For all physical spatial dimensions $ n = 2 $ and $ 3 $, we establish a priori estimates of Sobolev norms for free boundary problem of inviscid Boussinesq and MHD-Boussinesq equations without heat diffusion under the Taylor-type sign condition on the initial free boundary. It is different from MHD equations because the energy of the system is not conserved.
Citation: Wei Zhang. A priori estimates for the free boundary problem of incompressible inviscid Boussinesq and MHD-Boussinesq equations without heat diffusion[J]. AIMS Mathematics, 2023, 8(3): 6074-6094. doi: 10.3934/math.2023307
For all physical spatial dimensions $ n = 2 $ and $ 3 $, we establish a priori estimates of Sobolev norms for free boundary problem of inviscid Boussinesq and MHD-Boussinesq equations without heat diffusion under the Taylor-type sign condition on the initial free boundary. It is different from MHD equations because the energy of the system is not conserved.
[1] | D. Bian, Initial boundary value problem for two-dimensional viscous Boussinesq equations for MHD convection, Discret. Cont. Dyn. S, 9 (2016), 1591–1611. http://dx.doi.org/10.3934/dcdss.2016065 doi: 10.3934/dcdss.2016065 |
[2] | D. Bian, G. Gui, On 2-D Boussinesq equations for MHD convection with stratification effects, J. Differ. Equ., 261 (2016), 1669–1711. https://doi.org/10.1016/j.jde.2016.04.011 doi: 10.1016/j.jde.2016.04.011 |
[3] | D. Bian, J. Liu, Initial-boundary value problem to 2D Boussinesq equations for MHD convection with stratification effects, J. Differ. Equ., 263 (2017), 8074–8101. https://doi.org/10.1016/j.jde.2017.08.034 doi: 10.1016/j.jde.2017.08.034 |
[4] | D. Bian, H. Liu, X. Pu, Global well-posedness of the 3D Boussinesq-MHD system without heat diffusion, Z. Angew. Math. Phys., 70 (2019), 81. https://doi.org/10.1007/s00033-019-1126-y doi: 10.1007/s00033-019-1126-y |
[5] | D. Chae, O. Y. Imanuvilov, Generic solvability of the axisymmetric 3-D Euler equations and the 2-D Boussinesq equations, J. Differ. Equ., 156 (1999), 1–17. https://doi.org/10.1006/jdeq.1998.3607 doi: 10.1006/jdeq.1998.3607 |
[6] | D. Chae, Local existence and blow-up criterion for the Euler equations in the Besov spaces, Asymptotic Anal., 38 (2004), 339–358. |
[7] | D. Chae, H. S. Nam, Local existence and blow-up criterion for the Boussinesq equations, P. Roy. Soc. Edinb. A, 127 (1997), 935–946. https://doi.org/10.1017/S0308210500026810 doi: 10.1017/S0308210500026810 |
[8] | D. Christodoulou, H. Lindblad, On the motion of the free surface of a liquid, Commun. Pur. Appl. Math., 53 (2000), 1536–1602. https://doi.org/10.1002/1097-0312(200012)53:12<1536::AID-CPA2>3.0.CO;2-Q doi: 10.1002/1097-0312(200012)53:12<1536::AID-CPA2>3.0.CO;2-Q |
[9] | X. Gu, Y. Wang, On the construction of solutions to the free-surface incompressible ideal magnetohydrodynamic equations, J. Math. Pure. Appl., 128 (2019), 1–41. https://doi.org/10.1016/j.matpur.2019.06.004 doi: 10.1016/j.matpur.2019.06.004 |
[10] | C. Hao, T. Luo, Tao Well-posedness for the linearized free boundary problem of incompressible ideal magnetohydrodynamics equations, J. Differ. Equ., 299 (2021), 542–601. https://doi.org/10.1016/j.jde.2021.07.030 doi: 10.1016/j.jde.2021.07.030 |
[11] | C. Hao, T. Luo, A priori estimates for free boundary problem of incompressible inviscid magnetohydrodynamic flows, Arch. Rational Mech. Anal., 212 (2014), 805–847. https://doi.org/10.1007/s00205-013-0718-5 doi: 10.1007/s00205-013-0718-5 |
[12] | C. Hao, W. Zhang, Maximal $L^p-L^q$ regularity for two-phase fluid motion in the linearized Oberbeck-Boussinesq approximation, J. Differ. Equ., 322 (2022), 101–134. https://doi.org/10.1016/j.jde.2022.03.022 doi: 10.1016/j.jde.2022.03.022 |
[13] | H. Lindblad, Well-posedness for the linearized motion of an incompressible liquid with free surface boundary, Commun. Pur. Appl. Math., 56 (2003), 153–197. https://doi.org/10.1002/cpa.10055 doi: 10.1002/cpa.10055 |
[14] | H. Lindblad, Well-posedness for the motion of an incompressible liquid with free surface boundary, Commun. Math. Phys., 236 (2003), 281–310. https://doi.org/10.1007/s00220-003-0812-x doi: 10.1007/s00220-003-0812-x |
[15] | H. Lindblad, C. Luo, A priori estimates for the compressible Euler equations for a liquid with free surface boundary and the incompressible limit, Commun. Pur. Appl. Math., 71 (2018), 1273–1333. https://doi.org/10.1002/cpa.21734 doi: 10.1002/cpa.21734 |
[16] | H. Lindblad, K. H. Nordgren, A priori estimates for the motion of a self-gravitating incompressible liquid with free surface boundary, J. Hyperbol. Differ. Eq., 6 (2009), 407–432. https://doi.org/10.1142/S021989160900185X doi: 10.1142/S021989160900185X |
[17] | X. Liu, M. Wang, Z. Zhang, Local well-posedness and blow-up criterion of the Boussinesq equations in critical Besov spaces, J. Math. Fluid Mech., 12 (2010), 280–292. https://doi.org/10.1007/s00021-008-0286-x doi: 10.1007/s00021-008-0286-x |
[18] | C. Miao, X. Zheng, On the global well-posedness for the Boussinesq system with horizontal dissipation, Commun. Math. Phys., 321 (2013), 33–67. https://doi.org/10.1007/s00220-013-1721-2 doi: 10.1007/s00220-013-1721-2 |
[19] | W. E, C. Shu, Small-scale structures in Boussinesq convection, Phys. Fluids, 6 (1994), 49–58. https://doi.org/10.1063/1.868044 doi: 10.1063/1.868044 |
[20] | S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math., 130 (1997), 39–72. https://doi.org/10.1007/s002220050177 doi: 10.1007/s002220050177 |
[21] | S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc., 12 (1999), 445–495. https://doi.org/10.1090/S0894-0347-99-00290-8 doi: 10.1090/S0894-0347-99-00290-8 |