Processing math: 100%
Research article

On a class of one-dimensional superlinear semipositone (p,q) -Laplacian problem

  • Received: 20 June 2023 Revised: 18 August 2023 Accepted: 27 August 2023 Published: 07 September 2023
  • MSC : Primary 34B15; Secondary 34B18

  • We study the existence of positive solutions for a class of one-dimensional superlinear (p,q) -Laplacian with Sturm-Liouville boundary conditions. We allow the reaction term to be singular at 0 with infinite semipositone behavior. Our approach depends on Amann's fixed point theorem.

    Citation: Xiao Wang, D. D. Hai. On a class of one-dimensional superlinear semipositone (p,q) -Laplacian problem[J]. AIMS Mathematics, 2023, 8(11): 25740-25753. doi: 10.3934/math.20231313

    Related Papers:

    [1] Changlong Yu, Jufang Wang, Huode Han, Jing Li . Positive solutions of IBVPs for q-difference equations with p-Laplacian on infinite interval. AIMS Mathematics, 2021, 6(8): 8404-8414. doi: 10.3934/math.2021487
    [2] Haixia Lu, Li Sun . Positive solutions to a semipositone superlinear elastic beam equation. AIMS Mathematics, 2021, 6(5): 4227-4237. doi: 10.3934/math.2021250
    [3] Sabbavarapu Nageswara Rao, Abdullah Ali H. Ahmadini . Multiple positive solutions for system of mixed Hadamard fractional boundary value problems with (p1,p2)-Laplacian operator. AIMS Mathematics, 2023, 8(6): 14767-14791. doi: 10.3934/math.2023755
    [4] Changlong Yu, Jing Li, Jufang Wang . Existence and uniqueness criteria for nonlinear quantum difference equations with p-Laplacian. AIMS Mathematics, 2022, 7(6): 10439-10453. doi: 10.3934/math.2022582
    [5] Hai-yun Deng, Jue-liang Zhou, Yu-bo He . Existence of periodic solutions for a class of (ϕ1,ϕ2)-Laplacian discrete Hamiltonian systems. AIMS Mathematics, 2023, 8(5): 10579-10595. doi: 10.3934/math.2023537
    [6] Dušan D. Repovš, Calogero Vetro . The behavior of solutions of a parametric weighted (p,q)-Laplacian equation. AIMS Mathematics, 2022, 7(1): 499-517. doi: 10.3934/math.2022032
    [7] Kun Cheng, Shenghao Feng, Li Wang, Yuangen Zhan . Least energy sign-changing solutions for a class of fractional (p,q)-Laplacian problems with critical growth in RN. AIMS Mathematics, 2023, 8(6): 13325-13350. doi: 10.3934/math.2023675
    [8] Hui Liang, Yueqiang Song, Baoling Yang . Some results for a supercritical Schrödinger-Poisson type system with (p,q)-Laplacian. AIMS Mathematics, 2024, 9(5): 13508-13521. doi: 10.3934/math.2024658
    [9] Xudong Shang . Existence and concentration of positive solutions for a p-fractional Choquard equation. AIMS Mathematics, 2021, 6(11): 12929-12951. doi: 10.3934/math.2021748
    [10] Asghar Ahmadkhanlu, Hojjat Afshari, Jehad Alzabut . A new fixed point approach for solutions of a p-Laplacian fractional q-difference boundary value problem with an integral boundary condition. AIMS Mathematics, 2024, 9(9): 23770-23785. doi: 10.3934/math.20241155
  • We study the existence of positive solutions for a class of one-dimensional superlinear (p,q) -Laplacian with Sturm-Liouville boundary conditions. We allow the reaction term to be singular at 0 with infinite semipositone behavior. Our approach depends on Amann's fixed point theorem.



    In this paper, we investigate positive solutions for the one-dimensional BVP

    {(ϕε(u))=λg(u)+f(t,u), t(0,1),au(0)bu(0)=0, cu(1)+du(1)=0, (1.1)

    where ε0, ϕε(s)=|s|p2s+ε|s|q2s,p>q>1,a,b,c,d  are nonnegative constants with ac+ad+bc> 0, f:(0,1)×[0,)R, g:(0,)[0,),  and λ is a nonnegative parameter.

    For ε=0, (ϕε(u)) is the usual p-Laplacian while for ε>0, the operator is referred to as the (p,q) -Laplacian. We are focusing on the case when f (,u)  is p-superlinear, and g  is allowed to exhibit semipositone structure i.e., g(0+)[,0). For a rich literature on semipositone problems and their applications, see [9]. Using Amann's Fixed Point Theorem, we shall establish here the existence of a positive solution to (1.1) for λ0 small when f(,u) is p-superlinear at 0 and , and the superlinearity is involved with the first eigenvalue of the p-Laplacian operator when ε=0.  Our result in the p-Laplacian case improves previous ones in [3,4,8,10,12] (see Remark 1.1 below), while producing a new existence criteria in the (p, q)-Laplacian case. We refer to [6,7,13] and the references therein for related existence results to (1.1) in the superlinear/sublinear cases when ε=0.

    Let λ1 be the principal eigenvalue of (ϕ0(u)) on (0,1) with Sturm-Liouville boundary condition in (1.1), (see [2,5]).

    We consider the following hypotheses:

    (A1) g:(0,)[0,) is continuous, non-increasing, and integrable near 0.

    (A2) f:(0,1)×[0,)R is a Carath éodory function, and there exists γL1(0,1) such that

    infz(0,)f(t,z)zp1γ(t),

    for a.e. t(0,1).

    (A3)  supz(0,c)|f(t,z)| is integrable on (0,1) for all c>0.

    (A4)There exists a number σ>0 such that

    f(t,z)λ1zp1,

    for z(0,σ] and a.e. t(0,1), and in addition f(t,z)λ1zp1 on any subinterval of [0,σ] if ε=0.

    (A5) limzf(t,z)zp1= if ε>0, and limzinff(t,z)zp1>λ1 if ε=0,  where the limits are uniform for a.e. t(0,1).

    Let p(t)=min(t,1t).  By a positive solution of (1.1), we mean a function uC1[0,1] with inf(0,1)up>0 and satisfying (1.1).

    Our main result is

    Theorem 1.1. Let (A1)–(A5) hold. Then there exists a number λ0>0 such that (1.1) has a positive solution for 0λ<λ0.

    Remark 1.1. (i) When ε=0, the existence of a positive solution to (1.1) was established in [3,4], where g0 with Sturm-Liouville condition in [3], and g(u)=uδ,δ(0,1) with Dirichlet boundary condition in [4], under the assumption

    lim supz0+f(t,z)zp1<λ1<lim infzf(t,z)zp1.

    The results in [3,4] provided extensions of the work in [8,10,12]. Note that our condition (A4) allows the case lim supz0+f(t,z)zp1=λ1.

    (ii) In the case bd=0, the proof of Theorem 1.1 shows that when ε=0,  (A4) can be replaced by the weaker condition f(t,z)λ1zp1 and f(t,z)λ1zp1 on [0,σ] for a.e. t(0,1).

    Example 1.1. Let δ,ν(0,1) with δ+ν<1, and r>p1.  By Theorem 1.1, the following problems have a positive solution for λ0 small:

    (i)

    {(ϕε(u))=λuδlnν(1+u)+λ1up1+urus, t(0,1),au(0)bu(0)=0, cu(1)+du(1)=0,

    where ε>0 and r>s>p1.  Indeed, here

    f(t,z)=λ1zp1+zrzsλ1zp1  for z1,

    i.e., (A4) holds. Since

    z1pf(t,z)=λ1+zr(p1)zs(p1)λ11  

    for z(0,),  (A2) holds. Clearly (A1), (A3), and (A5) are satisfied.

    (ii)

    {(ϕ0(u))=λuδlnν(1+u)+λ1up1euα+ur, t(0,1),au(0)bu(0)=0, cu(1)+du(1)=0,

    where α(0,rp+1).  Note that (A4) with ε=0 is equivalent to

    λ1(1ezα)zr(p1) 

    on [0,σ]  and λ1(1ezα)zr(p1) on any subinterval of [0,σ] for some σ>0. This is true since limz0+1ezαzrp+1=. Clearly the remaining conditions are satisfied.

    Note that lim supz0+f(t,z)zp1=λ1 in both examples.

    Let 0α<β1.  In what follows, γL1(α,β) with γ0 and we shall denote the norm in Lq(α,β) and C1[α,β] by ||||q and ||1 respectively.

    Lemma 2.1. Let u,vC1[α,β]  satisfy

    {(ϕε(u))+γ(t)ϕε(u)(ϕε(v))+γ(t)ϕε(v)    a.e  on  (α,β),au(α)bu(α)av(α)bv(α), cu(β)+du(β)cv(β)+dv(β). (2.1)

    Then uv on [α,β].

    Proof. Suppose u(t0)<v(t0) for some t0(α,β). Let I=(α0,β0)(α,β) be the largest open interval containing t0 such that u<v on I. Then u(α0)=v(α0) if α0>α and u(β0)=v(β0) if β0<β. Multiplying the inequation in (2.1) by  uv and integrating on I gives

    I(ϕε(u)ϕε(v))(uv)0,

    since γ0 and (ϕε(u)ϕε(v)(uv)|β0α00   in view of the boundary conditions at α,β. Since ϕε is increasing, it follows that u=v on I and hence u=v+σ on I, where σ is a negative constant. If α0>α or β0<β then σ=0, a contradiction. On the other hand, if α0=α and β0=β then the boundary conditions in (2.1) gives aσ,cσ0 and thus a=c=0, a contradiction and hence the result follows.

    Lemma 2.2. Let kL1(α,β). Then the problem

    {(ϕε(z))+γ(t)ϕε(z)=k(t)   on  (α,β),az(α)bz(α)=0, cz(β)+dz(β)=0 (2.2)

    has a unique solution zTεkC1[α,β] with

    |z|1Kϕ1ε(||k||1), (2.3)

    where the constant K is independent of k,α,β,z,ε.  In addition, the map Tε:L1(α,β)C[α,β] is completely continuous.

    Proof. Suppose first that γ0.

    By integrating, we see that the solution of (2.2) is given by

    z(t)=C1tαϕ1ε(C+sαk)ds, (2.4)

    where the constants C,C1 satisfy

    {aC1+bϕ1ε(C)=0,c(C1βαϕ1ε(C+sαk)ds)dϕ1ε(C+βαk)=0. (2.5)

    Note that (2.5) has a unique solution (C,C1) since if a=0 then C=0 and

    C1=dcϕ1ε(βαk)+βαϕ1ε(sαk)ds, (2.6)

    while if a>0 then C1=baϕ1ε(C), where C is the unique solution of

    gε(C)bcϕ1ε(C)+acβαϕ1ε(C+sαk)ds+adϕ1ε(C+βαk)=0. (2.7)

    Indeed, gε(C)>0 for C>||k||1 and gε(C)<0 for C<||k||1. Thus (2.7) has a unique solution C with |C|||k||1 since gε is continuous and increasing.

    Using the inequality (see Proposition A(ii) in Appendix)

    ϕ1ε(mx)m1q1ϕ1ε(x)

    for m1, x0, and (2.4)–(2.6), we get

    |z(t)|+|z(t)||C1|+2ϕ1ε(2||k||1)(c0+2qq1)ϕ1ε(||k||1),

    for all t[α,β],  where c0=(d/c+1) if a=0, c0=b/a if a>0, from which (2.3) follows.

    Next, we consider the general case γL1(α,β) with γ0. In view of the above, there exist z1,z2C1[α,β] satisfying

    (ϕε(z1))=|k(t)|   on  (α,β),  (ϕε(z2))=|k(t)|   on  (α,β),

    with Sturm-Liouville boundary conditions.

    By Lemma 2.1, z10z2 on (α,β), which implies

    (ϕε(z1))+γ(t)ϕε(z1)|k(t)| k(t) on (α,β)

    and

    (ϕε(z2))+γ(t)ϕε(z2)|k(t)| k(t) on (α,β),

    i.e., (z1,z2) is a pair of sub- and supersolution of (2.2) with z1z2 on (α,β). Thus (2.2) has a solution zC1[α,β] with z1zz2 on (α,β). The solution is unique due to Lemma 2.1.

    Since

    (ϕε(z))=k(t)γ(t)ϕε(z) on (α,β)

    and ||z||max(||z1||,||z2||)Kϕ1ε(||k||1) in view of (2.3) when γ=0, it follows that

    ||k(t)γ(t)ϕε(z)||1||k||1+||γ||1ϕε(K1ϕ1ε(||k||1))K2||k||1,

    where K1=max(K,1) and K2=1+Kp11||γ||1.  Here we have used Proposition A(iii) in Appendix. Consequently, it is

    |z|1Kϕ1ε(K2||k||1)KK1q12ϕ1ε(||k||1),

    where we have used Proposition A(ii) in Appendix. Thus (2.3) holds. Next, we verify that Tε is continuous. Let (kn)L1(α,β) and kL1(α,β)  be such that ||knk||10. Let un=Tεkn and u=Tεk.

    Multiplying the equation

    (ϕε(un)ϕε(u))+γ(t)(ϕε(un)ϕε(u))=knk  on (α,β)

    by unu and integrating between α and β, we obtain

    cn+βα(ϕε(un)ϕε(u))(unu)||knk||1||unu||, (2.8)

    where cn=(ϕε(un)ϕε(u)(unu)|βα0.  By [11,Lemma 30],

    (ϕε(x)ϕε(y))(xy)(|x|p2x|y|p2y)(xy)c0|xy|max(p,2) (2.9)

    for all x,yR with |x|+|y|2M,  where c0 >0 is a constant depending only on p  and M.  Applying (2.9) with x=un,y=u and note that |un|1+|u|12M, where M=Kmax(ϕ1(||kn||1),ϕ1(||k||1)), we obtain from (2.8) that

    cn+c0βα|unu|max(p,2)2M||knk||10 as n. (2.10)

    If b=0 then (unu)(α)=0 and the Mean Value Theorem implies that

    |un(t)u(t)||tα|unu||(βα|unu|max(p,2))1max(p,2)

    for t[α,β].  Hence ||unu||0 as n in view of (2.10).

    If b>0 then un(α)=abun(α),u(α)=abu(α), and since (2.9) gives

    bc0a(ab)max(p,2)|un(α)u(α)|max(p,2)(ϕε(abun(α))ϕε(abu(α)))(un(α)u(α))cn,

    it follows from the Mean Value Theorem and (2.10) that

    ||unu|||un(α)u(α)|+(βα|unu|max(p,2))1max(p,2)0

    as n. Hence Tε is continuous. Since (un) is bounded in C1[α,β], Tε is completely continuous, which completes the proof.

    Lemma 2.3. Let kL1(0,1)  with k0,  and uC1[0,1] satisfy

    {(ϕε(u))+γ(t)ϕε(u)k(t)  on (0,1),au(0)bu(0)0, cu(1)+du(1)0.

    Then there exist constants κ,C>0 independent of u,k,ε such that if ||u||Cϕ1ε(||k||1) then

    u(t)κ||u||p(t)

    for t[0,1].

    Proof. Let vC1[0,1] satisfy

    {((ϕε(v))+γ(t)ϕε(v)=k(t)   on  (0,1),av(0)bv(0)=0, cv(1)+dv(1)=0.

    By Lemma 2.2, |v|1Kϕ1ε(||k||1), where K is independent of k.   By Lemma 2.1, uv on [0,1].  Suppose ||u||>Kϕ1ε(||k||1), and ||u||=|u(τ)| for some τ[0,1]. Then u(τ)>0 because if u(τ)0 then ||u||=u(τ)v(τ)Kϕ1ε(||k||1), a contradiction. In what follows, we may increase K without mentioning if needed.

    Suppose first that τ(0,1).  Let zC1[0,τ] satisfying

    {(ϕε(z))+γ(t)ϕε(z)=k(t)   on  (0,τ),az(0)bz(0)=0,  z(τ)=||u||. (2.11)

    Note that z0 is a subsolution of (2.11) and z0+||u|| is a supersolution of (2.11), where z0 satisfies

    {(ϕε(z0))+γ(t)ϕε(z0)=k(t)   on  (0,τ),az0(0)bz0(0)=0,  z0(τ)=0,

    from which the existence of z follows. By Lemma 2.1,  uzvKϕ1ε(||k||1) on [0,τ].   Define z1(t)=z(t)+Kϕ1ε(||k||1). Then z10 on [0,1] and

    z1(0)K1ϕ1ε(||k||1),

    where K1=K if b=0 and K1=K(1+a/b) if b>0.  Indeed, if b=0 then z(0)=v(0)=0 and so  z1(0)=z(0)v(0)Kϕ1ε(||k||1), while if b>0 then z1(0)=(a/b)z(0)K(a/b)ϕ1ε(||k||1). 

    Since zz1 on (0,τ)  and  z1(0)+K1ϕ1ε(||k||1)0,  it follows upon integrating the equation

    (ϕε(z1))=γ(t)ϕε(z)+k(t) on (0,τ)

    that

    z1(t)=z1(0)+t0ϕ1ε(ϕε(z1(0))+s0(γ(ξ)ϕε(z)+k(ξ))dξ)ds
    z1(0)+t0ϕ1ε(ϕε(z1(0)+K1ϕ1ε(||k||1))+s0(γ(ξ)ϕε(z1)+k(ξ))dξ)ds
    z1(0)+t0ϕ1ε(ϕε(z1(0)+K1ϕ1ε(||k||1))+t0(γ(ξ)ϕε(z1)+k(ξ))dξ)ds
    z1(0)+ϕ1ε(ϕε(z1(0)+K1ϕ1ε(||k||1))+t0(γ(ξ)ϕε(z1)+k(ξ))dξ). (2.12)

    Applying ϕε on both sides of (2.12) and using the inequality (see Proposition A(i) in Appendix)

    ϕε(x+y)M(ϕε(x)+ϕε(y))  x,y0,

    where M=2max(p2,0),  we obtain

    ϕε(z1(t))M[ϕε(z1(0))+ϕε(z1(0)+K1ϕ1ε(||k||1))+||k||1]+Mt0γ(ξ)ϕε(z1)dξ.

    By Gronwall's inequality,

    ϕε(z1(t))M[ϕε(z1(0))+ϕε(z1(0)+K1ϕ1ε(||k||1))+||k||1]eM||γ||1

    for t[0,τ]. In particular when t=τ, we obtain

    ϕε(z1(0))+ϕε(z1(0)+K1ϕ1ε(||k||1))+||k||12K2ϕε(||u||),

    where K2=(2M)1eM||γ||1.  Since ϕε(x)+ϕε(y)2ϕε(x+y) for x,y0, this implies

    ϕε(z1(0)+z1(0)+K1ϕ1ε(||k||1))K2ϕε(||u||)||k||12K3ϕε(||u||)ϕε(K4||u||),

    where K3=K2/2<1 and K4=K1q13,  provided that ϕε(||u||)||k||1/K2 which is true if ||u||(1/K2)1q1ϕ1ε(||k||1). Consequently,

    z1(0)+z1(0)+K1ϕ1ε(||k||1)K4||u||,

    which implies

    z(0)+z(0)K4||u||(K+K1)ϕ1ε(||k||1)K5||u||, (2.13)

    where K5=K4/2,  provided that ||u||2(K+K1)K4ϕ1(||k||1).  Since

    (ϕε(z))=γ(t)ϕε(z)+k γ(t)ϕε(Kϕ1ε(||k||1)) K1p1||k||1γ(t)   on  (0,τ),

    it follows that

    ϕε(z(t))ϕε(z(0))K1p1||k||1||γ||1 (2.14)

    for t[0,τ].  If b=0 then z(0)=0 and (2.13) becomes z(0)K5||u||, from which (2.14) implies

    ϕε(z(t))ϕε(K5||u||)K1p1||γ||1||k||1ϕε(K5||u||)2ϕε(K6||u||),

    where K6=21qK5, provided that ϕε(K5||u||)2K1p1||γ||1||k||1 which is true if ||u||K15(2K1p1||γ||1)1q1ϕ1ε(||k||1). Consequently,

    z(t)K6||u|| on (0,τ),

    which implies upon integrating that

    u(t)z(t)K6||u||t  for  t[0,τ]. (2.15)

    If b>0 then z(0)=(a/b)z(0) and (2.13) becomes

    z(0)K5ba+b||u||. (2.16)

    Since z(0)0, (2.14) gives

    z(t)ϕ1ε(K1p1||γ||1||k||1)˜Kϕ1ε(||k||1)  on (0,τ),

    where ˜K=(K1p1||γ||1)1q1. This, together with (2.16), implies

    z(t)z(0)˜Kϕ1ε(||k||1)K5ba+b||u||˜Kϕ1ε(||k||1).

    Hence

    u(t)z(t)K7||u|| for t[0,τ], (2.17)

    where K7=K5b2(a+b), provided that ||u||2˜K(a+b)K5bϕ1ε(||k||1). Combining (2.15) and (2.17), we obtain

    u(t)κ0||u||t,    t[0,τ], (2.18)

    where κ0=min(K6,K7). Next, let wC1[τ,1] be the solution of

    {(ϕε(w))+γ(t)ϕε(w)=k(t)  on  (τ,1),w(τ)=||u||,  cw(1)+dw(1)=0.

    Then uw on [τ,1], and using similar arguments as above, we obtain

    u(t)κ1||u||(1t)  t[τ,1], (2.19)

    where κ1>0 is a constant independent of k, provided that ||u||>Cϕ1ε(||k||) for some large constant C independent of u.

    Combining (2.18) and (2.19), we see that Lemma 2.3 holds with κ=min(κ0,κ1).  If τ=0 then (2.19) holds on [0,1], and if τ=1 then (2.17) holds on [0,1], which completes the proof.

    Let E=C[0,1] be with the usual sup-norm.

    Proof of Theorem 1.1. Let C,κ be given by Lemma 2.3 and define σ0=κσ,h(t)=g(σ0p(t)).  For vE, g(max(v,σ0p))L1(0,1) by (A1),   and 0f(t,|v|)+γ(t)ϕε(|v|)L1(0,1) by (A2) and (A3). Let λ0 be small so that Cϕ1ε(λ||h||1)<σ. Then the problem

    {(ϕε(u))+γ(t)ϕε(u)=λg(max(v,σ0p))+f(t,|v|)+γ(t)ϕε(|v|) on (0,1),au(0)bu(0)=0, cu(1)+du(1)=0

    has a unique solution u=AεvC1[0,1] in view of Lemma 2.2. Since the operator S:EL1(0,1) defined by (Sv)(t)=λg(max(v,σ0p))+f(t,|v|)+γ(t)|v|p1 is continuous, it follows from Lemma 2.2 that Aε:EE  is completely continuous. We shall verify that

    (i) u=θAεu, θ(0,1]||u||σ.

    Let uE satisfy u=θAεu for some θ(0,1] with ||u||=σ.

    Suppose ε>0. Then    

    (ϕε(uθ))+γ(t)ϕε(uθ)=λg(max(u,σ0p(t)))+f(t,|u|)+γ(t)ϕε(|u|)

    on (0,1), which implies upon multiplying by θp1 that

    (ϕεθpq(u))+γ(t)ϕεθpq(u)=θp1(λg(max(u,σ0p(t)))+f(t,|u|)+γ(t)ϕε(|u|))λh(t)    on  (0,1). (3.1)

    Since ||u||>Cϕ1ε(λ||h||1), Lemma 2.3 gives

    u(t)κ||u||p(t)σ0p(t)>0  

    for t(0,1)  (recall that κσ=σ0).  Hence it follows from (3.1) and (A4) that

    (ϕεθpq(u))=θp1f(t,u)λθp1g(u))+θp1γ(t)ϕε(u)γ(t)ϕεθpq(u)=θp1f(t,u)λθp1g(u)+γ(t)(θp11)up1+εγ(t)(θp1θpq)uq1θp1f(t,u)θp1λ1up1 (3.2)

    on (0,1).  Multiplying (3.2) by u and integrating gives

    ϕεθpq(u(1))u(1)+ϕεθpq(u(0))u(0)+10ϕεθpq(u)uλ110up.

    Since au(0)bu(0)=0=cu(1)+du(1) and ε>0, this implies

    ϕ0(u(1))u(1)+ϕ0(u(0))u(0)+10|u|p<λ110up, (3.3)

    Consequently,

    λ1>ϕ0(u(1))u(1)+ϕ0(u(0))u(0)+10|u|p10up.

    Since λ1 is characterized by the Raleigh formula

    λ1=infvVϕ0(v(1))v(1)+ϕ0(v(0))v(0)+10|v|p10|v|p, (3.4)

    where V={uC1[0,1]:au(0)bu(0)=0=cu(1)+du(1)}, we get a contradiction.   Thus (i) holds.

    Next, suppose ε=0. Then the < inequality in (3.3) is replaced by which together with (3.4) imply

    λ1=ϕ0(u(1))u(1)+ϕ0(u(0))u(0)+10|u|p10|u|p,

    i.e., u is an eigenfunction corresponding to λ1. Hence (3.2) gives

    λ1up1θp1f(t,u)θp1λ1up1λ1up1  on (0,1),

    from which it follows that f(t,u)=λ1up1 for a.e. t(0,1). Since ||u||=σ, we get a contradiction with (A4) with ε=0. If bd=0, then u(0)=0 or u(1)=0, and since ||u||=σ, we have u[0,1]=[0,σ], we get a contradiction if f(t,z)λ1zp1 on [0,σ]  for a.e. t(0,1).  Thus (i) holds.

    Next, we verify that

    (ii) There exists a constant R>σ such that u=Aεu+ξ, ξ0||u||R.

    Let uE satisfy u=Aεu+ξ for some ξ0. Then u satisfies

    (ϕε(u))+γ(t)ϕε(uξ)=λg(max(u,σ0p(t)))+f(t,|u|)+γ(t)ϕε(|u|)  (3.5)

    on (0,1),  which implies

    (ϕε(u))+γ(t)ϕε(u)λh(t)  (3.6)

    on (0,1).  Note that

    au(0)bu(0)=aξ0,  cu(1)+du(1)=cξ0. (3.7)

    Suppose ||u||=R>σ.  Then Lemma 2.3 gives

    u(t)κ||u||p(t)κRp(t)σ0p(t) (3.8)

    for t(0,1).  Using (3.8) in (3.5), we get

    (ϕε(u))λg(u)+f(t,u)   on  (0,1). (3.9)

    Suppose ε>0 and let M>0.  Since limzf(t,z)λg(z)ϕε(z)= by (A1) and (A5), there exists a positive constant L such that

    f(t,z)λg(z)Mϕε(z) (3.10)

    for a.e. t(0,1) and z>L. By (3.8),

    u(t)κ4||u|| =κR4>L   for  t[1/4,3/4]

    for R large, from which (3.9) and (3.10) imply

    (ϕε(u))Mϕε(u)Mϕε(κ||u||4)     on  [1/4,3/4].

    Since u(1/4) and u(3/4) are positive, the comparison principle gives u˜u on [1/4,3/4], where ˜u is the solution of

    {(ϕε(˜u))=Mϕε(κ||u||4)  on (1/4,3/4),˜u(1/4)=˜u(3/4)=0.

    Let ||˜u||=˜u(τ) for some τ(1/4,3/4). If τ1/2 then we have

    ||u||˜u(5/8))=3/45/8ϕ1ε(Mϕε(κ||u||4)(sτ))ds18ϕ1ε(M8ϕε(κ||u||4)),

    while if τ>1/2,

    ||u||˜u(3/8)=3/81/4ϕ1ε(Mϕε(κ||u||4)(τs))ds18ϕ1ε(M8ϕε(κ||u||4)).

    Hence using Proposition A(iii) we see that in either case,

    ϕε(8||u||)M8ϕε(κ||u||4)ϕε((M8)1p1κ||u||4)

    i.e., ||u||κ(M/8)1p1||u||32, a contradiction if M is large enough, which proves (ii).

    Suppose next that ε=0.  Since lim infzf(t,z)λg(z)zp1>λ1 uniformly for a.e. t(0,1),  there exist positive constants L0,˜λ  with ˜λ>λ1 such that

    f(t,z)λg(z)˜λzp1 (3.11)

    for a.e. t(0,1) and all zL0. For δ1(0,1/2), let λ1,δ1 be the first eigenvalue of the problem

    {(ϕ0(v))=λ1,δ1ϕ0(v)    on  (δ1,δ2),av(δ1)bv(δ1)=0, cv(δ2)+dv(δ2)=0, (3.12)

    where δ2=1δ1. By the continuity of the first eigenvalue with respect to the domain, λ1,δ1λ1 as δ10. Hence there exits δ>0 such that λ1,δ1<˜λ  for δ1δ.   Let  δ1=δ/2, δ2=1δ/2, and μ(λ1,δ1,˜λ).  By decreasing δ if necessary, we have from (3.7) that

    aˉu(δ1)bˉu(δ1)0 if a>0,   cˉu(δ2)+dˉu(δ2)0  if c>0, (3.13)

    where ˉu=u+1.  By (3.8),

    u(t)κRδ4L0 (3.14)

    for t[δ/4,1δ/4] for R large. It follows from (3.9), (3.11) and (3.14) that

    (ϕ0(u))λg(u)+f(t,u) ˜λup1  on  [δ/4,1δ/4]. (3.15)

    By (3.6) and (3.15),

    (ϕ0(u))λh(t)γ(t)ϕ0(u)γL(t), (3.16)

    for a.e. t(0,1), where γL(t)=λh(t)+γ(t)ϕ0(L)0.  We claim that the eigenvalue problem

    {(ϕ0(v))=μϕ0(v)    on  (δ1,δ2),av(δ1)bv(δ1)=0, cv(δ2)+dv(δ2)=0 (3.17)

    has a positive solution, provided that R is large enough.

    Let ψ1 be the positive solution of (3.12) with ||ψ1||=1. Then clearly ψ1 is a subsolution of (3.17). Since (3.14) implies

    uu+1κRδ/41+κRδ/4 on [δ/4,1δ/4]

    for R large and κRδ/41+κRδ/41 as R , it follows from (3.15) that

    (ϕ0(ˉu))˜λup1=˜λˉup1(uu+1)p1μˉup1  on  (δ1,δ2), (3.18)

    for R large.

    Case 1. a,c>0.  Then ˉu is a supersolution of (3.17) in view of (3.13) and (3.18).

    Case 2. ac=0. If a=0 then (3.7) gives u(0)=0. Combining (3.14)–(3.16), we deduce that for R large,

    ϕ0(u(δ1))=δ10(ϕ0(u))δ/40γL+˜λδ/2δ/4up1>0

    i.e., u(δ1)<0.  Similarly if c=0 then u(1)=0, and

    ϕ0(u(δ2))=1δ2(ϕ0(u))11δ/4γL+˜λ1δ/41δ/2up1>0

    i.e., u(δ2)>0. Since aˉu(δ1)bˉu(δ1)>0 and cˉu(δ2)+dˉu(δ2)>0, it follows from (3.18) that ˉu is a supersolution of (3.17).

    Since ψ11ˉu on [δ1,δ2], the existence of a solution v to (3.17) with ψ1vˉu on (δ1,δ2)  follows, which is a contradiction. Thus (ii) holds. By Amann's fixed point theorem [1,Theorem 12.3], Aε has a fixed point uE with ||u||>σ. Using ξ=0 in (ii) and (3.8), we obtain u(t)σ0p(t) for t[0,1] i.e., g(max(u,σ0p(t)))=g(u) and therefore u is a positive solution of (1.1), which completes the proof.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare no conflict of interest.

    We provide here some inequalities regarding the operator ϕε.

    Proposition A.

    (i) ϕε(x+y)M(ϕε(x)+ϕε(y)) for x,y0, where M=2max(p2,0).

    (ii) ϕ1ε(mx)m1q1ϕ1ε(x) for m1,x0.

    (iii) ϕε(cx)cp1ϕε(x) for c1,x0.

    Proof. (i) Let x,y0.  Since the function zr is convex on [0,) for r1,

    (x+y2)rxr+yr2

    i.e.,

    (x+y)r2r1(xr+yr).

    On the other hand if 0<r<1, we have

    (x+y)rxr+yr.

    Hence for r>0,

    (x+y)r2max(r1,0)(xr+yr),

    which implies

    ϕε(x+y)=(x+y)p1+ε(x+y)q12max(p2,0)(xp1+yp1)+ε2max(q2,0)(xq1+yq1)2max(p2,0)(ϕε(x)+ϕε(y))

    i.e., (i) holds.

    (ii) Let z0 and c1. We claim that

    ϕε(cz)cq1ϕε(z). (A.1)

    Indeed,

    ϕε(cz)=cp1zp1+εcq1zq1cq1ϕε(z)

    i.e., (A.1) holds. Let m1,x0. Then by using (A.1) with c=m1q1 and z=ϕ1ε(x), we obtain

    ϕε(m1q1ϕ1ε(x))mϕε(ϕ1ε(x))=mx

    i.e., (ii) holds.

    (iii) Let c1 and x0. Then

    ϕε(cx)=cp1xp1+εcq1xq1cp1(xp1+εxq1)

    i.e., (iii) holds.



    [1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620–709. http://dx.doi.org/10.1137/1018114 doi: 10.1137/1018114
    [2] P. Binding, P. Drabek, Sturm-Liouville theory for the p-Laplacian, Stud. Sci. Math. Hung., 40 (2003), 375–396. http://dx.doi.org/10.1556/sscmath.40.2003.4.1 doi: 10.1556/sscmath.40.2003.4.1
    [3] K. Chu, D. Hai, Positive solutions for the one-dimensional Sturm-Liouville superlinear p-Laplacian problem, Electron. J. Differ. Eq., 2018 (2018), 1–14.
    [4] K. Chu, D. Hai, Positive solutions for the one-dimensional singular superlinear p-Laplacian, Commun. Pur. Appl. Anal., 19 (2020), 241–252. http://dx.doi.org/10.3934/cpaa.2020013 doi: 10.3934/cpaa.2020013
    [5] P. Drabek, Ranges of a -homogeneous operators and their perturbations, Časopis Pro Pěstování Matematiky, 105 (1980), 167–183. http://dx.doi.org/10.21136/CPM.1980.118058 doi: 10.21136/CPM.1980.118058
    [6] L. Erbe, H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., 120 (1994), 743–748. http://dx.doi.org/10.2307/2160465 doi: 10.2307/2160465
    [7] D. Hai, On singular Sturm-Liouville boundary-value problems, Proc. Roy. Soc. Edinb. A, 140 (2010), 49–63. http://dx.doi.org/10.1017/S0308210508000358 doi: 10.1017/S0308210508000358
    [8] H. Kaper, M. Knaap, M. Kwong, Existence theorems for second order boundary value problems, Differ. Integral Equ., 4 (1991), 543–554.
    [9] E. Lee, R. Shivaji, J. Ye, Subsolutions: a journey from positone to infinite semipositone problems, Electron. J. Differ. Eq., 17 (2009), 123–131.
    [10] R. Manásevich, F. Njoku, F. Zanolin, Positive solutions for the one-dimensional p-Laplacian, Differ. Integral Equ., 8 (1995), 213–222.
    [11] J. Tinsley Oden, Qualitative methods in nonlinear mechanics, Englewood: Prentice-Hall, 1986.
    [12] J. Webb, K. Lan, Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary vale problems of local and nonlocal types, Topol. Method. Nonl. Anal., 27 (2006), 91–115.
    [13] J. Wang, The existence of positive solutions for the one-dimensional p-Laplacian, Proc. Amer. Math. Soc., 125 (1997), 2275–2283.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1640) PDF downloads(270) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog