Loading [MathJax]/jax/output/SVG/jax.js
Research article

Certain new applications of Faber polynomial expansion for some new subclasses of υ-fold symmetric bi-univalent functions associated with q-calculus

  • Received: 09 January 2023 Revised: 06 February 2023 Accepted: 13 February 2023 Published: 28 February 2023
  • MSC : Primary 05A30, 30C45; Secondary 11B65, 47B38

  • In this article, we define the q-difference operator and Salagean q-differential operator for υ-fold symmetric functions in open unit disk U by first applying the concepts of q-calculus operator theory. Then, we considered these operators in order to construct new subclasses for υ-fold symmetric bi-univalent functions. We establish the general coefficient bounds |aυk+1| for the functions in each of these newly specified subclasses using the Faber polynomial expansion method. Investigations are also performed on Feketo-Sezego problems and initial coefficient bounds for the function h that belong to the newly discovered subclasses. To illustrate the relationship between the new and existing research, certain well-known corollaries of our main findings are also highlighted.

    Citation: Mohammad Faisal Khan. Certain new applications of Faber polynomial expansion for some new subclasses of υ-fold symmetric bi-univalent functions associated with q-calculus[J]. AIMS Mathematics, 2023, 8(5): 10283-10302. doi: 10.3934/math.2023521

    Related Papers:

    [1] Sheza. M. El-Deeb, Gangadharan Murugusundaramoorthy, Kaliyappan Vijaya, Alhanouf Alburaikan . Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial. AIMS Mathematics, 2022, 7(2): 2989-3005. doi: 10.3934/math.2022165
    [2] F. Müge Sakar, Arzu Akgül . Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator. AIMS Mathematics, 2022, 7(4): 5146-5155. doi: 10.3934/math.2022287
    [3] Zeya Jia, Nazar Khan, Shahid Khan, Bilal Khan . Faber polynomial coefficients estimates for certain subclasses of q-Mittag-Leffler-Type analytic and bi-univalent functions. AIMS Mathematics, 2022, 7(2): 2512-2528. doi: 10.3934/math.2022141
    [4] H. M. Srivastava, Sheza M. El-Deeb . The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of Bi-Close-to-Convex functions connected with the q-convolution. AIMS Mathematics, 2020, 5(6): 7087-7106. doi: 10.3934/math.2020454
    [5] Caihuan Zhang, Shahid Khan, Aftab Hussain, Nazar Khan, Saqib Hussain, Nasir Khan . Applications of q-difference symmetric operator in harmonic univalent functions. AIMS Mathematics, 2022, 7(1): 667-680. doi: 10.3934/math.2022042
    [6] Bilal Khan, H. M. Srivastava, Muhammad Tahir, Maslina Darus, Qazi Zahoor Ahmad, Nazar Khan . Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(1): 1024-1039. doi: 10.3934/math.2021061
    [7] Luminiţa-Ioana Cotîrlǎ . New classes of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(10): 10642-10651. doi: 10.3934/math.2021618
    [8] Shuhai Li, Lina Ma, Huo Tang . Meromorphic harmonic univalent functions related with generalized (p, q)-post quantum calculus operators. AIMS Mathematics, 2021, 6(1): 223-234. doi: 10.3934/math.2021015
    [9] Huo Tang, Kadhavoor Ragavan Karthikeyan, Gangadharan Murugusundaramoorthy . Certain subclass of analytic functions with respect to symmetric points associated with conic region. AIMS Mathematics, 2021, 6(11): 12863-12877. doi: 10.3934/math.2021742
    [10] Ahmad A. Abubaker, Khaled Matarneh, Mohammad Faisal Khan, Suha B. Al-Shaikh, Mustafa Kamal . Study of quantum calculus for a new subclass of q-starlike bi-univalent functions connected with vertical strip domain. AIMS Mathematics, 2024, 9(5): 11789-11804. doi: 10.3934/math.2024577
  • In this article, we define the q-difference operator and Salagean q-differential operator for υ-fold symmetric functions in open unit disk U by first applying the concepts of q-calculus operator theory. Then, we considered these operators in order to construct new subclasses for υ-fold symmetric bi-univalent functions. We establish the general coefficient bounds |aυk+1| for the functions in each of these newly specified subclasses using the Faber polynomial expansion method. Investigations are also performed on Feketo-Sezego problems and initial coefficient bounds for the function h that belong to the newly discovered subclasses. To illustrate the relationship between the new and existing research, certain well-known corollaries of our main findings are also highlighted.



    Assume that A denotes the set of all analytic functions h(z) in the open symmetric unit disk

    U={z:|z|<1},

    which are normalized by

    h(0)=0andh(0)=1.

    Thus, every function hA can be expressed in the form given in (1.1)

    h(z)=z+k=2akzk. (1.1)

    Let an analytic function h is said to be univalent if it satisfy the following condition:

    h(z1)h(z2)z1z2,z1,z2U.

    Furthermore, S is the subclass of A whose members are univalent in U. The idea of subordination was initiated by Lindelof [30] and Little-wood and Rogosinski have further improved this idea, see [31,35,36]. For h, yA, and h subordinate to y in U, denoted by

    h(z)y(z),zU,

    if we have a function u, such that

    uB={u:uA,|u(z)|<1,andu(0)=0,zU}

    and

    h(z)=y(u(z)),zU.

    According to the Koebe one-quarter theorem (see [13]), the image of U under hS contains a disk of radius one-quarter centered at origin. Thus, every function hS has an inverse h1=g, defined as:

    g(h(z))=z,zU

    and

    h(g(w))=w,|w|<r0(h),r0(h)14.

    The power series for the inverse function g(w) is given by

    g(w)=wa2w2+(2a22a3)w3Q(a)w4+,, (1.2)

    Where

    Q(a)=(5a325a2a3+a4).

    An analytic function h is called bi-univalent in U if h and h1 are univalent in U and class of all bi-univalent functions are denoted by Σ. In 1967, for hΣ, Levin [32] showed that |a2|<1.51 and after twelve years Branan and Clunie [8] gave the improvement of |a2| and proved that |a2|2. Furthermore, for hΣ, Netanyahu [34] proved that max|a2|=43 and an intriguing subclass of analytic and bi-univalent functions was proposed and studied by Branan and Taha [9], who also discovered estimates for the coefficients of the functions in this subclass. Recently, the investigation of numerous subclasses of the analytic and bi-univalent function class Σ was basically revitalized by the pioneering work of Srivastava et al. [41]. In 2012, Xu et al. [44] defined a general subclass of class Σ and investigated coefficient estimates for the functions belonging to the new subclass of class Σ. Recently, several different subclasses of class Σ were introduced and investigated by a number of authors (see for details ([23,29,38]). In these recent papers only non-sharp estimates on the initial coefficients were obtained.

    Faber polynomials was introduced by Faber [15] and first time he used it to determine the general coefficient bounds |ak| for k4. Gong [16] interpreted significance of Faber polynomials in mathematical sciences, particularly in Geometric Function Theory. In 1913, Hamidi et al. [18] first time used the Faber polynomials expansion technique on meromorphic bi-starlike functions and determined the coefficient estimates. The Faber polynomials expansion method for analytic bi-close-to-convex functions was examined by Hamidi and Jahangiri [21,22], who also discovered some new coefficient bounds for new subclasses of close-to-convex functions. Furthermore, many authors [3,4,7,11,12,14,20] used the same technique and determined some interesting and useful properties for analytic bi-univalent functions. For hΣ, by using the Faber polynomial expansions methods, only a few works have been done so far and we recognized very little over the bounds of Maclaurin's series coefficient |ak| for k4 in the literature. Recently only a few authors, used the Faber polynomials expansion technique and determined the general coefficient bounds |ak| for k4, (see for detail [6,11,24,39,40,42]).

    A domain U is said to be the υ-fold symmetric if

    hυ(ek(2πυ)(z))=ek(2πυ)hυ(z),zU,υZ+,hA

    and every hυ has the series of the form

    hυ=z+k=1aυk+1zυk+1. (1.3)

    The class Sυ represents the set of all υ-fold symmetric univalent functions. For υ=1, then Sυ reduce to the class S of univalent functions. If the inverse gυ of univalent h is univalent then h is called υ-fold symmetric bi-univalent functions in U and denoted by Συ. The series expansion of inverse function gυ investigated by Srivastava et al. in [43]:

    gυ(w)=waυ+1wυ+1+((υ+1)a2υ+1a2υ+1)w2υ+1{12(υ+1)(3υ+2)a3υ+112(υ+1)(υ+2)a3υ+1((3υ+2)aυ+1a2υ+1+a3υ+1)}w3υ+1. (1.4)

    For υ=1, the series in (1.4) reduces to the (1.2) of the class Σ. In [43] Srivastava et al. defined a subclass of υ-fold symmetric bi-univalent functions and investigated coeffiients problem for υ-fold symmetric bi-univalent functions. Hamidi and Jahangiri [19] defined υ-fold symmetric bi-starlike functions and discussed the unpredictability of the coefficients of υ-fold symmetric bi-starlike functions.

    Many researchers have used the q-calculus and fractional q-calculus in the field of Geometric Function Theory (GFT) and they defined and studied several new subclasses of analytic, univalent and bi-univalent functions. In 1909, Jackson ([26,27]), gave the idea of q-calculus operator and defined the q-difference operator (Dq) while in [25], Ismail et al. was the first who used Dq in order to define a class of q-starlike functions in open unit disk U. The most signifcant usages of q-calculus in the perspective of GFT was basically furnished and the basic (orq) hypergeometric functions were first used in GFT in a book chapter by Srivastava (see, for details, [37]). For more study about q-calculus operator theory in GFT, see the following articles [5,28,33].

    Now we recall, some basic definitions and concepts of the q-calculus which will be used to define some new subclasses of the this paper.

    For a non-negative integer t, the q-number [t,q], (0<q<1), is defined by

    [t,q]=1qt1q,and[0,q]=0

    and the q-number shift factorial is given by

    [t,q]!=[1,q][2,q][3,q][t,q],
    [0,q]!=1.

    For q1, then [t,q]! reduces to t!.

    The q-generalized Pochhammer symbol is defined by

    [t,q]k=Γq(t+k)Γq(t),kN,tC.

    Remark 1.1. For q1, then [t,q]k reduces to (t)k=Γ(t+k)Γ(t).

    Definition 1.2. Jackson [27] defined the q-integral of function h(z) as follows:

    h(z)dq(z)=k=0z(1q)h(qk(z))qk.

    Jackson [26] introduced the q-difference operator for analytic functions as follows:

    Definition 1.3. [26]. For hA, the q-difference operator is defined as:

    Dqh(z)=h(qz)h(z)z(q1),zU.

    Note that, for kN and zU and

    Dq(zk)=[k,q]zk1,Dq(k=1akzk)=k=1[k,q]akzk1.

    Here, we introduce the q-difference operator for υ-fold symmetric functions related to the q-calculus as follows:

    Definition 1.4. Let hυΣυ, of the form (1.3). Then q-difference operator will be defined as

    Dqhυ(z)=hυ(qz)hυ(z)(q1)z,zU, (1.5)
    =1+k=1[υk+1,q]aυk+1zυk

    and

    Dq(k=1aυk+1zυk+1)=k=1[υk+1,q]aυk+1zυk,
    Dq(z)υk+1=[υk+1,q]zυk.

    Now we define Salagean q-differential operator for υ-fold symmetric functions as follows:

    Definition 1.5. For mN, the Salagean q-differential operator for hυΣυ is defined by

    0qhυ(z)=hυ(z),1qhυ(z)=zDqhυ(z)=hυ(qz)hυ(z)(q1),,
    mqhυ(z)=zDq(m1qhυ(z))=(z+k=1([υk+1,q])mzυk+1),
    mqhυ(z)=z+k=1([υk+1,q])maυk+1zυk+1. (1.6)

    Remark 1.6. For υ=1, we have Salagean q-differential operator for analytic functions proved in [17].

    Motivated by the following articles [1,10,25] and using the q-analysis in order to define new subclasses of class Συ, we apply Faber polynomial expansions technique in order to determine the estimates for the general coefficient bounds |aυk+1|. We also derive initial coefficients |aυ+1| and |a2υ+1| and obtain Feketo-Sezego coefficient bounds for the functions belonging to the new subclasses of Συ.

    Definition 1.7. A function hυΣυ is in the class Rυ,γb,q(φ) if and only if

    1+1b{(Dqhυ(z)+γzD2qhυ(z))1}φ(z)

    and

    1+1b{(Dqgυ(w)+γwD2qgυ(w))1}φ(w),

    where, φP, γ0, bC{0}, z, wU, and gυ(w) is defined by (1.4).

    Remark 1.8. For q1, υ=1, and γ=0, then Rυ,γb,q(φ)=Rb(φ) introduced in [22].

    Definition 1.9. A function hυΣυ, is in the class Rυb(b,α,γ) if and only if

    |(1+1b{(Dqhυ(z)+γzD2qhυ(z))1})1αq1q|<1α1q

    and

    |(1+1b{(Dqgυ(w)+γzD2qgυ(w))1})1αq1q|<1α1q.

    Or equivalently by using subordination, we can write the above conditions as:

    1+1b{(Dqhυ(z)+γzD2qhυ(z))1}1+[1α(1+q)]z1qz

    and

    1+1b{(Dqgυ(w)+γwD2qgυ(w))1}1+[1α(1+q)]w1qw,

    where, 0α<1, γ0, bC{0}, z, wU, gυ(w) is defined by (1.4).

    Remark 1.10. For q1, υ=1, α=0 and γ=0, then Rυb(b,α,γ)=Rb(φ) introduced in [22].

    Definition 1.11. A function hυΣυ, is in the class Rυ,γ,mb,q(φ) if and only if

    1+1b{(mqhυ(z)z+γzDq(mqhυ(z)z))1}φ(z)

    and

    1+1b{(mqgυ(w)w+γwDq(mqgυ(w)w))1}φ(w),

    where, φP, γ0,mN, bC{0}, z, wU, gυ(w) is defined by (1.4).

    Using the Faber polynomial technique for the analytic function h, then the coefficient of its inverse map g can be written as follows (see [2,4]):

    gυw)=w+k=21kkk1(a2,a3,...)wk,

    where

    kk1=(k)!(2k+1)!(k1)!ak12+(k)![2(k+1)]!(k3)!ak32a3+(k)!(2k+3)!(k4)!ak42a4+(k)![2(k+2)]!(k5)!ak52[a5+(k+2)a23]+(k)!(2k+5)!(k6)!ak62[a6+(2k+5)a3a4]+i7aki2Qi,

    and Qi is a homogeneous polynomial in the variables a2,a3,...ak, for 7ik. Particularly, the first three term of kk1 are

    1221=a2,1332=2a22a3,1443=(5a325a2a3+a4).

    In general, for rN  and  k2, an expansion of rk of the form:

    rk=rak+r(r1)2E2k+r!(r3)!3!E3k+...+r!(rk)!k!Ekk,

    where,

    Erk=Erk(a2,a3,...)

    and by [2], we have

    Eυk(a2,a3,...ak)=k=1υ!(a2)μ1...(ak)μkμ1!,...,μk!,  for  a1=1  and  υk.

    The sum is taken over all non negative integer μ1,...,μk which is satisfying

    μ1+μ2+...+μk=υ,μ1+2μ2+...+(k)μk=k.

    Clearly,

    Ekk(a1,...,ak)=Ek1

    and

    Ekk=ak1  and  E1k=ak

    are first and last polynomials.

    Now, using the Faber polynomial expansion for hυ of the form (1.3) we have

    hυ(z)=z+k=1aυk+1zυk+1.

    The coefficient of inverse map gυ can be expressed of the form:

    gυ(z)=w+k=11(υk+1)(υk+1)k(aυ+1,a2υ+1,...aυk+1)wυk+1.

    Theorem 2.1. For bC{0}. Let hυRυ,γb,q(φ) by given by (1.3). If aυi+1=0,  1ik1, then

    |aυk+1|2|b|(1+γ[υk,q])[υk+1,q],  for  k2.

    Proof. For hυRυ,γb,q(φ) we have

    1+1b{(Dqhυ(z)+γzD2qhυ(z))1}
    =1+k=1(1+γ[υk,q])[υk+1,q]baυk+1zυk (2.1)

    and

    1+1b{(Dqgυ(w)+γwD2qgυ(w))1}
    =1+k=1(1+γ[υk,q])[υk+1,q]bAυk+1wυk, (2.2)

    where,

    Aυk+1=1(υk+1)(υk+1)k(aυ+1,a2υ+1,...aυk+1),  for  k1.

    Since hυRυ,γb,q(φ) and gυRυ,γb,q(φ) by definition, we have

    p(z)=k=1ckzυk (2.3)

    and

    r(w)=k=1dkwυk (2.4)

    where

    φ(p(z))=1+k=1l=1φllk(c1,c2,...,ck)zυk, (2.5)
    φ(r(w))=1+k=1l=1φllk(d1,d2,...,dk)wυk. (2.6)

    Equating the coefficient of (2.1) and (2.5) we obtain

    ((1+γ[υk,q])[υk+1,q]b)aυk+1=k1l=1φllk(c1,c2,...,ck). (2.7)

    Similarly, corresponding coefficient of (2.2) and (2.6), we have

    ((1+γ[υk,q])[υk+1,q]b)Aυk+1=k1l=1φllk(d1,d2...,dk). (2.8)

    Since, 1ik1,  and  aυi+1=0; we have

    Aυk+1=aυk+1

    and

    (1+γ[υk,q])[υk+1,q]baυk+1=φ1ck, (2.9)
    (1+γ[υk,q])[υk+1,q]bAυk+1=φ1dk. (2.10)

    Taking the modulus on both sides of (2.9) and (2.10), we have

    |(1+γ[υk,q])[υk+1,q]baυk+1|=|φ1ck|,
    |(1+γ[υk,q])[υk+1,q]bAυk+1|=|φ1dk|.

    Now using the fact |φ1|2,|ck|1, and |dk|1, we have

    |aυk+1||b|(1+γ[υk,q])[υk+1,q]|φ1ck|
    =|b|(1+γ[υk,q])[υk+1,q])|φ1dk|,
    |aυk+1|2|b|(1+γ[υk,q])[υk+1,q].

    Hence, Theorem 2.1 is completed.

    For υ=0,γ=0,q1,k=n1, in Theorem 2.1, we obtain known corollary proved in [22].

    Corollary 2.2. For bC{0}, Let hυRb(φ), If aυi+1=0,1in. Then

    |an|2|b|n,  for  n3.

    Theorem 2.3. For bC{0}. Let hυRυ,γb,q(φ) be given by (1.3). Then

    |aυ+1|{2|b|(1+γ[υk,q])[υ+1,q],  if  |b|<ψ1(υ,q),|b|ψ1(υ,q),  if  |b|ψ1(v,q),
    |a2υ+1|{|b|ψ2(υ,q)+2|b|2(1+γ[υ,q])[υ+1,q],  if  |b|<ψ2(υ,q),2|b|ψ2(υ,q),  if  |b|ψ2(υ,q),
    |a2υ+1(1+γ[υ,q])[υ+1,q]a2υ+1|2|b|ψ2(υ,q),
    |a2υ+11ψ2(υ,q)a2υ+1||b|ψ2(υ,q),

    where,

    ψ1(υ,q)=8((1+γ[2υ,q])[2υ+1,q])((1+γ[υ,q])[υ+1,q]),
    ψ2(υ,q)=2((1+γ[2υ,q])[2υ+1,q].

    Proof. Taking k=1 and k=2 in (2.7) and (2.8), then, we have

    (1+γ[υ,q])[υ+1,q]baυ+1=φ1c1, (2.11)
    (1+γ[2υ,q])[2υ+1,q]ba2υ+1=φ1c2+φ2c21, (2.12)
    (1+γ[υ,q])[υ+1,q]baυ+1=φ1d1, (2.13)
    {(1+γ[υ,q])[υ+1,q]a2υ+1a2υ+1}=b(φ1d2+φ2d21)(1+γ[2υ,q])[2υ+1,q]. (2.14)

    From (2.11) and (2.13) and using the fact |φ1|2,|ck|1 and |dk|1, we have

    |aυ+1||b|(1+γ[υ,q])[υ+1,q]|φ1c1|=|b|(1+γ[υ,q])[υ+1,q]|φ1d1|2|b|1+γ[υ,q])[υ+1,q]. (2.15)

    Adding (2.12) and (2.14) we have

    a2υ+1=b{φ1(c2+d2)+φ2(c21+d21)}((1+γ[2υ,q])[2υ+1,q])((1+γ[υ,q])[υ+1,q]). (2.16)

    Taking absolute value of (2.16), we have

    |aυ+1|8|b|((1+γ[2υ,q])[2υ+1,q])((1+γ[υ,q])[υ+1,q]).

    Now the bounds given for |aυ+1| can be justified since

    |b|<8((1+γ[2υ,q])[2υ+1,q])((1+γ[υ,q])[υ+1,q])

    for

    |b|<8((1+γ[2υ,q])[2υ+q])((1+γ[υ,q])[υ+1,q]).

    From (2.12), we get

    |a2υ+1|=|b||φ1c2+φ2c21|(1+γ[2υ,q])[2υ+1,q]4b(1+γ[2υ,q])[2υ+1,q]. (2.17)

    Subtract (2.14) from (2.12), we have

    2(1+γ[2υ,q])[2υ+1,q]b{a2υ+1(1+γ[υ,q])[υ+1,q]2a2υ+1}=φ1(c2d2)+φ2(c21d21)=φ1(c2d2), (2.18)

    or

    a2υ+1=(1+γ[υ,q])[υ+1,q]2a2υ+1+φ1b(c2d2)2(1+γ[2v,q])[2v+1,q]. (2.19)

    Taking the absolute, we have

    a2v+1|φ1∣∣b∣∣c2d22(1+γ[2υ,q])[2υ+1,q]+(1+γ[υ,q])[υ+1,q]2a2υ+1|. (2.20)

    Using the assertion (2.15) on (2.20), we have

    a2υ+1∣≤2b(1+γ[2υ,q])[2υ+1,q]+2b2(1+γ[υ,q])[υ+1,q]. (2.21)

    Follows from (2.17) and (2.21) upon nothing that

    2b(1+γ[2υ,q])[2υ+1,q]+2b2(1+γ[υ,q])[υ+1,q]2b(1+γ[2υ,q])[2υ+1,q]  if  b∣<2(1+γ[2υ,q])[2υ+1,q].

    Now, rewrite (2.14) as follows:

    (1+γ[υ,q])[υ+1,q]a2υ+1a2υ+1=b(φ1d2+φ2d21)(1+γ[2υ,q])[2υ+1,q].

    Using the fact φ1∣≤2, ck∣≤1 and dk∣≤1, we have

    a2υ+1(1+γ[υ,q])[υ+1,q]a2υ+1∣≤4b(1+γ[2υ,q])[2υ+1,q].

    From (2.18), we have

    2(1+γ[2υ,q])[2υ+1,q]b{a2υ+1(1+γ[2υ,q])[2υ+1,q]2a2υ+1}=φ1(c2d2).

    Again using the fact φ1∣≤2, ck∣≤1 and dk∣≤1, we have

    |a2υ+1(1+γ[2υ,q])[2υ+1,q]2a2υ+1|2b(1+γ[2υ,q])[2υ+1,q].

    Take q1,γ=0,υ=1, and k=n1 in the Theorem 2.3, we get known corollary.

    Corollary 2.4. [22]. For bC{0}, let hRb(φ) be given by (1.1), then

    |a2|{|b|,  if  |b|<43,4|b|3,  if  |b|43,
    |a3|{2|b|3+|b|2,  if  |b|<23,4|b|3,  if  |b|23,
    |a32a22|4|b|3,
    |a3a22|2|b|3.

    Theorem 2.5. For bC{0}. Let hυRυq(b,α,γ) by given by (1.3). If aυi+1=0,1ik1. Then

    |aυk+1|(B0B1)|b|(1+γ[υk,q])[υk+1,q],fork2.

    where, B0=1α(1+q) and B1=q.

    Proof. Let hυRυq(b,α,γ). Then

    1+1b{(Dqhυ(z)+γzD2qhυ(z))1}=1+k=1(1+γ[υk,q])[υk+1,q]baυk+1zυk (2.22)

    and

    1+1b{(Dqgυ(w)+γwD2qgυ(w))1}=1+k=1(1+γ[υk,q])[υk+1,q]bAυk+1wυk. (2.23)

    where,

    Aυk+1=1(υk+1)(υk+1)(aυ+1,a2υ+1,...,aυk+1),  k1.

    Since hυRυq(b,α,γ) and gυRυq(b,α,γ) by definition, there exist two positive real functions p(z) and r(w) given in (2.3) and (2.4), then we have

    =1+B0(p(z))1+B1(p(z))=1k=1kl=1(B0B1)1k(c1,c2,...,ck,B1)zυk (2.24)
    =1+B0(r(w))1+B1(r(w))=1k=1kl=1(B0B1)1k(d1,d2,...,dk,B1)wυk. (2.25)

    Equating the corresponding coefficients of (2.22) and (2.24), we have

    (1+γ[υk,q])[υk+1,q]baυk+1=(B0B1)1k(c1,c2,...,ck,B1)zυk. (2.26)

    Similarly, corresponding coefficient of (2.23)and (2.25), we have

    (1+γ[υk,q])[υk+1,q]bAυk+1=(B0B1)1k(d1,d2,...,dk,B1)wυk. (2.27)

    For aυi+1=0;1ik1, we get

    Aυk+1=aυk+1

    and we have

    (1+γ[υk,q])[υk+1,q]baυk+1=(B0B1)ck, (2.28)

    and

    (1+γ[υk,q])[υk+1,q]bAυk+1=(B0B1)dk. (2.29)

    Taking modulus on (2.28) and (2.29), we have

    |(1+γ[υk,q])[υk+1,q]baυk+1|=|(B0B1)ck|,|(1+γ[υk,q])[υk+1,q]bAυk+1|=|(B0B1)dk|.

    Since

    |ck|1and|dk|1(see[14]),

    we have

    |aυk+1||b|(1+γ[υk,q])[υk+1,q]|(B0B1)ck|=|b|(1+γ[υk,q])[υk+1,q]|(B0B1)dk,||aυk+1|(B0B1)|b|(1+γ[υk,q])[υk+1,q],

    which complete the proof of Theorem.

    For b=1,k=1,υ=n1,q1,andγ0 in the above Theorem 2.5, we obtain the following result given in [40].

    Corollary 2.6. Let hυR(n,α,γ) be given by (1.3). If an1=0, and 1ik1, then

    |an|2(1α)n(1+γ(n1)),nN{1,2}.

    Theorem 2.7. For bC{0}, let hυRυq(b,α,γ) be given by (1.3), then

    |aυ+1|{(B0B1)|b|(1+γ[υ,q])[υ+1,q],if|b|<ψ3(υ,q),2|b|ψ3(υ,q)if|b|ψ3(υ,q),
    |a2υ+1|{|b|ψ4(υ,q)+ψ4(υ,q)|(B0B1)||b|2,if|b|<ψ4(υ,q),|b|(|B1|+1)ψ4(υ,q)if|b|ψ4(υ,q),
    |a2υ+1(1+γ[υ,q])[υ+1,q]a2υ+1||b|(|B1|+1|)ψ4(υ,q)

    and

    |a2υ+1(1+γ[2υ,q])[2υ+1,q]2a2υ+1||b|ψ4(υ,q),

    where

    ψ3(υ,q)=|B0B1|{|B1|+1}((1+γ[2υ,q])[2υ+1,q])((1+γ[υ,q])[υ+1,q])ψ4(υ,q)=|B0B1|(1+γ[2υ,q])[2υ+1,q].

    Proof. Take k=1 and k=2 in (2.26) and (2.27). Then we have

    (1+γ[υ,q])[υ+1,q]baυ+1=(B0B1)c1, (2.30)
    (1+γ[2υ,q])[2υ+1,q]ba2υ+1=(B0B1)(B1c21+c2), (2.31)
    (1+γ[υ,q])[υ+1,q]baυ+1=(B0B1)d1, (2.32)
    (1+γ[υ,q])[υ+1,q]a2υ+1a2υ+1=b(B0B1)(B1d21+d2)(1+γ[2υ,q])[2υ+1,q]. (2.33)

    From (2.30) and (2.32) and using the fact |φ1|2,|ck|1 and |dk|1, we have

    |aυ+1||b|(1+γ[υ,q])[υ+1,q]|(B0B1)c1|=|b|(1+γ[υ,q])[υ+1,q]|(B0B1)d1|(B0B1)|b|(1+γ[υ,q])[υ+1,q]. (2.34)

    Adding (2.31) and (2.33) we have

    a2υ+1=b(B0B1){(c2+d2)+B1(c21+d21)}((1+γ[2υ,q])[2υ+1,q])((1+γ[υ,q])[υ+1,q])

    and

    |aυ+1|22|b||B0B1|{|B1|+1}((1+γ[2υ,q])[2υ+1,q])((1+γ[υ,q])[υ+1,q]). (2.35)

    Taking the square-root of (2.35), we have

    |aυ+1|2|b||B0B1|{|B1|+1}((1+γ[2υ,q])[2υ+1,q])((1+γ[υ,q])[υ+1,q]).

    Now the bounds given for |aυ+1| can be justified since

    |b|<2|b||B0B1|{|B1|+1}((1+γ[2υ,q])[2υ+1,q])((1+γ[υ,q])[υ+1,q])for|b|<2|b||B0B1|{|B1|+1}((1+γ[2υ,q])[2υ+1,q])((1+γ[υ,q])[υ+1,q]).

    From (2.31), we have

    |a2υ+1|=|b||(B0B1)(B1c21+c2)|(1+γ[2υ,q])[2υ+1,q]|b||B0B1|(|B1|+1)(1+γ[2υ,q])[2υ+1,q]. (2.36)

    Next we subtract (2.33) from (2.31), we get

    2(1+γ[2υ,q])[2υ+1,q]b{a2υ+1(1+γ[υ,q])[υ+1,q]2a2υ+1}=(B0B1){B1(d21c21)(c2d2)}=(B0B1)(c2d2), (2.37)

    or

    a2υ+1=(1+γ[υ,q])[υ+1,q]2a2υ+1+(B0B1)b(c2d2)2(1+γ[2υ,q])[2υ+1,q]. (2.38)

    Taking the absolute values yield

    |a2υ+1||(B0B1)||b||c2d2|2(1+γ[2υ,q])[2υ+1,q]+(1+γ[υ,q])[υ+1,q]2|a2υ+1|. (2.39)

    Using the assertion (2.34) on (2.39), we have

    |a2υ+1||(B0B1)||b|(1+γ[2υ,q])[2υ+1,q]+|(B0B1)|2|b|22(1+γ[υ,q])[υ+1,q]. (2.40)

    It follows from (2.36) and (2.40) upon noting that

    |(B0B1)||b|(1+γ[2υ,q])[2υ+1,q]+|(B0B1)|2|b|22(1+γ[υ,q])[υ+1,q].|(B0B1)||b|(1+γ[2υ,q])[2υ+1,q]if|b|<|(B0B1)|(1+γ[2υ,q])[2υ+1,q].

    Now, we rewrite (2.33) as follows:

    {(1+γ[υ,q])[υ+1,q]a2υ+1a2υ+1}=b(B0B1)(B1d21+d2)(1+γ[2υ,q])[2υ+1,q].

    Taking the modulus and using |φ1|2, |ck|1 and |dk|1, we have

    |a2υ+1(1+γ[υ,q])[υ+1,q]a2υ+1|(B0B1)(|B1|+1)|b|(1+γ[2υ,q])[2υ+1,q].

    Finally, from (2.37), we have

    {a2υ+1(1+γ[2υ,q])[2υ+1,q]2a2υ+1}=b(B0B1)(c2d2)2(1+γ[2υ,q])[2υ+1,q].

    Taking the modulus and using |ck|1 and |dk|1, we have

    |a2υ+1(1+γ[2υ,q])[2υ+1,q]2a2υ+1|(B0B1)|b|(1+γ[2υ,q])[2υ+1,q].

    For υ=1,γ=0,q1,k=n1 in Theorem 2.7, then we obtain result proved in [22].

    Corollary 2.8. [22]. For bC{0}, let hυRb(φ) be given by (1.1), then

    |a2|{|b|,  if  |b|<43,4|b|3,  if  |b|43,
    |a3|{2|b|3+|b|2,  if  |b|<23,4|b|3,  if  |b|23,
    |a32a22|4|b|3,
    |a3a22|2|b|3.

    Here, in this section, we consider the newly defined Salagean qdifferential operator for subclass of Rυ,γ,mb,q(φ) of class of υ and investigate some new application in the form of results

    Theorem 2.9. For bC{0}. Let hυRυ,γ,mb,q(φ) by given by (1.3). If aυi+1=0, and 1ik1, then

    |aυk+1|2|b|(1+γ[υk,q])(υk+1,q)m,fork2.

    Proof. We can prove Theorem 2.9 by using the similar method of Theorem 2.1.

    Theorem 2.10. For bC{0}. Let hυRυ,γ,mb,q(φ) by given by (1.3). Then

    |aυ+1|{2|b|(1+γ[υ,q])(υ+1,q)m,if|b|<ψ3(υ,q),|b|  ψ1(υ,q),if|b|ψ3(υ,q),
    |a2υ+1|{|b|ψ2(υ,q)+2|b|2(1+γ[υ,q])[υ+1,q]m,if|b|<ψ4(υ,q),2|b|ψ2(υ,q)if|b|ψ4(υ,q),
    |a2υ+1(1+γ[υ,q])[υ+1,q]ma2υ+1|2|b|ψ4(υ,q),
    |a2υ+11ψ2(υ,q)a2υ+1||b|ψ4(υ,q),

    where

    ψ3(υ,q)=8((1+γ[2υ,q])[2υ+1,q]m)((1+γ[υ,q])[υ+1,q]m),
    ψ4(υ,q)=2(1+γ[2υ,q])[2υ+1,q]m.

    Proof. We can prove Theorem 2.10 by using the similar method of Theorem 2.3.

    In this article, first of all, we used the q-difference operator for υ-fold symmetric functions in order to define some new subclasses of the υ-fold symmetric bi-univalent functions in the open symmetric unit disk U. We also used the basic concepts of q-calculus and defined the Salagean q-differential operator for υ-fold symmetric functions. We considered this operator and investigated a new subclass of υ-fold symmetric bi-univalent functions. Faber Polynomial expansion method and q-analysis are used in order to determined general coefficient bounds |aυ+1| for functions in each of these newly defined υ-fold symmetric bi-univalent functions classes. Feketo-Sezego problems and initial coefficient bounds |aυ+1| and |a2υ+1| for the function belonging to the subclasses of υ-fold symmetric bi-univalent functions in open symmetric unit disk U are also investigated.

    I would like to thank to the editor and referees for their valuable comments and suggestions.

    The author declares no conflict of interest.



    [1] S. Agrawa, S. K. Sahoo, A generalization of starlike functions of order α, Hokkaido Math. J., 46 (2017), 15–27. https://doi.org/10.14492/hokmj/1498788094 doi: 10.14492/hokmj/1498788094
    [2] H. Airault, Symmetric sums associated to the factorizations of Grunsky coefficients, In: Groups and symmetries: from Neolithic Scots to John McKay, American Mathematical Society, 2009. https://doi.org/10.1090/CRMP/047/02
    [3] H. Airault, Remarks on Faber polynomials, International Mathematical Forum, 3 (2008), 449–456.
    [4] H. Airault, A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math., 130 (2006), 179–222. https://doi.org/10.1016/j.bulsci.2005.10.002 doi: 10.1016/j.bulsci.2005.10.002
    [5] H. Aldweby, M. Darus, Some subordination results on q-analogue of ruscheweyh differential operator, Abstr. Appl. Anal., 2014 (2014), 958563. https://doi.org/10.1155/2014/958563 doi: 10.1155/2014/958563
    [6] S. Altinkaya, S. Yalcin, Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Math., 353 (2015), 1075–1080. https://doi.org/10.1016/j.crma.2015.09.003 doi: 10.1016/j.crma.2015.09.003
    [7] S. Altinkaya, S. Yalcin, Faber polynomial coefficient bounds for a subclass of bi-univalent functions, Stud. Univ. Babe s-Bolyai Math., 61 (2016), 37–44.
    [8] R. P. Boas, Aspects of contemporary complex analysis, Society for Industrial and Applied Mathematics, 24 (1982), 369. https://doi.org/10.1137/1024093 doi: 10.1137/1024093
    [9] D. A. Brannan, T. S. Taha, On some classes of bi-univalent function, Mathematical Analysis and its Applications, 31 (1986), 70–77. https://doi.org/10.1016/B978-0-08-031636-9.50012-7 doi: 10.1016/B978-0-08-031636-9.50012-7
    [10] S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of m-fold symmetric analytic bi-univalent functions, Journal of Fractional Calculus and Applications, 8 (2017), 108–117.
    [11] S. Bulut, Faber polynomial coefficients estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Math., 352 (2014), 479–484. https://doi.org/10.1016/j.crma.2014.04.004 doi: 10.1016/j.crma.2014.04.004
    [12] S. Bulut, N. Magesh, V. K. Balaji, Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions, C. R. Math., 353 (2015), 113–116. https://doi.org/10.1016/j.crma.2014.10.019 doi: 10.1016/j.crma.2014.10.019
    [13] P. L. Duren, Univalent Functions, In: Grundlehren der mathematischen Wissenschaften, Springer New York, 2001.
    [14] S. M. El-Deeb, T. Bulboaca, B. M. El-Matary, Maclaurin coefficient estimates of Bi-Univalent functions connected with the q-Derivative, Mathematics, 8 (2020), 418. https://doi.org/10.3390/math8030418 doi: 10.3390/math8030418
    [15] G. Faber, Uber polynomische Entwickelungen, Math. Ann., 57 (1903), 389–408. https://doi.org/10.1007/BF01444293 doi: 10.1007/BF01444293
    [16] S. Gong, The Bieberbach conjecture, American Mathematical Society, 1999. https://doi.org/10.1090/amsip/012
    [17] M. Govindaraj, S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Anal. Math., 43 (2017), 475–487. https://doi.org/10.1007/s10476-017-0206-5 doi: 10.1007/s10476-017-0206-5
    [18] S. G. Hamidi, S. A. Halim, J. M. Jahangiri, Faber polynomial coefficient estimates for meromorphic bi-starlike functions, International Journal of Mathematics and Mathematical Sciences, 2013 (2013), 498159. http://doi.org/10.1155/2013/498159 doi: 10.1155/2013/498159
    [19] S. G. Hamidi, J. M. Jahangiri, Unpredictability of the coefficients of m-fold symmetric bi-starlike functions, Int. J. Math., 25 (2014), 1450064. https://doi.org/10.1142/S0129167X14500645 doi: 10.1142/S0129167X14500645
    [20] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Math., 354 (2016), 365–370. https://doi.org/10.1016/j.crma.2016.01.013 doi: 10.1016/j.crma.2016.01.013
    [21] S. G. Hamidi, J. M. Jahangiri, Faber polynomials coefficient estimates for analytic bi-close-to-convex functions, C. R. Math., 352 (2014), 17–20. https://doi.org/10.1016/j.crma.2013.11.005 doi: 10.1016/j.crma.2013.11.005
    [22] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, B. Iran. Math. Soc., 41 (2015), 1103–1119.
    [23] T. Hayami, S. Owa, Coefficient bounds for bi-univalent functions, Pan. Amer. Math. J., 22 (2012), 15–26.
    [24] S. Hussain, S. Khan, M. A. Zaighum, M. Darus, Z. Shareef, Coefficients bounds for certain subclass of bi-univalent functions associated with Ruscheweyh q-differential operator, Journal of Complex Analysis, 2017 (2017), 2826514. https://doi.org/10.1155/2017/2826514 doi: 10.1155/2017/2826514
    [25] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables, Theory and Application: An International Journal, 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407
    [26] F. H. Jackson, On q-functions and a certain difference operator, Earth Env. Sci. T. R. So., 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
    [27] F. H. Jackson, q-Difference equations, American Journal of Mathematics, 32 (1910), 305–314. https://doi.org/10.2307/2370183 doi: 10.2307/2370183
    [28] S. Kanas, D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. https://doi.org/10.2478/s12175-014-0268-9 doi: 10.2478/s12175-014-0268-9
    [29] S. Khan, N. Khan, S. Hussain, Q. Z. Ahmad, M. A. Zaighum, Some classes of bi-univalent functions associated with Srivastava-Attiya operator, Bull. Math. Anal. Appl., 9 (2017), 37–44.
    [30] E. Lindelöf, Mémoire sur certaines inégalitis dans la théorie des functions monogénses etsur quelques propriétés nouvelles de ces fonctions dans levoisinage, dun point singulier essentiel, Ann. Soc. Sci. Fenn., 35 (1909), 1–35.
    [31] J. E. Littlewood, On inequalities in the theory of functions, P. Lond. Math. Soc., 23 (1925), 481–519. https://doi.org/10.1112/plms/s2-23.1.481 doi: 10.1112/plms/s2-23.1.481
    [32] M. Lewin, On a coefficient problem for bi-univalent functions, P. Am. Math. Soc., 18 (1967), 63–68.
    [33] S. Mahmood, J. Sokol, New subclass of analytic functions in conical domain associated with ruscheweyh q-differential operator, Results Math., 71 (2017), 1345–1357. https://doi.org/10.1007/s00025-016-0592-1 doi: 10.1007/s00025-016-0592-1
    [34] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Rational Mech. Anal., 32 (1967), 100–112. https://doi.org/10.1007/BF00247676 doi: 10.1007/BF00247676
    [35] W. Rogosinski, On subordination functions, Math. Proc. Cambridge, 35 (1939), 1–26. https://doi.org/10.1017/S0305004100020703 doi: 10.1017/S0305004100020703
    [36] W. Rogosinski, On the coefficients of subordinations, Proc. Lond. Math. Soc., 48 (1943), 48–82.
    [37] H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: Univalent functions, fractional calculus and their applications, New York: John Wiley and Sons, 1989,329–354.
    [38] H. M. Srivastava, S. Bulut, M. Caglar, N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (2013), 831–842. https://doi.org/10.2298/FIL1305831S doi: 10.2298/FIL1305831S
    [39] H. M. Srivastava, S. M. El-Deeb, The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of bi-close-to-convex functions connected with the q-convolution, AIMS Math., 5 (2020), 7087–7106. https://doi.org/10.3934/math.2020454 doi: 10.3934/math.2020454
    [40] H. M. Srivastava, S. S. Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839–1845. https://doi.org/10.2298/FIL1508839S doi: 10.2298/FIL1508839S
    [41] H. M. Srivastava, A. K. Mishra, P. Gochayat, Certain Subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. 10.2298/FIL1508839S doi: 10.2298/FIL1508839S
    [42] H. M. Srivastava, G. Murugusundaramoorthy, S. M. EL-Deeb, Faber Polynomial Coefficient estimates of bi-close-to-convex functions connected with the borel distribution of the Mittag-Leffler type, J. Nonlinear Var. Anal., 5 (2021), 103–118. https://doi.org/10.23952/jnva.5.2021.1.07 doi: 10.23952/jnva.5.2021.1.07
    [43] H. M. Srivastava, S. Sivasubramanian, R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J., 7 (2014), 1–10. https://doi.org/10.2478/tmj-2014-0011 doi: 10.2478/tmj-2014-0011
    [44] Q. H. Xu, H. G. Xiao, H. M. Srivastava, A certain general subclass of analytic and biunivalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218 (2012), 11461–11465. https://doi.org/10.1016/j.amc.2012.05.034 doi: 10.1016/j.amc.2012.05.034
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1400) PDF downloads(66) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog