Research article

On a class of one-dimensional superlinear semipositone $ (p, q) $ -Laplacian problem

  • Received: 20 June 2023 Revised: 18 August 2023 Accepted: 27 August 2023 Published: 07 September 2023
  • MSC : Primary 34B15; Secondary 34B18

  • We study the existence of positive solutions for a class of one-dimensional superlinear $ (p, q) $ -Laplacian with Sturm-Liouville boundary conditions. We allow the reaction term to be singular at 0 with infinite semipositone behavior. Our approach depends on Amann's fixed point theorem.

    Citation: Xiao Wang, D. D. Hai. On a class of one-dimensional superlinear semipositone $ (p, q) $ -Laplacian problem[J]. AIMS Mathematics, 2023, 8(11): 25740-25753. doi: 10.3934/math.20231313

    Related Papers:

  • We study the existence of positive solutions for a class of one-dimensional superlinear $ (p, q) $ -Laplacian with Sturm-Liouville boundary conditions. We allow the reaction term to be singular at 0 with infinite semipositone behavior. Our approach depends on Amann's fixed point theorem.



    加载中


    [1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620–709. http://dx.doi.org/10.1137/1018114 doi: 10.1137/1018114
    [2] P. Binding, P. Drabek, Sturm-Liouville theory for the p-Laplacian, Stud. Sci. Math. Hung., 40 (2003), 375–396. http://dx.doi.org/10.1556/sscmath.40.2003.4.1 doi: 10.1556/sscmath.40.2003.4.1
    [3] K. Chu, D. Hai, Positive solutions for the one-dimensional Sturm-Liouville superlinear p-Laplacian problem, Electron. J. Differ. Eq., 2018 (2018), 1–14.
    [4] K. Chu, D. Hai, Positive solutions for the one-dimensional singular superlinear $ p $-Laplacian, Commun. Pur. Appl. Anal., 19 (2020), 241–252. http://dx.doi.org/10.3934/cpaa.2020013 doi: 10.3934/cpaa.2020013
    [5] P. Drabek, Ranges of $ a $ -homogeneous operators and their perturbations, Časopis Pro Pěstování Matematiky, 105 (1980), 167–183. http://dx.doi.org/10.21136/CPM.1980.118058 doi: 10.21136/CPM.1980.118058
    [6] L. Erbe, H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., 120 (1994), 743–748. http://dx.doi.org/10.2307/2160465 doi: 10.2307/2160465
    [7] D. Hai, On singular Sturm-Liouville boundary-value problems, Proc. Roy. Soc. Edinb. A, 140 (2010), 49–63. http://dx.doi.org/10.1017/S0308210508000358 doi: 10.1017/S0308210508000358
    [8] H. Kaper, M. Knaap, M. Kwong, Existence theorems for second order boundary value problems, Differ. Integral Equ., 4 (1991), 543–554.
    [9] E. Lee, R. Shivaji, J. Ye, Subsolutions: a journey from positone to infinite semipositone problems, Electron. J. Differ. Eq., 17 (2009), 123–131.
    [10] R. Manásevich, F. Njoku, F. Zanolin, Positive solutions for the one-dimensional $ p $-Laplacian, Differ. Integral Equ., 8 (1995), 213–222.
    [11] J. Tinsley Oden, Qualitative methods in nonlinear mechanics, Englewood: Prentice-Hall, 1986.
    [12] J. Webb, K. Lan, Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary vale problems of local and nonlocal types, Topol. Method. Nonl. Anal., 27 (2006), 91–115.
    [13] J. Wang, The existence of positive solutions for the one-dimensional $ p $-Laplacian, Proc. Amer. Math. Soc., 125 (1997), 2275–2283.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1295) PDF downloads(263) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog