We study the existence of positive solutions for a class of one-dimensional superlinear $ (p, q) $ -Laplacian with Sturm-Liouville boundary conditions. We allow the reaction term to be singular at 0 with infinite semipositone behavior. Our approach depends on Amann's fixed point theorem.
Citation: Xiao Wang, D. D. Hai. On a class of one-dimensional superlinear semipositone $ (p, q) $ -Laplacian problem[J]. AIMS Mathematics, 2023, 8(11): 25740-25753. doi: 10.3934/math.20231313
We study the existence of positive solutions for a class of one-dimensional superlinear $ (p, q) $ -Laplacian with Sturm-Liouville boundary conditions. We allow the reaction term to be singular at 0 with infinite semipositone behavior. Our approach depends on Amann's fixed point theorem.
[1] | H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620–709. http://dx.doi.org/10.1137/1018114 doi: 10.1137/1018114 |
[2] | P. Binding, P. Drabek, Sturm-Liouville theory for the p-Laplacian, Stud. Sci. Math. Hung., 40 (2003), 375–396. http://dx.doi.org/10.1556/sscmath.40.2003.4.1 doi: 10.1556/sscmath.40.2003.4.1 |
[3] | K. Chu, D. Hai, Positive solutions for the one-dimensional Sturm-Liouville superlinear p-Laplacian problem, Electron. J. Differ. Eq., 2018 (2018), 1–14. |
[4] | K. Chu, D. Hai, Positive solutions for the one-dimensional singular superlinear $ p $-Laplacian, Commun. Pur. Appl. Anal., 19 (2020), 241–252. http://dx.doi.org/10.3934/cpaa.2020013 doi: 10.3934/cpaa.2020013 |
[5] | P. Drabek, Ranges of $ a $ -homogeneous operators and their perturbations, Časopis Pro Pěstování Matematiky, 105 (1980), 167–183. http://dx.doi.org/10.21136/CPM.1980.118058 doi: 10.21136/CPM.1980.118058 |
[6] | L. Erbe, H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., 120 (1994), 743–748. http://dx.doi.org/10.2307/2160465 doi: 10.2307/2160465 |
[7] | D. Hai, On singular Sturm-Liouville boundary-value problems, Proc. Roy. Soc. Edinb. A, 140 (2010), 49–63. http://dx.doi.org/10.1017/S0308210508000358 doi: 10.1017/S0308210508000358 |
[8] | H. Kaper, M. Knaap, M. Kwong, Existence theorems for second order boundary value problems, Differ. Integral Equ., 4 (1991), 543–554. |
[9] | E. Lee, R. Shivaji, J. Ye, Subsolutions: a journey from positone to infinite semipositone problems, Electron. J. Differ. Eq., 17 (2009), 123–131. |
[10] | R. Manásevich, F. Njoku, F. Zanolin, Positive solutions for the one-dimensional $ p $-Laplacian, Differ. Integral Equ., 8 (1995), 213–222. |
[11] | J. Tinsley Oden, Qualitative methods in nonlinear mechanics, Englewood: Prentice-Hall, 1986. |
[12] | J. Webb, K. Lan, Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary vale problems of local and nonlocal types, Topol. Method. Nonl. Anal., 27 (2006), 91–115. |
[13] | J. Wang, The existence of positive solutions for the one-dimensional $ p $-Laplacian, Proc. Amer. Math. Soc., 125 (1997), 2275–2283. |