In this article, we define the q-difference operator and Salagean q-differential operator for υ-fold symmetric functions in open unit disk U by first applying the concepts of q-calculus operator theory. Then, we considered these operators in order to construct new subclasses for υ-fold symmetric bi-univalent functions. We establish the general coefficient bounds |aυk+1| for the functions in each of these newly specified subclasses using the Faber polynomial expansion method. Investigations are also performed on Feketo-Sezego problems and initial coefficient bounds for the function h that belong to the newly discovered subclasses. To illustrate the relationship between the new and existing research, certain well-known corollaries of our main findings are also highlighted.
Citation: Mohammad Faisal Khan. Certain new applications of Faber polynomial expansion for some new subclasses of υ-fold symmetric bi-univalent functions associated with q-calculus[J]. AIMS Mathematics, 2023, 8(5): 10283-10302. doi: 10.3934/math.2023521
[1] | Sheza. M. El-Deeb, Gangadharan Murugusundaramoorthy, Kaliyappan Vijaya, Alhanouf Alburaikan . Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial. AIMS Mathematics, 2022, 7(2): 2989-3005. doi: 10.3934/math.2022165 |
[2] | F. Müge Sakar, Arzu Akgül . Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator. AIMS Mathematics, 2022, 7(4): 5146-5155. doi: 10.3934/math.2022287 |
[3] | Zeya Jia, Nazar Khan, Shahid Khan, Bilal Khan . Faber polynomial coefficients estimates for certain subclasses of q-Mittag-Leffler-Type analytic and bi-univalent functions. AIMS Mathematics, 2022, 7(2): 2512-2528. doi: 10.3934/math.2022141 |
[4] | H. M. Srivastava, Sheza M. El-Deeb . The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of Bi-Close-to-Convex functions connected with the q-convolution. AIMS Mathematics, 2020, 5(6): 7087-7106. doi: 10.3934/math.2020454 |
[5] | Caihuan Zhang, Shahid Khan, Aftab Hussain, Nazar Khan, Saqib Hussain, Nasir Khan . Applications of q-difference symmetric operator in harmonic univalent functions. AIMS Mathematics, 2022, 7(1): 667-680. doi: 10.3934/math.2022042 |
[6] | Bilal Khan, H. M. Srivastava, Muhammad Tahir, Maslina Darus, Qazi Zahoor Ahmad, Nazar Khan . Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(1): 1024-1039. doi: 10.3934/math.2021061 |
[7] | Luminiţa-Ioana Cotîrlǎ . New classes of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(10): 10642-10651. doi: 10.3934/math.2021618 |
[8] | Shuhai Li, Lina Ma, Huo Tang . Meromorphic harmonic univalent functions related with generalized (p, q)-post quantum calculus operators. AIMS Mathematics, 2021, 6(1): 223-234. doi: 10.3934/math.2021015 |
[9] | Huo Tang, Kadhavoor Ragavan Karthikeyan, Gangadharan Murugusundaramoorthy . Certain subclass of analytic functions with respect to symmetric points associated with conic region. AIMS Mathematics, 2021, 6(11): 12863-12877. doi: 10.3934/math.2021742 |
[10] | Ahmad A. Abubaker, Khaled Matarneh, Mohammad Faisal Khan, Suha B. Al-Shaikh, Mustafa Kamal . Study of quantum calculus for a new subclass of q-starlike bi-univalent functions connected with vertical strip domain. AIMS Mathematics, 2024, 9(5): 11789-11804. doi: 10.3934/math.2024577 |
In this article, we define the q-difference operator and Salagean q-differential operator for υ-fold symmetric functions in open unit disk U by first applying the concepts of q-calculus operator theory. Then, we considered these operators in order to construct new subclasses for υ-fold symmetric bi-univalent functions. We establish the general coefficient bounds |aυk+1| for the functions in each of these newly specified subclasses using the Faber polynomial expansion method. Investigations are also performed on Feketo-Sezego problems and initial coefficient bounds for the function h that belong to the newly discovered subclasses. To illustrate the relationship between the new and existing research, certain well-known corollaries of our main findings are also highlighted.
Assume that A denotes the set of all analytic functions h(z) in the open symmetric unit disk
U={z:|z|<1}, |
which are normalized by
h(0)=0andh′(0)=1. |
Thus, every function h∈A can be expressed in the form given in (1.1)
h(z)=z+∞∑k=2akzk. | (1.1) |
Let an analytic function h is said to be univalent if it satisfy the following condition:
h(z1)≠h(z2)⇒z1≠z2,∀z1,z2∈U. |
Furthermore, S is the subclass of A whose members are univalent in U. The idea of subordination was initiated by Lindelof [30] and Little-wood and Rogosinski have further improved this idea, see [31,35,36]. For h, y∈A, and h subordinate to y in U, denoted by
h(z)≺y(z),z∈U, |
if we have a function u, such that
u∈B={u:u∈A,|u(z)|<1,andu(0)=0,z∈U} |
and
h(z)=y(u(z)),z∈U. |
According to the Koebe one-quarter theorem (see [13]), the image of U under h∈S contains a disk of radius one-quarter centered at origin. Thus, every function h∈S has an inverse h−1=g, defined as:
g(h(z))=z,z∈U |
and
h(g(w))=w,|w|<r0(h),r0(h)≥14. |
The power series for the inverse function g(w) is given by
g(w)=w−a2w2+(2a22−a3)w3−Q(a)w4+,⋯, | (1.2) |
Where
Q(a)=(5a32−5a2a3+a4). |
An analytic function h is called bi-univalent in U if h and h−1 are univalent in U and class of all bi-univalent functions are denoted by Σ. In 1967, for h∈Σ, Levin [32] showed that |a2|<1.51 and after twelve years Branan and Clunie [8] gave the improvement of |a2| and proved that |a2|≤√2. Furthermore, for h∈Σ, Netanyahu [34] proved that max|a2|=43 and an intriguing subclass of analytic and bi-univalent functions was proposed and studied by Branan and Taha [9], who also discovered estimates for the coefficients of the functions in this subclass. Recently, the investigation of numerous subclasses of the analytic and bi-univalent function class Σ was basically revitalized by the pioneering work of Srivastava et al. [41]. In 2012, Xu et al. [44] defined a general subclass of class Σ and investigated coefficient estimates for the functions belonging to the new subclass of class Σ. Recently, several different subclasses of class Σ were introduced and investigated by a number of authors (see for details ([23,29,38]). In these recent papers only non-sharp estimates on the initial coefficients were obtained.
Faber polynomials was introduced by Faber [15] and first time he used it to determine the general coefficient bounds |ak| for k≥4. Gong [16] interpreted significance of Faber polynomials in mathematical sciences, particularly in Geometric Function Theory. In 1913, Hamidi et al. [18] first time used the Faber polynomials expansion technique on meromorphic bi-starlike functions and determined the coefficient estimates. The Faber polynomials expansion method for analytic bi-close-to-convex functions was examined by Hamidi and Jahangiri [21,22], who also discovered some new coefficient bounds for new subclasses of close-to-convex functions. Furthermore, many authors [3,4,7,11,12,14,20] used the same technique and determined some interesting and useful properties for analytic bi-univalent functions. For h∈Σ, by using the Faber polynomial expansions methods, only a few works have been done so far and we recognized very little over the bounds of Maclaurin's series coefficient |ak| for k≥4 in the literature. Recently only a few authors, used the Faber polynomials expansion technique and determined the general coefficient bounds |ak| for k≥4, (see for detail [6,11,24,39,40,42]).
A domain U is said to be the υ-fold symmetric if
hυ(ek(2πυ)(z))=ek(2πυ)hυ(z),z∈U,υ∈Z+,h∈A |
and every hυ has the series of the form
hυ=z+∞∑k=1aυk+1zυk+1. | (1.3) |
The class Sυ represents the set of all υ-fold symmetric univalent functions. For υ=1, then Sυ reduce to the class S of univalent functions. If the inverse gυ of univalent h is univalent then h is called υ-fold symmetric bi-univalent functions in U and denoted by Συ. The series expansion of inverse function gυ investigated by Srivastava et al. in [43]:
gυ(w)=w−aυ+1wυ+1+((υ+1)a2υ+1−a2υ+1)w2υ+1−{12(υ+1)(3υ+2)a3υ+1−12(υ+1)(υ+2)a3υ+1−((3υ+2)aυ+1a2υ+1+a3υ+1)}w3υ+1. | (1.4) |
For υ=1, the series in (1.4) reduces to the (1.2) of the class Σ. In [43] Srivastava et al. defined a subclass of υ-fold symmetric bi-univalent functions and investigated coeffiients problem for υ-fold symmetric bi-univalent functions. Hamidi and Jahangiri [19] defined υ-fold symmetric bi-starlike functions and discussed the unpredictability of the coefficients of υ-fold symmetric bi-starlike functions.
Many researchers have used the q-calculus and fractional q-calculus in the field of Geometric Function Theory (GFT) and they defined and studied several new subclasses of analytic, univalent and bi-univalent functions. In 1909, Jackson ([26,27]), gave the idea of q-calculus operator and defined the q-difference operator (Dq) while in [25], Ismail et al. was the first who used Dq in order to define a class of q-starlike functions in open unit disk U. The most signifcant usages of q-calculus in the perspective of GFT was basically furnished and the basic (orq−) hypergeometric functions were first used in GFT in a book chapter by Srivastava (see, for details, [37]). For more study about q-calculus operator theory in GFT, see the following articles [5,28,33].
Now we recall, some basic definitions and concepts of the q-calculus which will be used to define some new subclasses of the this paper.
For a non-negative integer t, the q-number [t,q], (0<q<1), is defined by
[t,q]=1−qt1−q,and[0,q]=0 |
and the q-number shift factorial is given by
[t,q]!=[1,q][2,q][3,q]⋯[t,q], |
[0,q]!=1. |
For q→1−, then [t,q]! reduces to t!.
The q-generalized Pochhammer symbol is defined by
[t,q]k=Γq(t+k)Γq(t),k∈N,t∈C. |
Remark 1.1. For q→1−, then [t,q]k reduces to (t)k=Γ(t+k)Γ(t).
Definition 1.2. Jackson [27] defined the q-integral of function h(z) as follows:
∫h(z)dq(z)=∞∑k=0z(1−q)h(qk(z))qk. |
Jackson [26] introduced the q-difference operator for analytic functions as follows:
Definition 1.3. [26]. For h∈A, the q-difference operator is defined as:
Dqh(z)=h(qz)−h(z)z(q−1),z∈U. |
Note that, for k∈N and z∈U and
Dq(zk)=[k,q]zk−1,Dq(∞∑k=1akzk)=∞∑k=1[k,q]akzk−1. |
Here, we introduce the q-difference operator for υ-fold symmetric functions related to the q-calculus as follows:
Definition 1.4. Let hυ∈Συ, of the form (1.3). Then q-difference operator will be defined as
Dqhυ(z)=hυ(qz)−hυ(z)(q−1)z,z∈U, | (1.5) |
=1+∞∑k=1[υk+1,q]aυk+1zυk |
and
Dq(∞∑k=1aυk+1zυk+1)=∞∑k=1[υk+1,q]aυk+1zυk, |
Dq(z)υk+1=[υk+1,q]zυk. |
Now we define Salagean q-differential operator for υ-fold symmetric functions as follows:
Definition 1.5. For m∈N, the Salagean q-differential operator for hυ∈Συ is defined by
∇0qhυ(z)=hυ(z),∇1qhυ(z)=zDqhυ(z)=hυ(qz)−hυ(z)(q−1),⋯, |
∇mqhυ(z)=zDq(∇m−1qhυ(z))=(z+∞∑k=1([υk+1,q])mzυk+1), |
∇mqhυ(z)=z+∞∑k=1([υk+1,q])maυk+1zυk+1. | (1.6) |
Remark 1.6. For υ=1, we have Salagean q-differential operator for analytic functions proved in [17].
Motivated by the following articles [1,10,25] and using the q-analysis in order to define new subclasses of class Συ, we apply Faber polynomial expansions technique in order to determine the estimates for the general coefficient bounds |aυk+1|. We also derive initial coefficients |aυ+1| and |a2υ+1| and obtain Feketo-Sezego coefficient bounds for the functions belonging to the new subclasses of Συ.
Definition 1.7. A function hυ∈Συ is in the class Rυ,γb,q(φ) if and only if
1+1b{(Dqhυ(z)+γzD2qhυ(z))−1}≺φ(z) |
and
1+1b{(Dqgυ(w)+γwD2qgυ(w))−1}≺φ(w), |
where, φ∈P, γ≥0, b∈C∖{0}, z, w∈U, and gυ(w) is defined by (1.4).
Remark 1.8. For q→1−, υ=1, and γ=0, then Rυ,γb,q(φ)=Rb(φ) introduced in [22].
Definition 1.9. A function hυ∈Συ, is in the class Rυb(b,α,γ) if and only if
|(1+1b{(Dqhυ(z)+γzD2qhυ(z))−1})−1−αq1−q|<1−α1−q |
and
|(1+1b{(Dqgυ(w)+γzD2qgυ(w))−1})−1−αq1−q|<1−α1−q. |
Or equivalently by using subordination, we can write the above conditions as:
1+1b{(Dqhυ(z)+γzD2qhυ(z))−1}≺1+[1−α(1+q)]z1−qz |
and
1+1b{(Dqgυ(w)+γwD2qgυ(w))−1}≺1+[1−α(1+q)]w1−qw, |
where, 0≤α<1, γ≥0, b∈C∖{0}, z, w∈U, gυ(w) is defined by (1.4).
Remark 1.10. For q→1−, υ=1, α=0 and γ=0, then Rυb(b,α,γ)=Rb(φ) introduced in [22].
Definition 1.11. A function hυ∈Συ, is in the class Rυ,γ,mb,q(φ) if and only if
1+1b{(∇mqhυ(z)z+γzDq(∇mqhυ(z)z))−1}≺φ(z) |
and
1+1b{(∇mqgυ(w)w+γwDq(∇mqgυ(w)w))−1}≺φ(w), |
where, φ∈P, γ≥0,m∈N, b∈C∖{0}, z, w∈U, gυ(w) is defined by (1.4).
Using the Faber polynomial technique for the analytic function h, then the coefficient of its inverse map g can be written as follows (see [2,4]):
gυw)=w+∞∑k=21kℜkk−1(a2,a3,...)wk, |
where
ℜ−kk−1=(−k)!(−2k+1)!(k−1)!ak−12+(−k)![2(−k+1)]!(k−3)!ak−32a3+(−k)!(−2k+3)!(k−4)!ak−42a4+(−k)![2(−k+2)]!(k−5)!ak−52[a5+(−k+2)a23]+(−k)!(−2k+5)!(k−6)!ak−62[a6+(−2k+5)a3a4]+∑i≥7ak−i2Qi, |
and Qi is a homogeneous polynomial in the variables a2,a3,...ak, for 7≤i≤k. Particularly, the first three term of ℜ−kk−1 are
12ℜ−21=−a2,13ℜ−32=2a22−a3,14ℜ−43=−(5a32−5a2a3+a4). |
In general, for r∈N and k≥2, an expansion of ℜrk of the form:
ℜrk=rak+r(r−1)2E2k+r!(r−3)!3!E3k+...+r!(r−k)!k!Ekk, |
where,
Erk=Erk(a2,a3,...) |
and by [2], we have
Eυk(a2,a3,...ak)=∞∑k=1υ!(a2)μ1...(ak)μkμ1!,...,μk!, for a1=1 and υ≤k. |
The sum is taken over all non negative integer μ1,...,μk which is satisfying
μ1+μ2+...+μk=υ,μ1+2μ2+...+(k)μk=k. |
Clearly,
Ekk(a1,...,ak)=Ek1 |
and
Ekk=ak1 and E1k=ak |
are first and last polynomials.
Now, using the Faber polynomial expansion for hυ of the form (1.3) we have
hυ(z)=z+∞∑k=1aυk+1zυk+1. |
The coefficient of inverse map gυ can be expressed of the form:
gυ(z)=w+∞∑k=11(υk+1)ℜ−(υk+1)k(aυ+1,a2υ+1,...aυk+1)wυk+1. |
Theorem 2.1. For b∈C∖{0}. Let hυ∈Rυ,γb,q(φ) by given by (1.3). If aυi+1=0, 1≤i≤k−1, then
|aυk+1|≤2|b|(1+γ[υk,q])[υk+1,q], for k≥2. |
Proof. For hυ∈Rυ,γb,q(φ) we have
1+1b{(Dqhυ(z)+γzD2qhυ(z))−1} |
=1+∞∑k=1(1+γ[υk,q])[υk+1,q]baυk+1zυk | (2.1) |
and
1+1b{(Dqgυ(w)+γwD2qgυ(w))−1} |
=1+∞∑k=1(1+γ[υk,q])[υk+1,q]bAυk+1wυk, | (2.2) |
where,
Aυk+1=1(υk+1)ℜ−(υk+1)k(aυ+1,a2υ+1,...aυk+1), for k≥1. |
Since hυ∈Rυ,γb,q(φ) and gυ∈Rυ,γb,q(φ) by definition, we have
p(z)=∞∑k=1ckzυk | (2.3) |
and
r(w)=∞∑k=1dkwυk | (2.4) |
where
φ(p(z))=1+∞∑k=1∞∑l=1φlℜlk(c1,c2,...,ck)zυk, | (2.5) |
φ(r(w))=1+∞∑k=1∞∑l=1φlℜlk(d1,d2,...,dk)wυk. | (2.6) |
Equating the coefficient of (2.1) and (2.5) we obtain
((1+γ[υk,q])[υk+1,q]b)aυk+1=k−1∑l=1φlℜlk(c1,c2,...,ck). | (2.7) |
Similarly, corresponding coefficient of (2.2) and (2.6), we have
((1+γ[υk,q])[υk+1,q]b)Aυk+1=k−1∑l=1φlℜlk(d1,d2...,dk). | (2.8) |
Since, 1≤i≤k−1, and aυi+1=0; we have
Aυk+1=−aυk+1 |
and
(1+γ[υk,q])[υk+1,q]baυk+1=φ1ck, | (2.9) |
(1+γ[υk,q])[υk+1,q]bAυk+1=φ1dk. | (2.10) |
Taking the modulus on both sides of (2.9) and (2.10), we have
|(1+γ[υk,q])[υk+1,q]baυk+1|=|φ1ck|, |
|(1+γ[υk,q])[υk+1,q]bAυk+1|=|φ1dk|. |
Now using the fact |φ1|≤2,|ck|≤1, and |dk|≤1, we have
|aυk+1|≤|b|(1+γ[υk,q])[υk+1,q]|φ1ck| |
=|b|(1+γ[υk,q])[υk+1,q])|φ1dk|, |
|aυk+1|≤2|b|(1+γ[υk,q])[υk+1,q]. |
Hence, Theorem 2.1 is completed.
For υ=0,γ=0,q→1−,k=n−1, in Theorem 2.1, we obtain known corollary proved in [22].
Corollary 2.2. For b∈C∖{0}, Let hυ∈Rb(φ), If aυi+1=0,1≤i≤n. Then
|an|≤2|b|n, for n≥3. |
Theorem 2.3. For b∈C∖{0}. Let hυ∈Rυ,γb,q(φ) be given by (1.3). Then
|aυ+1|≤{2|b|(1+γ[υk,q])[υ+1,q], if |b|<ψ1(υ,q),√|b|ψ1(υ,q), if |b|≥ψ1(v,q), |
|a2υ+1|≤{|b|ψ2(υ,q)+2|b|2(1+γ[υ,q])[υ+1,q], if |b|<ψ2(υ,q),2|b|ψ2(υ,q), if |b|≥ψ2(υ,q), |
|a2υ+1−(1+γ[υ,q])[υ+1,q]a2υ+1|≤2|b|ψ2(υ,q), |
|a2υ+1−1ψ2(υ,q)a2υ+1|≤|b|ψ2(υ,q), |
where,
ψ1(υ,q)=8((1+γ[2υ,q])[2υ+1,q])((1+γ[υ,q])[υ+1,q]), |
ψ2(υ,q)=2((1+γ[2υ,q])[2υ+1,q]. |
Proof. Taking k=1 and k=2 in (2.7) and (2.8), then, we have
(1+γ[υ,q])[υ+1,q]baυ+1=φ1c1, | (2.11) |
(1+γ[2υ,q])[2υ+1,q]ba2υ+1=φ1c2+φ2c21, | (2.12) |
−(1+γ[υ,q])[υ+1,q]baυ+1=φ1d1, | (2.13) |
{(1+γ[υ,q])[υ+1,q]a2υ+1−a2υ+1}=b(φ1d2+φ2d21)(1+γ[2υ,q])[2υ+1,q]. | (2.14) |
From (2.11) and (2.13) and using the fact |φ1|≤2,|ck|≤1 and |dk|≤1, we have
|aυ+1|≤|b|(1+γ[υ,q])[υ+1,q]|φ1c1|=|b|(1+γ[υ,q])[υ+1,q]|φ1d1|≤2|b|1+γ[υ,q])[υ+1,q]. | (2.15) |
Adding (2.12) and (2.14) we have
a2υ+1=b{φ1(c2+d2)+φ2(c21+d21)}((1+γ[2υ,q])[2υ+1,q])((1+γ[υ,q])[υ+1,q]). | (2.16) |
Taking absolute value of (2.16), we have
|aυ+1|≤√8|b|((1+γ[2υ,q])[2υ+1,q])((1+γ[υ,q])[υ+1,q]). |
Now the bounds given for |aυ+1| can be justified since
|b|<√8((1+γ[2υ,q])[2υ+1,q])((1+γ[υ,q])[υ+1,q]) |
for
|b|<8((1+γ[2υ,q])[2υ+q])((1+γ[υ,q])[υ+1,q]). |
From (2.12), we get
|a2υ+1|=|b||φ1c2+φ2c21|(1+γ[2υ,q])[2υ+1,q]≤4∣b∣(1+γ[2υ,q])[2υ+1,q]. | (2.17) |
Subtract (2.14) from (2.12), we have
2(1+γ[2υ,q])[2υ+1,q]b{a2υ+1−(1+γ[υ,q])[υ+1,q]2a2υ+1}=φ1(c2−d2)+φ2(c21−d21)=φ1(c2−d2), | (2.18) |
or
a2υ+1=(1+γ[υ,q])[υ+1,q]2a2υ+1+φ1b(c2−d2)2(1+γ[2v,q])[2v+1,q]. | (2.19) |
Taking the absolute, we have
∣a2v+1|≤∣φ1∣∣b∣∣c2−d2∣2(1+γ[2υ,q])[2υ+1,q]+(1+γ[υ,q])[υ+1,q]2∣a2υ+1|. | (2.20) |
Using the assertion (2.15) on (2.20), we have
∣a2υ+1∣≤2∣b∣(1+γ[2υ,q])[2υ+1,q]+2∣b∣2(1+γ[υ,q])[υ+1,q]. | (2.21) |
Follows from (2.17) and (2.21) upon nothing that
2∣b∣(1+γ[2υ,q])[2υ+1,q]+2∣b∣2(1+γ[υ,q])[υ+1,q]≤2∣b∣(1+γ[2υ,q])[2υ+1,q] if ∣b∣<2(1+γ[2υ,q])[2υ+1,q]. |
Now, rewrite (2.14) as follows:
(1+γ[υ,q])[υ+1,q]a2υ+1−a2υ+1=b(φ1d2+φ2d21)(1+γ[2υ,q])[2υ+1,q]. |
Using the fact ∣φ1∣≤2, ∣ck∣≤1 and ∣dk∣≤1, we have
∣a2υ+1−(1+γ[υ,q])[υ+1,q]a2υ+1∣≤4∣b∣(1+γ[2υ,q])[2υ+1,q]. |
From (2.18), we have
2(1+γ[2υ,q])[2υ+1,q]b{a2υ+1−(1+γ[2υ,q])[2υ+1,q]2a2υ+1}=φ1(c2−d2). |
Again using the fact ∣φ1∣≤2, ∣ck∣≤1 and ∣dk∣≤1, we have
|a2υ+1−(1+γ[2υ,q])[2υ+1,q]2a2υ+1|≤2∣b∣(1+γ[2υ,q])[2υ+1,q]. |
Take q→1−,γ=0,υ=1, and k=n−1 in the Theorem 2.3, we get known corollary.
Corollary 2.4. [22]. For b∈C∖{0}, let h∈Rb(φ) be given by (1.1), then
|a2|≤{|b|, if |b|<43,√4|b|3, if |b|≥43, |
|a3|≤{2|b|3+|b|2, if |b|<23,4|b|3, if |b|≥23, |
|a3−2a22|≤4|b|3, |
|a3−a22|≤2|b|3. |
Theorem 2.5. For b∈C∖{0}. Let hυ∈Rυq(b,α,γ) by given by (1.3). If aυi+1=0,1≤i≤k−1. Then
|aυk+1|≤(B0−B1)|b|(1+γ[υk,q])[υk+1,q],fork≥2. |
where, B0=1−α(1+q) and B1=−q.
Proof. Let hυ∈Rυq(b,α,γ). Then
1+1b{(Dqhυ(z)+γzD2qhυ(z))−1}=1+∞∑k=1(1+γ[υk,q])[υk+1,q]baυk+1zυk | (2.22) |
and
1+1b{(Dqgυ(w)+γwD2qgυ(w))−1}=1+∞∑k=1(1+γ[υk,q])[υk+1,q]bAυk+1wυk. | (2.23) |
where,
Aυk+1=1(υk+1)ℜ−(υk+1)(aυ+1,a2υ+1,...,aυk+1), k≥1. |
Since hυ∈Rυq(b,α,γ) and gυ∈Rυq(b,α,γ) by definition, there exist two positive real functions p(z) and r(w) given in (2.3) and (2.4), then we have
=1+B0(p(z))1+B1(p(z))=1−∞∑k=1k∑l=1(B0−B1)ℜ−1k(c1,c2,...,ck,B1)zυk | (2.24) |
=1+B0(r(w))1+B1(r(w))=1−∞∑k=1k∑l=1(B0−B1)ℜ−1k(d1,d2,...,dk,B1)wυk. | (2.25) |
Equating the corresponding coefficients of (2.22) and (2.24), we have
(1+γ[υk,q])[υk+1,q]baυk+1=(B0−B1)ℜ−1k(c1,c2,...,ck,B1)zυk. | (2.26) |
Similarly, corresponding coefficient of (2.23)and (2.25), we have
(1+γ[υk,q])[υk+1,q]bAυk+1=(B0−B1)ℜ−1k(d1,d2,...,dk,B1)wυk. | (2.27) |
For aυi+1=0;1≤i≤k−1, we get
Aυk+1=−aυk+1 |
and we have
(1+γ[υk,q])[υk+1,q]baυk+1=(B0−B1)ck, | (2.28) |
and
−(1+γ[υk,q])[υk+1,q]bAυk+1=(B0−B1)dk. | (2.29) |
Taking modulus on (2.28) and (2.29), we have
|(1+γ[υk,q])[υk+1,q]baυk+1|=|(B0−B1)ck|,|−(1+γ[υk,q])[υk+1,q]bAυk+1|=|(B0−B1)dk|. |
Since
|ck|≦1and|dk|≦1(see[14]), |
we have
|aυk+1|≤|b|(1+γ[υk,q])[υk+1,q]|(B0−B1)ck|=|b|(1+γ[υk,q])[υk+1,q]|(B0−B1)dk,||aυk+1|≤(B0−B1)|b|(1+γ[υk,q])[υk+1,q], |
which complete the proof of Theorem.
For b=1,k=1,υ=n−1,q→1−,andγ≧0 in the above Theorem 2.5, we obtain the following result given in [40].
Corollary 2.6. Let hυ∈R(n,α,γ) be given by (1.3). If an−1=0, and 1≤i≤k−1, then
|an|≦2(1−α)n(1+γ(n−1)),n∈N∖{1,2}. |
Theorem 2.7. For b∈C∖{0}, let hυ∈Rυq(b,α,γ) be given by (1.3), then
|aυ+1|≤{(B0−B1)|b|(1+γ[υ,q])[υ+1,q],if|b|<ψ3(υ,q),√2|b|ψ3(υ,q)if|b|≥ψ3(υ,q), |
|a2υ+1|≤{|b|ψ4(υ,q)+ψ4(υ,q)|(B0−B1)||b|2,if|b|<ψ4(υ,q),|b|(|B1|+1)ψ4(υ,q)if|b|≥ψ4(υ,q), |
|a2υ+1−(1+γ[υ,q])[υ+1,q]a2υ+1|≤|b|(|B1|+1|)ψ4(υ,q) |
and
|a2υ+1−(1+γ[2υ,q])[2υ+1,q]2a2υ+1|≤|b|ψ4(υ,q), |
where
ψ3(υ,q)=|B0−B1|{|B1|+1}((1+γ[2υ,q])[2υ+1,q])((1+γ[υ,q])[υ+1,q])ψ4(υ,q)=|B0−B1|(1+γ[2υ,q])[2υ+1,q]. |
Proof. Take k=1 and k=2 in (2.26) and (2.27). Then we have
(1+γ[υ,q])[υ+1,q]baυ+1=(B0−B1)c1, | (2.30) |
(1+γ[2υ,q])[2υ+1,q]ba2υ+1=(B0−B1)(−B1c21+c2), | (2.31) |
−(1+γ[υ,q])[υ+1,q]baυ+1=−(B0−B1)d1, | (2.32) |
(1+γ[υ,q])[υ+1,q]a2υ+1−a2υ+1=b(B0−B1)(−B1d21+d2)(1+γ[2υ,q])[2υ+1,q]. | (2.33) |
From (2.30) and (2.32) and using the fact |φ1|≤2,|ck|≤1 and |dk|≤1, we have
|aυ+1|≤|b|(1+γ[υ,q])[υ+1,q]|(B0−B1)c1|=|b|(1+γ[υ,q])[υ+1,q]|(B0−B1)d1|≤(B0−B1)|b|(1+γ[υ,q])[υ+1,q]. | (2.34) |
Adding (2.31) and (2.33) we have
a2υ+1=b(B0−B1){(c2+d2)+B1(c21+d21)}((1+γ[2υ,q])[2υ+1,q])((1+γ[υ,q])[υ+1,q]) |
and
|aυ+1|2≤2|b||B0−B1|{|B1|+1}((1+γ[2υ,q])[2υ+1,q])((1+γ[υ,q])[υ+1,q]). | (2.35) |
Taking the square-root of (2.35), we have
|aυ+1|≤√2|b||B0−B1|{|B1|+1}((1+γ[2υ,q])[2υ+1,q])((1+γ[υ,q])[υ+1,q]). |
Now the bounds given for |aυ+1| can be justified since
|b|<√2|b||B0−B1|{|B1|+1}((1+γ[2υ,q])[2υ+1,q])((1+γ[υ,q])[υ+1,q])for|b|<2|b||B0−B1|{|B1|+1}((1+γ[2υ,q])[2υ+1,q])((1+γ[υ,q])[υ+1,q]). |
From (2.31), we have
|a2υ+1|=|b||(B0−B1)(B1c21+c2)|(1+γ[2υ,q])[2υ+1,q]≤|b||B0−B1|(|B1|+1)(1+γ[2υ,q])[2υ+1,q]. | (2.36) |
Next we subtract (2.33) from (2.31), we get
2(1+γ[2υ,q])[2υ+1,q]b{a2υ+1−(1+γ[υ,q])[υ+1,q]2a2υ+1}=(B0−B1){B1(d21−c21)−(c2−d2)}=(B0−B1)(c2−d2), | (2.37) |
or
a2υ+1=(1+γ[υ,q])[υ+1,q]2a2υ+1+(B0−B1)b(c2−d2)2(1+γ[2υ,q])[2υ+1,q]. | (2.38) |
Taking the absolute values yield
|a2υ+1|≤|(B0−B1)||b||c2−d2|2(1+γ[2υ,q])[2υ+1,q]+(1+γ[υ,q])[υ+1,q]2|a2υ+1|. | (2.39) |
Using the assertion (2.34) on (2.39), we have
|a2υ+1|≤|(B0−B1)||b|(1+γ[2υ,q])[2υ+1,q]+|(B0−B1)|2|b|22(1+γ[υ,q])[υ+1,q]. | (2.40) |
It follows from (2.36) and (2.40) upon noting that
|(B0−B1)||b|(1+γ[2υ,q])[2υ+1,q]+|(B0−B1)|2|b|22(1+γ[υ,q])[υ+1,q].≤|(B0−B1)||b|(1+γ[2υ,q])[2υ+1,q]if|b|<|(B0−B1)|(1+γ[2υ,q])[2υ+1,q]. |
Now, we rewrite (2.33) as follows:
{(1+γ[υ,q])[υ+1,q]a2υ+1−a2υ+1}=b(B0−B1)(−B1d21+d2)(1+γ[2υ,q])[2υ+1,q]. |
Taking the modulus and using |φ1|≤2, |ck|≤1 and |dk|≤1, we have
|a2υ+1−(1+γ[υ,q])[υ+1,q]a2υ+1|≤(B0−B1)(|B1|+1)|b|(1+γ[2υ,q])[2υ+1,q]. |
Finally, from (2.37), we have
{a2υ+1−(1+γ[2υ,q])[2υ+1,q]2a2υ+1}=b(B0−B1)(c2−d2)2(1+γ[2υ,q])[2υ+1,q]. |
Taking the modulus and using |ck|≤1 and |dk|≤1, we have
|a2υ+1−(1+γ[2υ,q])[2υ+1,q]2a2υ+1|≤(B0−B1)|b|(1+γ[2υ,q])[2υ+1,q]. |
For υ=1,γ=0,q→1−,k=n−1 in Theorem 2.7, then we obtain result proved in [22].
Corollary 2.8. [22]. For b∈C∖{0}, let hυ∈Rb(φ) be given by (1.1), then
|a2|≤{|b|, if |b|<43,√4|b|3, if |b|≥43, |
|a3|≤{2|b|3+|b|2, if |b|<23,4|b|3, if |b|≥23, |
|a3−2a22|≤4|b|3, |
|a3−a22|≤2|b|3. |
Here, in this section, we consider the newly defined Salagean q−differential operator for subclass of Rυ,γ,mb,q(φ) of class of ∑υ and investigate some new application in the form of results
Theorem 2.9. For b∈C∖{0}. Let hυ∈Rυ,γ,mb,q(φ) by given by (1.3). If aυi+1=0, and 1≤i≤k−1, then
|aυk+1|≤2|b|(1+γ[υk,q])(υk+1,q)m,fork≥2. |
Proof. We can prove Theorem 2.9 by using the similar method of Theorem 2.1.
Theorem 2.10. For b∈C∖{0}. Let hυ∈Rυ,γ,mb,q(φ) by given by (1.3). Then
|aυ+1|≤{2|b|(1+γ[υ,q])(υ+1,q)m,if|b|<ψ3(υ,q),√|b| ψ1(υ,q),if|b|≥ψ3(υ,q), |
|a2υ+1|≤{|b|ψ2(υ,q)+2|b|2(1+γ[υ,q])[υ+1,q]m,if|b|<ψ4(υ,q),2|b|ψ2(υ,q)if|b|≥ψ4(υ,q), |
|a2υ+1−(1+γ[υ,q])[υ+1,q]ma2υ+1|≤2|b|ψ4(υ,q), |
|a2υ+1−1ψ2(υ,q)a2υ+1|≤|b|ψ4(υ,q), |
where
ψ3(υ,q)=8((1+γ[2υ,q])[2υ+1,q]m)((1+γ[υ,q])[υ+1,q]m), |
ψ4(υ,q)=2(1+γ[2υ,q])[2υ+1,q]m. |
Proof. We can prove Theorem 2.10 by using the similar method of Theorem 2.3.
In this article, first of all, we used the q-difference operator for υ-fold symmetric functions in order to define some new subclasses of the υ-fold symmetric bi-univalent functions in the open symmetric unit disk U. We also used the basic concepts of q-calculus and defined the Salagean q-differential operator for υ-fold symmetric functions. We considered this operator and investigated a new subclass of υ-fold symmetric bi-univalent functions. Faber Polynomial expansion method and q-analysis are used in order to determined general coefficient bounds |aυ+1| for functions in each of these newly defined υ-fold symmetric bi-univalent functions classes. Feketo-Sezego problems and initial coefficient bounds |aυ+1| and |a2υ+1| for the function belonging to the subclasses of υ-fold symmetric bi-univalent functions in open symmetric unit disk U are also investigated.
I would like to thank to the editor and referees for their valuable comments and suggestions.
The author declares no conflict of interest.
[1] |
S. Agrawa, S. K. Sahoo, A generalization of starlike functions of order α, Hokkaido Math. J., 46 (2017), 15–27. https://doi.org/10.14492/hokmj/1498788094 doi: 10.14492/hokmj/1498788094
![]() |
[2] | H. Airault, Symmetric sums associated to the factorizations of Grunsky coefficients, In: Groups and symmetries: from Neolithic Scots to John McKay, American Mathematical Society, 2009. https://doi.org/10.1090/CRMP/047/02 |
[3] | H. Airault, Remarks on Faber polynomials, International Mathematical Forum, 3 (2008), 449–456. |
[4] |
H. Airault, A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math., 130 (2006), 179–222. https://doi.org/10.1016/j.bulsci.2005.10.002 doi: 10.1016/j.bulsci.2005.10.002
![]() |
[5] |
H. Aldweby, M. Darus, Some subordination results on q-analogue of ruscheweyh differential operator, Abstr. Appl. Anal., 2014 (2014), 958563. https://doi.org/10.1155/2014/958563 doi: 10.1155/2014/958563
![]() |
[6] |
S. Altinkaya, S. Yalcin, Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Math., 353 (2015), 1075–1080. https://doi.org/10.1016/j.crma.2015.09.003 doi: 10.1016/j.crma.2015.09.003
![]() |
[7] | S. Altinkaya, S. Yalcin, Faber polynomial coefficient bounds for a subclass of bi-univalent functions, Stud. Univ. Babe s-Bolyai Math., 61 (2016), 37–44. |
[8] |
R. P. Boas, Aspects of contemporary complex analysis, Society for Industrial and Applied Mathematics, 24 (1982), 369. https://doi.org/10.1137/1024093 doi: 10.1137/1024093
![]() |
[9] |
D. A. Brannan, T. S. Taha, On some classes of bi-univalent function, Mathematical Analysis and its Applications, 31 (1986), 70–77. https://doi.org/10.1016/B978-0-08-031636-9.50012-7 doi: 10.1016/B978-0-08-031636-9.50012-7
![]() |
[10] | S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of m-fold symmetric analytic bi-univalent functions, Journal of Fractional Calculus and Applications, 8 (2017), 108–117. |
[11] |
S. Bulut, Faber polynomial coefficients estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Math., 352 (2014), 479–484. https://doi.org/10.1016/j.crma.2014.04.004 doi: 10.1016/j.crma.2014.04.004
![]() |
[12] |
S. Bulut, N. Magesh, V. K. Balaji, Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions, C. R. Math., 353 (2015), 113–116. https://doi.org/10.1016/j.crma.2014.10.019 doi: 10.1016/j.crma.2014.10.019
![]() |
[13] | P. L. Duren, Univalent Functions, In: Grundlehren der mathematischen Wissenschaften, Springer New York, 2001. |
[14] |
S. M. El-Deeb, T. Bulboaca, B. M. El-Matary, Maclaurin coefficient estimates of Bi-Univalent functions connected with the q-Derivative, Mathematics, 8 (2020), 418. https://doi.org/10.3390/math8030418 doi: 10.3390/math8030418
![]() |
[15] |
G. Faber, Uber polynomische Entwickelungen, Math. Ann., 57 (1903), 389–408. https://doi.org/10.1007/BF01444293 doi: 10.1007/BF01444293
![]() |
[16] | S. Gong, The Bieberbach conjecture, American Mathematical Society, 1999. https://doi.org/10.1090/amsip/012 |
[17] |
M. Govindaraj, S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Anal. Math., 43 (2017), 475–487. https://doi.org/10.1007/s10476-017-0206-5 doi: 10.1007/s10476-017-0206-5
![]() |
[18] |
S. G. Hamidi, S. A. Halim, J. M. Jahangiri, Faber polynomial coefficient estimates for meromorphic bi-starlike functions, International Journal of Mathematics and Mathematical Sciences, 2013 (2013), 498159. http://doi.org/10.1155/2013/498159 doi: 10.1155/2013/498159
![]() |
[19] |
S. G. Hamidi, J. M. Jahangiri, Unpredictability of the coefficients of m-fold symmetric bi-starlike functions, Int. J. Math., 25 (2014), 1450064. https://doi.org/10.1142/S0129167X14500645 doi: 10.1142/S0129167X14500645
![]() |
[20] |
S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Math., 354 (2016), 365–370. https://doi.org/10.1016/j.crma.2016.01.013 doi: 10.1016/j.crma.2016.01.013
![]() |
[21] |
S. G. Hamidi, J. M. Jahangiri, Faber polynomials coefficient estimates for analytic bi-close-to-convex functions, C. R. Math., 352 (2014), 17–20. https://doi.org/10.1016/j.crma.2013.11.005 doi: 10.1016/j.crma.2013.11.005
![]() |
[22] | S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, B. Iran. Math. Soc., 41 (2015), 1103–1119. |
[23] | T. Hayami, S. Owa, Coefficient bounds for bi-univalent functions, Pan. Amer. Math. J., 22 (2012), 15–26. |
[24] |
S. Hussain, S. Khan, M. A. Zaighum, M. Darus, Z. Shareef, Coefficients bounds for certain subclass of bi-univalent functions associated with Ruscheweyh q-differential operator, Journal of Complex Analysis, 2017 (2017), 2826514. https://doi.org/10.1155/2017/2826514 doi: 10.1155/2017/2826514
![]() |
[25] |
M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables, Theory and Application: An International Journal, 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407
![]() |
[26] |
F. H. Jackson, On q-functions and a certain difference operator, Earth Env. Sci. T. R. So., 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
![]() |
[27] |
F. H. Jackson, q-Difference equations, American Journal of Mathematics, 32 (1910), 305–314. https://doi.org/10.2307/2370183 doi: 10.2307/2370183
![]() |
[28] |
S. Kanas, D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. https://doi.org/10.2478/s12175-014-0268-9 doi: 10.2478/s12175-014-0268-9
![]() |
[29] | S. Khan, N. Khan, S. Hussain, Q. Z. Ahmad, M. A. Zaighum, Some classes of bi-univalent functions associated with Srivastava-Attiya operator, Bull. Math. Anal. Appl., 9 (2017), 37–44. |
[30] | E. Lindelöf, Mémoire sur certaines inégalitis dans la théorie des functions monogénses etsur quelques propriétés nouvelles de ces fonctions dans levoisinage, dun point singulier essentiel, Ann. Soc. Sci. Fenn., 35 (1909), 1–35. |
[31] |
J. E. Littlewood, On inequalities in the theory of functions, P. Lond. Math. Soc., 23 (1925), 481–519. https://doi.org/10.1112/plms/s2-23.1.481 doi: 10.1112/plms/s2-23.1.481
![]() |
[32] | M. Lewin, On a coefficient problem for bi-univalent functions, P. Am. Math. Soc., 18 (1967), 63–68. |
[33] |
S. Mahmood, J. Sokol, New subclass of analytic functions in conical domain associated with ruscheweyh q-differential operator, Results Math., 71 (2017), 1345–1357. https://doi.org/10.1007/s00025-016-0592-1 doi: 10.1007/s00025-016-0592-1
![]() |
[34] |
E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Rational Mech. Anal., 32 (1967), 100–112. https://doi.org/10.1007/BF00247676 doi: 10.1007/BF00247676
![]() |
[35] |
W. Rogosinski, On subordination functions, Math. Proc. Cambridge, 35 (1939), 1–26. https://doi.org/10.1017/S0305004100020703 doi: 10.1017/S0305004100020703
![]() |
[36] | W. Rogosinski, On the coefficients of subordinations, Proc. Lond. Math. Soc., 48 (1943), 48–82. |
[37] | H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: Univalent functions, fractional calculus and their applications, New York: John Wiley and Sons, 1989,329–354. |
[38] |
H. M. Srivastava, S. Bulut, M. Caglar, N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (2013), 831–842. https://doi.org/10.2298/FIL1305831S doi: 10.2298/FIL1305831S
![]() |
[39] |
H. M. Srivastava, S. M. El-Deeb, The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of bi-close-to-convex functions connected with the q-convolution, AIMS Math., 5 (2020), 7087–7106. https://doi.org/10.3934/math.2020454 doi: 10.3934/math.2020454
![]() |
[40] |
H. M. Srivastava, S. S. Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839–1845. https://doi.org/10.2298/FIL1508839S doi: 10.2298/FIL1508839S
![]() |
[41] |
H. M. Srivastava, A. K. Mishra, P. Gochayat, Certain Subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. 10.2298/FIL1508839S doi: 10.2298/FIL1508839S
![]() |
[42] |
H. M. Srivastava, G. Murugusundaramoorthy, S. M. EL-Deeb, Faber Polynomial Coefficient estimates of bi-close-to-convex functions connected with the borel distribution of the Mittag-Leffler type, J. Nonlinear Var. Anal., 5 (2021), 103–118. https://doi.org/10.23952/jnva.5.2021.1.07 doi: 10.23952/jnva.5.2021.1.07
![]() |
[43] |
H. M. Srivastava, S. Sivasubramanian, R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J., 7 (2014), 1–10. https://doi.org/10.2478/tmj-2014-0011 doi: 10.2478/tmj-2014-0011
![]() |
[44] |
Q. H. Xu, H. G. Xiao, H. M. Srivastava, A certain general subclass of analytic and biunivalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218 (2012), 11461–11465. https://doi.org/10.1016/j.amc.2012.05.034 doi: 10.1016/j.amc.2012.05.034
![]() |