Research article Special Issues

Decision-making algorithm based on Pythagorean fuzzy environment with probabilistic hesitant fuzzy set and Choquet integral

  • Received: 12 January 2023 Revised: 11 February 2023 Accepted: 23 February 2023 Published: 24 March 2023
  • MSC : 03B52, 03E72

  • The Pythagorean Probabilistic Hesitant Fuzzy (PyPHF) Environment is an amalgamation of the Pythagorean fuzzy set and the probabilistic hesitant fuzzy set that is intended for some unsatisfactory, ambiguous, and conflicting situations where each element has a few different values created by the reality of the situation membership hesitant function and the falsity membership hesitant function with probability. The decision-maker can efficiently gather and analyze the information with the use of a strategic decision-making technique. In contrast, ambiguity will be a major factor in our daily lives while gathering information. We describe a decision-making technique in the PyPHF environment to deal with such data uncertainty. The fundamental operating principles for PyPHF information under Choquet Integral were initially established in this study. Then, we put up a set of new aggregation operator names, including Pythagorean probabilistic hesitant fuzzy Choquet integral average and Pythagorean probabilistic hesitant fuzzy Choquet integral geometric aggregation operators. Finally, we explore a multi-attribute decision-making (MADM) algorithm based on the suggested operators to address the issues in the PyPHF environment. To demonstrate the work and contrast the findings with those of previous studies, a numerical example is provided. Additionally, the paper provides sensitivity analysis and the benefits of the stated method to support and reinforce the research.

    Citation: Misbah Rasheed, ElSayed Tag-Eldin, Nivin A. Ghamry, Muntazim Abbas Hashmi, Muhammad Kamran, Umber Rana. Decision-making algorithm based on Pythagorean fuzzy environment with probabilistic hesitant fuzzy set and Choquet integral[J]. AIMS Mathematics, 2023, 8(5): 12422-12455. doi: 10.3934/math.2023624

    Related Papers:

  • The Pythagorean Probabilistic Hesitant Fuzzy (PyPHF) Environment is an amalgamation of the Pythagorean fuzzy set and the probabilistic hesitant fuzzy set that is intended for some unsatisfactory, ambiguous, and conflicting situations where each element has a few different values created by the reality of the situation membership hesitant function and the falsity membership hesitant function with probability. The decision-maker can efficiently gather and analyze the information with the use of a strategic decision-making technique. In contrast, ambiguity will be a major factor in our daily lives while gathering information. We describe a decision-making technique in the PyPHF environment to deal with such data uncertainty. The fundamental operating principles for PyPHF information under Choquet Integral were initially established in this study. Then, we put up a set of new aggregation operator names, including Pythagorean probabilistic hesitant fuzzy Choquet integral average and Pythagorean probabilistic hesitant fuzzy Choquet integral geometric aggregation operators. Finally, we explore a multi-attribute decision-making (MADM) algorithm based on the suggested operators to address the issues in the PyPHF environment. To demonstrate the work and contrast the findings with those of previous studies, a numerical example is provided. Additionally, the paper provides sensitivity analysis and the benefits of the stated method to support and reinforce the research.



    加载中


    [1] J. K. Fuller, J. R. Fuller, Surgical technology: Principles and practice, Elsevier Health Sciences, 2012.
    [2] R. A. Cabral, T. Eggenberger, K. Keller, B. S. Gallison, D. Newman, Use of a surgical safety checklist to improve team communication, Aorn J., 104 (2016), 206–216. https://doi.org/10.1016/j.aorn.2016.06.019 doi: 10.1016/j.aorn.2016.06.019
    [3] K. Ahmed, H. Abboudi, K. A. Guru, M. S. Khan, P. Dasgupta, Robotic surgical technology is here to stay and evolve, Trend. Urol. Men's Heal., 4 (2013), 32–36.
    [4] A. I. Aviles, S. M. Alsaleh, E. Montseny, P. Sobrevilla, A. Casals, A deep-neuro-fuzzy approach for estimating the interaction forces in robotic surgery, In: 2016 IEEE international conference on fuzzy systems (FUZZ-IEEE), 2016, 1113–1119.
    [5] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [6] S. Faizi, W. Salabun, T. Rashid, S. Zafar, J. Watrobski, Intuitionistic fuzzy sets in multi-criteria group decision making problems using the characteristic objects method, Symmetry, 12 (2020), 1382. https://doi.org/10.3390/sym12091382 doi: 10.3390/sym12091382
    [7] K. T. Atanassov, Intuitionistic fuzzy sets, In: Intuitionistic fuzzy sets, Physica, Heidelberg, 1999, 1–137. https://doi.org/10.1007/978-3-7908-1870-3_1
    [8] Z. Xu, , Intuitionistic fuzzy aggregation operators, IEEE Transactions on fuzzy systems, 15 (2007), 1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678 doi: 10.1109/TFUZZ.2006.890678
    [9] R. R. Yager, Pythagorean fuzzy subsets, In: 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), 2013, 57–61.
    [10] R. R. Yager, A. M. Abbasov, Pythagorean membership grades, complex numbers, and decision making, Int. J. Intell. Syst., 28 (2013), 436–452. https://doi.org/10.1002/int.21584 doi: 10.1002/int.21584
    [11] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE T. Fuzzy Syst., 22 (2013), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [12] X. Zhang, Z. Xu, Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets, Int. J. Intell. Syst., 29 (2014), 1061–1078. https://doi.org/10.1002/int.21676 doi: 10.1002/int.21676
    [13] X. Peng, Y. Yang, Some results for Pythagorean fuzzy sets, Int. J. Intell. Syst., 30 (2015), 1133–1160. https://doi.org/10.1002/int.21738 doi: 10.1002/int.21738
    [14] P. Ren, Z. Xu, X. Gou, Pythagorean fuzzy TODIM approach to multi-criteria decision making, Appl. Soft Comput., 42 (2016), 246–259. https://doi.org/10.1016/j.asoc.2015.12.020 doi: 10.1016/j.asoc.2015.12.020
    [15] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529–539.
    [16] Y. He, Z. He, G. Wang, H. Chen, Hesitant fuzzy power Bonferroni means and their application to multiple attribute decision making, IEEE T. Fuzzy Syst., 23 (2014), 1655–1668. https://doi.org/10.1109/TFUZZ.2014.2372074 doi: 10.1109/TFUZZ.2014.2372074
    [17] M. Xia, Z. Xu, Hesitant fuzzy information aggregation in decision making, Int. J. Approx. Reason., 52 (2011), 395–407. https://doi.org/10.1016/j.ijar.2010.09.002 doi: 10.1016/j.ijar.2010.09.002
    [18] M. A. Khan, S. Ashraf, S. Abdullah, F. Ghani, Applications of probabilistic hesitant fuzzy rough set in decision support system, Soft Comput., 24 (2020), 16759–16774. https://doi.org/10.1007/s00500-020-04971-z doi: 10.1007/s00500-020-04971-z
    [19] Z. Xu, W. Zhou, Consensus building with a group of decision makers under the hesitant probabilistic fuzzy environment, Fuzzy Optim. Decis. Ma., 16 (2017), 481–503. https://doi.org/10.1007/s10700-016-9257-5 doi: 10.1007/s10700-016-9257-5
    [20] M. Naeem, M. A. Khan, S. Abdullah, M. Qiyas, S. Khan, Extended TOPSIS method based on the entropy measure and probabilistic hesitant fuzzy information and their application in decision support system, J. Intell. Fuzzy Syst., 40 (2021), 11479–11490. https://doi.org/10.3233/JIFS-202700 doi: 10.3233/JIFS-202700
    [21] D. Luo, S. Zeng, G. Yu, Pythagorean fuzzy investment multiple attribute decision making method based on combined aggregation method, J. Intell. Fuzzy Syst., 39 (2020), 949–959.
    [22] Y. Jin, M. Kamran, N. Salamat, S. Zeng, R. H. Khan, Novel distance measures for single-valued neutrosophic fuzzy sets and their applications to multicriteria group decision-making problem, J. Funct. Space., 2022.
    [23] R. M. Zulqarnain, X. L. Xin, M. Saeed, Extension of TOPSIS method under intuitionistic fuzzy hypersoft environment based on correlation coefficient and aggregation operators to solve decision making problem, AIMS Math., 6 (2021), 2732–2755. https://doi.org/10.3934/math.2021167 doi: 10.3934/math.2021167
    [24] S. Ashraf, S. Abdullah, Spherical aggregation operators and their application in multiattribute group decision-making, Int. J. Intell. Syst., 34 (2019), 493–523. https://doi.org/10.1002/int.22062 doi: 10.1002/int.22062
    [25] S. Ashraf, S. Abdullah, T. Mahmood, GRA method based on spherical linguistic fuzzy Choquet integral environment and its application in multi-attribute decision-making problems, Math. Sci., 12 (2018), 263–275. https://doi.org/10.1007/s40096-018-0266-0 doi: 10.1007/s40096-018-0266-0
    [26] M. Kamran, S. Ashraf, N. Salamat, M. Naeem, T. Botmart, Cyber security control selection based decision support algorithm under single valued neutrosophic hesitant fuzzy Einstein aggregation information, AIMS Math., 8 (2023), 5551–5573. https://doi.org/10.3934/math.2023280 doi: 10.3934/math.2023280
    [27] J. W. Burton, M. K. Stein, T. B. Jensen, A systematic review of algorithm aversion in augmented decision making, J. Behav. Decis. Making, 33 (2020), 220–239. https://doi.org/10.1002/bdm.2155 doi: 10.1002/bdm.2155
    [28] M. S. Hameed, E. H. A. Al-Sabri, Z. Ahmad, S. Ali, M. U. Ghani, Some results on submodules using $(\mu, \nu, \omega)$-single-valued neutrosophic environment, Symmetry, 15 (2023), 247. https://doi.org/10.3390/sym15010247 doi: 10.3390/sym15010247
    [29] M. Zhang, C. Zhang, Q. Shi, S. Zeng, T. Balezentis, Operationalizing the telemedicine platforms through the social network knowledge: An MCDM model based on the CIPFOHW operator, Technol. Forecast. Soc., 174 (2022), 121303. https://doi.org/10.1016/j.techfore.2021.121303 doi: 10.1016/j.techfore.2021.121303
    [30] M. Akram, A. Adeel, J. C. R. Alcantud, Multi-criteria group decision-making using an m-polar hesitant fuzzy TOPSIS approach, Symmetry, 11 (2019), 795. https://doi.org/10.3390/sym11060795 doi: 10.3390/sym11060795
    [31] R. M. Zulqarnain, I. Siddique, S. Ahmad, A. Iampan, G. Jovanov, O. Vranje, et al., Pythagorean fuzzy soft Einstein ordered weighted average operator in sustainable supplier selection problem, Math. Probl. Eng., 2021, 1–16. https://doi.org/10.1155/2021/2559979 doi: 10.1155/2021/2559979
    [32] S. Ashraf, S. Abdullah, S. Khan, Fuzzy decision support modeling for internet finance soft power evaluation based on sine trigonometric Pythagorean fuzzy information, J. Amb. Intel. Hum. Comp., 12 (2021), 3101–3119. https://doi.org/10.1007/s12652-020-02471-4 doi: 10.1007/s12652-020-02471-4
    [33] T. M. Athira, S. J. John, H. Garg, A novel entropy measure of Pythagorean fuzzy soft sets, AIMS Math., 5 (2020), 1050–1061. https://doi.org/10.3934/math.2020073 doi: 10.3934/math.2020073
    [34] M. Kamran, S. Nadeem, S. Ashraf, A. Alam, I. N. Cangul, Novel decision modeling for manufacturing sustainability under single-valued neutrosophic hesitant fuzzy rough aggregation information, Comput. Intel. Neurosc., 2022.
    [35] H. Garg, Linguistic Pythagorean fuzzy sets and its applications in multiattribute decision-making process, Int. J. Intel. Syst., 33 (2018), 1234–1263. https://doi.org/10.1002/int.21979 doi: 10.1002/int.21979
    [36] R. M. Rodríguez, L. Martínez, V. Torra, Z. S. Xu, F. Herrera, Hesitant fuzzy sets: State of the art and future directions, Int. J. Intel. Syst., 29 (2014), 495–524. https://doi.org/10.1002/int.21654 doi: 10.1002/int.21654
    [37] X. Jia, Y. Wang, Choquet integral-based intuitionistic fuzzy arithmetic aggregation operators in multi-criteria decision-making, Expert Syst. Appl., 191 (2022), 116242. https://doi.org/10.1016/j.eswa.2021.116242 doi: 10.1016/j.eswa.2021.116242
    [38] X. Peng, G. Selvachandran, Pythagorean fuzzy set: State of the art and future directions, Artif. Intell. Rev., 52 (2019), 1873–1927.
    [39] R. M. Rodríguez, L. Martínez, V. Torra, Z. S. Xu, F. Herrera, Hesitant fuzzy sets: State of the art and future directions, Int. J. Intell. Syst., 29 (2014), 495–524. https://doi.org/10.1002/int.21654 doi: 10.1002/int.21654
    [40] S. Zhang, Z. Xu, Y. He, Operations and integrations of probabilistic hesitant fuzzy information in decision making, Inform. Fusion, 38 (2017), 1–11. https://doi.org/10.1016/j.inffus.2017.02.001 doi: 10.1016/j.inffus.2017.02.001
    [41] M. S. A. Khan, S. Abdullah, A. Ali, N. Siddiqui, F. Amin, Pythagorean hesitant fuzzy sets and their application to group decision making with incomplete weight information, J. Intell. Fuzzy Syst., 33 (2017), 3971–3985. https://doi.org/10.3233/JIFS-17811 doi: 10.3233/JIFS-17811
    [42] M. S. A. Khan, S. Abdullah, A. Ali, F. Amin, F. Hussain, Pythagorean hesitant fuzzy Choquet integral aggregation operators and their application to multi-attribute decision-making, Soft Comput., 23 (2019), 251–267. https://doi.org/10.1007/s00500-018-3592-0 doi: 10.1007/s00500-018-3592-0
    [43] X. Peng, H. Yuan, Fundamental properties of Pythagorean fuzzy aggregation operators, Fund. Inform., 147 (2016), 415–446. https://doi.org/10.3233/FI-2016-1415 doi: 10.3233/FI-2016-1415
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1298) PDF downloads(76) Cited by(7)

Article outline

Figures and Tables

Figures(1)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog