, we have utilized the notion of F-metric spaces and obtained common fixed point results for generalized rational contractions involving control functions of two variables. We have derived common fixed points and fixed points of single valued mappings for contractions involving control functions of one variable and constants. We also have established some common fixed point theorems in F-metric spaces endowed with graph. We expect that the obtained theorems in this article will make new relations for those people who are employing in F-metric spaces.
The second author Ahmad Al-Rawashdeh is financially supported by the Grants: UPAR-2019, Fund No. 31S397, and the Post-Doc-2019, Fund No. 31S404.
The authors declare that they have no conflicts of interest.
[1] |
D. Agarwal, P. Singh, M. A. El Sayed, The Karush-Kuhn-Tucker (KKT) optimality conditions for fuzzy-valued fractional optimization problems, Math. Comput. Simulat., 205 (2023), 861–877. https://doi.org/10.1016/j.matcom.2022.10.024 doi: 10.1016/j.matcom.2022.10.024
![]() |
[2] | J. P. Aubin, Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions, In: Mathematical Analysis and Applications, Part A, New York: Academic Press, 1981,160–229. |
[3] | J. P. Aubin, H. Frankowska, Set-valued analysis, Boston: Birhäuser, 1990. |
[4] | M. Avriel, Nonlinear programming: Theory and method, Englewood Cliffs, New Jersey: Prentice-Hall, 1976. |
[5] |
D. Bhatia, P. K. Garg, Duality for non smooth non linear fractional multiobjective programs via (F, ρ)-convexity, Optimization, 43 (1998), 185–197. https://doi.org/10.1080/02331939808844382 doi: 10.1080/02331939808844382
![]() |
[6] |
D. Bhatia, A. Mehra, Lagrangian duality for preinvex set-valued functions, J. Math. Anal. Appl., 214 (1997), 599–612. https://doi.org/10.1006/jmaa.1997.5599 doi: 10.1006/jmaa.1997.5599
![]() |
[7] | D. Bhatia, A. Mehra, Fractional programming involving set-valued functions, Indian J. Pure Appl. Math., 29 (1998), 525–540. |
[8] |
J. Borwein, Multivalued convexity and optimization: A unified approach to inequality and equality constraints, Math. Program., 13 (1977), 183–199. https://doi.org/10.1007/BF01584336 doi: 10.1007/BF01584336
![]() |
[9] | K. Das, On constrained set-valued optimization problems with ρ-cone arcwise connectedness, SeMA J., 2022, 1–16. https://doi.org/10.1007/s40324-022-00295-0 |
[10] |
K. Das, C. Nahak, Sufficient optimality conditions and duality theorems for set-valued optimization problem under generalized cone convexity, Rend. Circ. Mat. Palerm., 63 (2014), 329–345. https://doi.org/10.1007/s12215-014-0163-9 doi: 10.1007/s12215-014-0163-9
![]() |
[11] |
K. Das, C. Nahak, Optimality conditions for approximate quasi efficiency in set-valued equilibrium problems, SeMA J., 73 (2016), 183–199. https://doi.org/10.1007/s40324-016-0063-3 doi: 10.1007/s40324-016-0063-3
![]() |
[12] |
K. Das, C. Nahak, Set-valued fractional programming problems under generalized cone convexity, Opsearch, 53 (2016), 157–177. https://doi.org/10.1007/s12597-015-0222-9 doi: 10.1007/s12597-015-0222-9
![]() |
[13] |
K. Das, C. Nahak, Approximate quasi efficiency of set-valued optimization problems via weak subdifferential, SeMA J., 74 (2017), 523–542. https://doi.org/10.1007/s40324-016-0099-4 doi: 10.1007/s40324-016-0099-4
![]() |
[14] |
K. Das, C. Nahak, Optimality conditions for set-valued minimax fractional programming problems, SeMA J., 77 (2020), 161–179. https://doi.org/10.1007/s40324-019-00209-7 doi: 10.1007/s40324-019-00209-7
![]() |
[15] |
K. Das, C. Nahak, Set-valued optimization problems via second-order contingent epiderivative, Yugosl. J. Oper. Res., 31 (2021), 75–94. https://doi.org/10.2298/YJOR191215041D doi: 10.2298/YJOR191215041D
![]() |
[16] |
K. Das, S. Treanţă, On constrained set-valued semi-infinite programming problems with ρ-cone arcwise connectedness, Axioms, 10 (2021), 302. https://doi.org/10.3390/axioms10040302 doi: 10.3390/axioms10040302
![]() |
[17] | K. Das, S. Treanţă, Constrained controlled optimization problems involving second-order derivatives, Quaest. Math., 2022, 1–11. https://doi.org/10.2989/16073606.2022.2055506 |
[18] |
K. Das, S. Treanţă, T. Saeed, Mond-weir and wolfe duality of set-valued fractional minimax problems in terms of contingent epi-derivative of second-order, Mathematics, 10 (2022), 938. https://doi.org/10.3390/math10060938 doi: 10.3390/math10060938
![]() |
[19] |
M. A. Elsisy, M. A. El Sayed, Y. A.-Elnaga, A novel algorithm for generating Pareto frontier of bi-level multi-objective rough nonlinear programming problem, Ain Shams Eng. J., 12 (2021), 2125–2133. https://doi.org/10.1016/j.asej.2020.11.006 doi: 10.1016/j.asej.2020.11.006
![]() |
[20] | M. A. Elsisy, A. S. Elsaadany, M. A. El Sayed, Using interval operations in the hungarian method to solve the fuzzy assignment problem and its application in the rehabilitation problem of valuable buildings in Egypt, Complexity, 2020, 1–11. https://doi.org/10.1155/2020/6623049 |
[21] |
J. Y. Fu, Y. H. Wang, Arcwise connected cone-convex functions and mathematical programming, J. Optim. Theory Appl., 118 (2003), 339–352. https://doi.org/10.1023/A:1025451422581 doi: 10.1023/A:1025451422581
![]() |
[22] |
N. Gadhi, A. Jawhar, Necessary optimality conditions for a set-valued fractional extremal programming problem under inclusion constraints, J. Global Optim., 56 (2013), 489–501. https://doi.org/10.1007/s10898-012-9849-8 doi: 10.1007/s10898-012-9849-8
![]() |
[23] |
J. Jahn, R Rauh, Contingent epiderivatives and set-valued optimization, Math. Method. Oper. Res., 46 (1997), 193–211. https://doi.org/10.1007/BF03354124 doi: 10.1007/BF03354124
![]() |
[24] | H. Jiao, Y. Shang, R. Chen, A potential practical algorithm for minimizing the sum of affine fractional functions, Optimization, 2022, 1–31. https://doi.org/10.1080/02331934.2022.2032051 |
[25] |
H. Jiao, W. Wang, Y. Shang, Outer space branch-reduction-bound algorithm for solving generalized affine multiplicative problem, J. Comput. Appl. Math., 419 (2023), 114784. https://doi.org/10.1016/j.cam.2022.114784 doi: 10.1016/j.cam.2022.114784
![]() |
[26] |
R. N. Kaul, V. Lyall, A note on nonlinear fractional vector maximization, Opsearch, 26 (1989), 108–121. https://doi.org/10.1515/pm-1989-260303 doi: 10.1515/pm-1989-260303
![]() |
[27] | M. B. Khan, G. Santos-García, S. Treanţă, M. A. Noor, M. S. Soliman, Perturbed mixed variational-like inequalities and auxiliary principle pertaining to a fuzzy environment, Symmetry, 14 (2022), 2503. |
[28] | M. B. Khan, G. Santos-García, H. Budak, S. Treanţă, M. S. Soliman, Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for (p, F)-convex fuzzy-interval-valued functions, AIMS Math., 8 (2023), 7437–7470. |
[29] | M. B. Khan, H. A. Othman, G. Santos-García, T. Saeed, M. S. Soliman, On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings, Chaos Soliton. Fract., 169 (2023), 113274. |
[30] | M. B. Khan, G. Santos-García, M. A. Noor, M. S. Soliman, Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities, Chaos Soliton. Fract., 164 (2022), 112692. |
[31] |
C. S. Lalitha, J. Dutta, M. G. Govil, Optimality criteria in set-valued optimization, J. Aust. Math. Soc., 75 (2003), 221–232. https://doi.org/10.1017/S1446788700003736 doi: 10.1017/S1446788700003736
![]() |
[32] |
J. C. Lee, S. C. Ho, Optimality and duality for multiobjective fractional problems with r-invexity, Taiwanese J. Math., 12 (2008), 719–740. https://doi.org/10.11650/twjm/1500574161 doi: 10.11650/twjm/1500574161
![]() |
[33] |
J. Ma, H. Jiao, J. Yin, Y. Shang, Outer space branching search method for solving generalized affine fractional optimization problem, AIMS Math., 8 (2023), 1959–1974. https://doi.org/10.3934/math.2023101 doi: 10.3934/math.2023101
![]() |
[34] |
Z. Peng, Y. Xu, Second-order optimality conditions for cone-subarcwise connected set-valued optimization problems, Acta Math. Appl. Sin.-E., 34 (2018), 183–196. https://doi.org/10.1007/s10255-018-0738-x doi: 10.1007/s10255-018-0738-x
![]() |
[35] |
Q. S. Qiu, X. M. Yang, Connectedness of henig weakly efficient solution set for set-valued optimization problems, J. Optim. Theory Appl., 152 (2012), 439–449. https://doi.org/10.1007/s10957-011-9906-3 doi: 10.1007/s10957-011-9906-3
![]() |
[36] |
L. Rodríguez-Marín, M. Sama, About contingent epiderivatives, J. Math. Anal. Appl., 327 (2007), 745–762. https://doi.org/10.1016/j.jmaa.2006.04.060 doi: 10.1016/j.jmaa.2006.04.060
![]() |
[37] |
M. A. El Sayed, M. A. Abo-Sinna, A novel approach for fully intuitionistic fuzzy multi-objective fractional transportation problem, Alex. Eng. J., 60 (2021), 1447–1463. https://doi.org/10.1016/j.aej.2020.10.063 doi: 10.1016/j.aej.2020.10.063
![]() |
[38] |
M. A. El Sayed, I. A. Baky, P. Singh, A modified TOPSIS approach for solving stochastic fuzzy multi-level multi-objective fractional decision making problem, Opsearch, 57 (2020), 1374–1403. https://doi.org/10.1007/s12597-020-00461-w doi: 10.1007/s12597-020-00461-w
![]() |
[39] |
M. A. El Sayed, F. A. Farahat, M. A. Elsisy, A novel interactive approach for solving uncertain bi-level multi-objective supply chain model, Comput. Ind. Eng., 169 (2022), 108225. https://doi.org/10.1016/j.cie.2022.108225 doi: 10.1016/j.cie.2022.108225
![]() |
[40] |
I. M. Stancu-Minasian, A eighth bibliography of fractional programming, Optimization, 66 (2017), 439–470. https://doi.org/10.1080/02331934.2016.1276179 doi: 10.1080/02331934.2016.1276179
![]() |
[41] |
I. M. Stancu-Minasian, A ninth bibliography of fractional programming, Optimization, 68 (2019), 2125–2169. https://doi.org/10.1080/02331934.2019.1632250 doi: 10.1080/02331934.2019.1632250
![]() |
[42] | T. V. Su, D. D. Hang, Second-order optimality conditions in locally Lipschitz multiobjective fractional programming problem with inequality constraints, Optimization, 2021, 1–28. https://doi.org/10.1080/02331934.2021.2002328 |
[43] |
S. K. Suneja, S. Gupta, Duality in multiple objective fractional programming problems involving nonconvex functions, Opsearch, 27 (1990), 239–253. https://doi.org/10.1515/tsd-1990-270418 doi: 10.1515/tsd-1990-270418
![]() |
[44] | S. K. Suneja, C. S. Lalitha, Multiobjective fractional programming involving ρ-invex and related functions, Opsearch, 30 (1993), 1–14. |
[45] | N. T. T. Thuy, T. V. Su, Robust optimality conditions and duality for nonsmooth multiobjective fractional semi-infinite programming problems with uncertain data, Optimization, 2022, 1–31. https://doi.org/10.1080/02331934.2022.2038154 |
[46] |
S. Treanţă, K. Das, On robust saddle-point criterion in optimization problems with curvilinear integral functionals, Mathematics, 9 (2021), 1790. https://doi.org/10.3390/math9151790 doi: 10.3390/math9151790
![]() |
[47] |
T. V. Su, D. D. Hang, Optimality and duality in nonsmooth multiobjective fractional programming problem with constraints, 4OR-Q. J. Oper. Res., 20 (2022), 105–137. https://doi.org/10.1007/s10288-020-00470-x doi: 10.1007/s10288-020-00470-x
![]() |
[48] |
X. U. Yihong, L. I. Min, Optimality conditions for weakly efficient elements of set-valued optimization with α-order near cone-arcwise connectedness, J. Syst. Sci. Math. Sci., 36 (2016), 1721–1729. https://doi.org/10.12341/jssms12925 doi: 10.12341/jssms12925
![]() |
[49] |
G. Yu, Optimality of global proper efficiency for cone-arcwise connected set-valued optimization using contingent epiderivative, Asia Pac. J. Oper. Res., 30 (2013), 1340004. https://doi.org/10.1142/S0217595913400046 doi: 10.1142/S0217595913400046
![]() |
[50] |
G. Yu, Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps, Numer. Algebr. Control, 6 (2016), 35–44. https://doi.org/10.3934/naco.2016.6.35 doi: 10.3934/naco.2016.6.35
![]() |
1. |
Koushik Das, Chandal Nahak,
Sufficiency and duality for set-valued optimization problems with κ -cone arcwise connectedness of higher-order,
2025,
0030-3887,
10.1007/s12597-025-00922-0
|