Research article Special Issues

LX-BBSCA: Laplacian biogeography-based sine cosine algorithm for structural engineering design optimization

  • Received: 08 October 2023 Revised: 02 November 2023 Accepted: 07 November 2023 Published: 13 November 2023
  • MSC : 90C59

  • In this paper, an ensemble metaheuristic algorithm (denoted as LX-BBSCA) is introduced. It combines the strengths of Laplacian biogeography-based optimization (LX-BBO) and the sine cosine algorithm (SCA) to address structural engineering design optimization problems. Our primary objective is to mitigate the risk of getting stuck in local minima and accelerate the algorithm's convergence rate. We evaluate the proposed LX-BBSCA algorithm on a set of 23 benchmark functions, including both unimodal and multimodal problems of varying complexity and dimensions. Additionally, we apply LX-BBSCA to tackle five real-world structural engineering design problems, comparing the results with those obtained using other metaheuristics in terms of objective function values and convergence behavior. To ensure the statistical validity of our findings, we employ rigorous tests such as the t-test and the Wilcoxon rank test. The experimental outcomes consistently demonstrate that the ensemble LX-BBSCA algorithm outperforms not only the basic versions of BBO, SCA and LX-BBO but also other state-of-the-art metaheuristic algorithms.

    Citation: Vanita Garg, Kusum Deep, Khalid Abdulaziz Alnowibet, Ali Wagdy Mohamed, Mohammad Shokouhifar, Frank Werner. LX-BBSCA: Laplacian biogeography-based sine cosine algorithm for structural engineering design optimization[J]. AIMS Mathematics, 2023, 8(12): 30610-30638. doi: 10.3934/math.20231565

    Related Papers:

  • In this paper, an ensemble metaheuristic algorithm (denoted as LX-BBSCA) is introduced. It combines the strengths of Laplacian biogeography-based optimization (LX-BBO) and the sine cosine algorithm (SCA) to address structural engineering design optimization problems. Our primary objective is to mitigate the risk of getting stuck in local minima and accelerate the algorithm's convergence rate. We evaluate the proposed LX-BBSCA algorithm on a set of 23 benchmark functions, including both unimodal and multimodal problems of varying complexity and dimensions. Additionally, we apply LX-BBSCA to tackle five real-world structural engineering design problems, comparing the results with those obtained using other metaheuristics in terms of objective function values and convergence behavior. To ensure the statistical validity of our findings, we employ rigorous tests such as the t-test and the Wilcoxon rank test. The experimental outcomes consistently demonstrate that the ensemble LX-BBSCA algorithm outperforms not only the basic versions of BBO, SCA and LX-BBO but also other state-of-the-art metaheuristic algorithms.



    加载中


    [1] N. Pazhaniraja, S. Basheer, K. Thirugnanasambandam, R. Ramalingam, M. Rashid, J. Kalaivani, Multi-objective Boolean grey wolf optimization based decomposition algorithm for high-frequency and high-utility itemset mining, AIMS Mathematics, 8 (2023), 18111–18140. https://doi.org/10.3934/math.2023920 doi: 10.3934/math.2023920
    [2] M. Sohrabi, M. Zandieh, M. Shokouhifar, Sustainable inventory management in blood banks considering health equity using a combined metaheuristic-based robust fuzzy stochastic programming, Socio-Econ. Plan. Sci., 86 (2023), 101462. https://doi.org/10.1016/j.seps.2022.101462 doi: 10.1016/j.seps.2022.101462
    [3] N. Behmanesh-Fard, H. Yazdanjouei, M. Shokouhifar, F. Werner, Mathematical Circuit Root Simplification Using an Ensemble Heuristic–Metaheuristic Algorithm, Mathematics, 11 (2023), 1498. https://doi.org/10.3390/math11061498 doi: 10.3390/math11061498
    [4] A. Shokouhifar, M. Shokouhifar, M. Sabbaghian, H. Soltanian-Zadeh, Swarm intelligence empowered three-stage ensemble deep learning for arm volume measurement in patients with lymphedema, Biomed. Signal Process. Control., 85 (2023), 105027. https://doi.org/10.1016/j.bspc.2023.105027 doi: 10.1016/j.bspc.2023.105027
    [5] H. Esmaeili, V. Hakami, B. M. Bidgoli, M. Shokouhifar, Application-specific clustering in wireless sensor networks using combined fuzzy firefly algorithm and random forest, Expert Syst. Appl., 210 (2022), 118365. https://doi.org/10.1016/j.eswa.2022.118365 doi: 10.1016/j.eswa.2022.118365
    [6] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1 (1997), 67–82. https://doi.org/10.1109/4235.585893 doi: 10.1109/4235.585893
    [7] M. Shokouhifar, FH-ACO: Fuzzy heuristic-based ant colony optimization for joint virtual network function placement and routing, Appl. Soft Comput., 107 (2021), 107401. https://doi.org/10.1016/j.asoc.2021.107401 doi: 10.1016/j.asoc.2021.107401
    [8] S. Mirjalili, SCA: A sine cosine algorithm for solving optimization problems, Knowl.-Based Syst., 96 (2016), 120–133. https://doi.org/10.1016/j.knosys.2015.12.022 doi: 10.1016/j.knosys.2015.12.022
    [9] D. Simon, Biogeography-based optimization, IEEE Trans. Evol. Comput., 12 (2008), 702–713. https://doi.org/10.1109/TEVC.2008.919004 doi: 10.1109/TEVC.2008.919004
    [10] V. Garg, K. Deep, Performance of Laplacian Biogeography-Based Optimization Algorithm on CEC 2014 continuous optimization benchmarks and camera calibration problem, Swarm Evol. Comput., 27 (2016), 132–144. https://doi.org/10.1016/j.swevo.2015.10.006 doi: 10.1016/j.swevo.2015.10.006
    [11] J. Wang, W. Yang, P. Du, T. Niu, A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm, Energy Convers. Manag., 163 (2018), 134–150. https://doi.org/10.1016/j.enconman.2018.02.012 doi: 10.1016/j.enconman.2018.02.012
    [12] M. A. Tawhid, V. Savsani, Multi-objective sine-cosine algorithm (MO-SCA) for multi-objective engineering design problems, Neural Comput. Appl., 31 (2019), 915–929. https://doi.org/10.1007/s00521-017-3049-x doi: 10.1007/s00521-017-3049-x
    [13] K. S. Reddy, L. K. Panwar, B. K. Panigrahi, R. Kumar, A new binary variant of sine–cosine algorithm: development and application to solve profit-based unit commitment problem, Arab. J. Sci. Eng., 43 (2018), 4041–4056. https://doi.org/10.1007/s13369-017-2790-x doi: 10.1007/s13369-017-2790-x
    [14] S. Gupta, K. Deep, A. P. Engelbrecht, A memory guided sine cosine algorithm for global optimization, Eng. Appl. Artif. Intell., 93 (2020), 103718. https://doi.org/10.1016/j.engappai.2020.103718 doi: 10.1016/j.engappai.2020.103718
    [15] A. Selim, S. Kamel, F. Jurado, Efficient optimization technique for multiple DG allocation in distribution networks, Appl. Soft Comput., 86 (2020), 105938. https://doi.org/10.1016/j.asoc.2019.105938 doi: 10.1016/j.asoc.2019.105938
    [16] S. Hota, A. K. Mohanty, D. Mishra, P. Satapathy, B. Jena, Designing of Financial Time Series Forecasting Model Using Stochastic Algorithm Based Extreme Learning Machine, In: Intelligent and Cloud Computing, Singapore: Springer, 2022,363–369. https://doi.org/10.1007/978-981-16-9873-6_33
    [17] R. Sindhu, R. Ngadiran, Y. M. Yacob, N. A. H. Zahri, M. Hariharan, Sine–cosine algorithm for feature selection with elitism strategy and new updating mechanism, Neural Comput. Appl., 28 (2017), 2947–2958. https://doi.org/10.1007/s00521-017-2837-7 doi: 10.1007/s00521-017-2837-7
    [18] W. Zhu, C. Ma, X. Zhao, M. Wang, A. A. Heidari, H. Chen, et al., Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine, IEEE Access, 8 (2020), 61107–61123. https://doi.org/10.1109/ACCESS.2020.2981968 doi: 10.1109/ACCESS.2020.2981968
    [19] S. Gupta, K. Deep, A hybrid self-adaptive sine cosine algorithm with opposition based learning, Expert Syst. Appl., 119 (2019), 210–230. https://doi.org/10.1016/j.eswa.2018.10.050 doi: 10.1016/j.eswa.2018.10.050
    [20] M. A. El-Shorbagy, M. A. Farag, A. A. Mousa, I. M. El-Desoky, A hybridization of sine cosine algorithm with steady state genetic algorithm for engineering design problems, In: The International Conference on Advanced Machine Learning Technologies and Applications, Cham: Springer, 2020,143–155. https://doi.org/10.1007/978-3-030-14118-9_15
    [21] H. Chen, S. Jiao, A. A. Heidari, M. Wang, X. Chen, X. Zhao, An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models, Energy Convers. Manag., 195 (2019), 927–942. https://doi.org/10.1016/j.enconman.2019.05.057 doi: 10.1016/j.enconman.2019.05.057
    [22] N. Singh, S. B. Singh, A novel hybrid GWO-SCA approach for optimization problems, Eng. Sci. Technol. Int. J., 20 (2017), 1586–1601. https://doi.org/10.1016/j.jestch.2017.11.001 doi: 10.1016/j.jestch.2017.11.001
    [23] Y. Fan, P. Wang, A. A. Heidari, M. Wang, X. Zhao, H. Chen, et al., Rationalized fruit fly optimization with sine cosine algorithm: A comprehensive analysis, Expert Syst. Appl., 157 (2020), 113486. https://doi.org/10.1016/j.eswa.2020.113486 doi: 10.1016/j.eswa.2020.113486
    [24] N. Kumar, I. Hussain, B. Singh, B. K. Panigrahi, Single sensor-based MPPT of partially shaded PV system for battery charging by using cauchy and gaussian sine cosine optimization, IEEE Trans. Energy Convers., 32 (2017), 983–992. https://doi.org/10.1109/TEC.2017.2669518 doi: 10.1109/TEC.2017.2669518
    [25] S. Bureerat, N. Pholdee, Adaptive sine cosine algorithm integrated with differential evolution for structural damage detection, In: Computational Science and Its Applications–ICCSA 2017, Cham: Springer, 2017, 71–86. https://doi.org/10.1007/978-3-319-62392-4_6
    [26] V. Garg, K. Deep, N. P. Padhee, Constrained laplacian biogeography-based optimization for economic load dispatch problems, Process Integr. Optim. Sustain., 6 (2022), 483–496. https://doi.org/10.1007/s41660-022-00227-5 doi: 10.1007/s41660-022-00227-5
    [27] M. Banerjee, V. Garg, K. Deep, Solving structural and reliability optimization problems using efficient mutation strategies embedded in sine cosine algorithm, Int. J. Syst. Assur. Eng. Manag., 14 (2023), 307–312. https://doi.org/10.1007/s13198-023-01857-9 doi: 10.1007/s13198-023-01857-9
    [28] M. Issa, A. E. Hassanien, D. Oliva, A. Helmi, I. Ziedan, A. Alzohairy, ASCA-PSO: Adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment, Expert Syst. Appl., 99 (2018), 56–70. https://doi.org/10.1016/j.eswa.2018.01.019 doi: 10.1016/j.eswa.2018.01.019
    [29] A. F. Attia, R. A. El Sehiemy, H. M. Hasanien, Optimal power flow solution in power systems using a novel Sine-Cosine algorithm, Int. J. Electr. Power Energy Syst., 99 (2018), 331–343. https://doi.org/10.1016/j.ijepes.2018.01.024 doi: 10.1016/j.ijepes.2018.01.024
    [30] S. Das, A. Bhattacharya, A. K. Chakraborty, Solution of short-term hydrothermal scheduling using sine cosine algorithm, Soft Comput., 22 (2018), 6409–6427. https://doi.org/10.1007/s00500-017-2695-3 doi: 10.1007/s00500-017-2695-3
    [31] O. E. Turgut, Thermal and economical optimization of a shell and tube evaporator using hybrid backtracking search—sine–cosine algorithm, Arab. J. Sci. Eng., 42 (2017), 2105–2123. https://doi.org/10.1007/s13369-017-2458-6 doi: 10.1007/s13369-017-2458-6
    [32] M. Abd Elaziz, D. Oliva, S. Xiong, An improved opposition-based sine cosine algorithm for global optimization, Expert Syst. Appl., 90 (2017), 484–500. https://doi.org/10.1016/j.eswa.2017.07.043 doi: 10.1016/j.eswa.2017.07.043
    [33] V. Garg, K. Deep, K. A. Alnowibet, H. M. Zawbaa, A. W. Mohamed, Biogeography Based optimization with Salp Swarm optimizer inspired operator for solving non-linear continuous optimization problems, Alex. Eng. J., 73 (2023), 321–341. https://doi.org/10.1016/j.aej.2023.04.054 doi: 10.1016/j.aej.2023.04.054
    [34] V. Garg, K. Deep, A state-of-the-art review of biogeography-based optimization, In: Proceedings of Fourth International Conference on Soft Computing for Problem Solving, New Delhi: Springer, 2015,533–549. https://doi.org/10.1007/978-81-322-2220-0_44
    [35] V. Garg, K. Deep, Effectiveness of constrained laplacian biogeography based optimization for solving structural engineering design problems, In: Proceedings of Sixth International Conference on Soft Computing for Problem Solving, Singapore: Springer, 2016,206–219. https://doi.org/10.1007/978-981-10-3325-4_21
    [36] S. Yin, Q. Luo, Y. Zhou, IBMSMA: An Indicator-based Multi-swarm Slime Mould Algorithm for Multi-objective Truss Optimization Problems, J. Bionic Eng., 20 (2023), 1333–1360. https://doi.org/10.1007/s42235-022-00307-9 doi: 10.1007/s42235-022-00307-9
    [37] Y. Zhang, Y. Zhou, G. Zhou, Q. Luo, An effective multi-objective bald eagle search algorithm for solving engineering design problems, Appl. Soft Comput., 145 (2023), 110585. https://doi.org/10.1016/j.asoc.2023.110585 doi: 10.1016/j.asoc.2023.110585
    [38] Q. Luo, S. Yin, G. Zhou, W. Meng, Y. Zhao, Y. Zhou, Multi-objective equilibrium optimizer slime mould algorithm and its application in solving engineering problems, Struct. Multidiscip. Optim., 66 (2023), 114. https://doi.org/10.1007/s00158-023-03568-y doi: 10.1007/s00158-023-03568-y
    [39] A. Özmen, Y. Zinchenko, G. W. Weber, Robust multivariate adaptive regression splines under cross-polytope uncertainty: An application in a natural gas market, Ann. Oper. Res., 324 (2023), 1337–1367. https://doi.org/10.1007/s10479-022-04993-w doi: 10.1007/s10479-022-04993-w
    [40] E. Kropat, G. W. Weber, E. B. Tirkolaee, Foundations of semialgebraic gebe-environment networks, J. Dyn. Games, 7 (2020), 253. https://doi.org/10.3934/jdg.2020018 doi: 10.3934/jdg.2020018
    [41] M. Shokouhifar, A. Jalali, Optimized sugeno fuzzy clustering algorithm for wireless sensor networks, Eng. Appl. Artif. Intell., 60 (2017), 16–25. https://doi.org/10.1016/j.engappai.2017.01.007 doi: 10.1016/j.engappai.2017.01.007
    [42] M. Shokouhifar, M. Ranjbarimesan, Multivariate time-series blood donation/demand forecasting for resilient supply chain management during COVID-19 pandemic, Clean. Logist. Supply Chain., 5 (2022), 100078. https://doi.org/10.1016/j.clscn.2022.100078 doi: 10.1016/j.clscn.2022.100078
    [43] P. Aryai, A. Khademzadeh, S. J. Jassbi, M. Hosseinzadeh, O. Hashemzadeh, M. Shokouhifar, Real-time health monitoring in WBANs using hybrid Metaheuristic-Driven Machine Learning Routing Protocol (MDML-RP), AEU-Int. J. Electron. Commun., 168 (2023), 154723. https://doi.org/10.1016/j.aeue.2023.154723 doi: 10.1016/j.aeue.2023.154723
    [44] Z. Ghasemi Darehnaei, M. Shokouhifar, H. Yazdanjouei, S. M. J. Rastegar Fatemi, SI‐EDTL: swarm intelligence ensemble deep transfer learning for multiple vehicle detection in UAV images, Concurr. Comput. Pract. Exper., 34 (2022), e6726. https://doi.org/10.1002/cpe.6726 doi: 10.1002/cpe.6726
    [45] A. Çevik, G. W. Weber, B. M. Eyüboğlu, K. K. Oğuz, Alzheimer's Disease Neuroimaging Initiative, Voxel-MARS: A method for early detection of Alzheimer's disease by classification of structural brain MRI, Ann. Oper. Res., 258 (2017), 31–57. https://doi.org/10.1007/s10479-017-2405-7 doi: 10.1007/s10479-017-2405-7
    [46] E. Savku, G. W. Weber, Stochastic differential games for optimal investment problems in a Markov regime-switching jump-diffusion market, Ann. Oper. Res., 312 (2022), 1171–1196. https://doi.org/10.1007/s10479-020-03768-5 doi: 10.1007/s10479-020-03768-5
    [47] M. Shokouhifar, M. Sohrabi, M. Rabbani, S. M. H. Molana, F. Werner, Sustainable Phosphorus Fertilizer Supply Chain Management to Improve Crop Yield and P Use Efficiency Using an Ensemble Heuristic–Metaheuristic Optimization Algorithm, Agronomy, 13 (2023), 565. https://doi.org/10.3390/agronomy13020565 doi: 10.3390/agronomy13020565
    [48] P. Taylan, F. Yerlikaya-Özkurt, B. Bilgic Ucak, G. W. Weber, A new outlier detection method based on convex optimization: Application to diagnosis of Parkinson's disease, J. Appl. Stat., 48 (2021), 2421–2440. https://doi.org/10.1080/02664763.2020.1864815 doi: 10.1080/02664763.2020.1864815
    [49] M. Shokouhifar, A. Goli, Designing a Resilient–Sustainable Supply Chain Network of Age-Differentiated Blood Platelets Using Vertical–Horizontal Transshipment and Grey Wolf Optimizer, Int. J. Environ. Res. Public Health., 20 (2023), 4078. https://doi.org/10.3390/ijerph20054078 doi: 10.3390/ijerph20054078
    [50] S. K. Das, F. Y. Vincent, S. K. Roy, G. W. Weber, Location-allocation problem for green efficient two-stage vehicle-based logistics system: A type-2 neutrosophic multi-objective modeling approach, Expert Syst. Appl., 238 (2023), 122174. https://doi.org/10.1016/j.eswa.2023.122174 doi: 10.1016/j.eswa.2023.122174
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1134) PDF downloads(81) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog