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1. Introduction

In this paper, we investigate positive solutions for the one-dimensional BVP{
−(φε(u′))′ = −λg(u) + f (t, u), t ∈ (0, 1),
au(0) − bu′(0) = 0, cu(1) + du′(1) = 0,

(1.1)

where ε ≥ 0, φε(s) = |s|p−2s + ε|s|q−2s, p > q > 1, a, b, c, d are nonnegative constants with ac + ad +

bc >0, f : (0, 1) × [0,∞)→ R, g : (0,∞)→ [0,∞), and λ is a nonnegative parameter.
For ε = 0, −(φε(u′))′ is the usual p-Laplacian while for ε > 0, the operator is referred to as the

(p, q)-Laplacian. We are focusing on the case when f (·, u) is p -superlinear, and g is allowed to exhibit
semipositone structure i.e., −g(0+) ∈ [−∞, 0). For a rich literature on semipositone problems and their
applications, see [9]. Using Amann’s Fixed Point Theorem, we shall establish here the existence of a
positive solution to (1.1) for λ ≥ 0 small when f (·, u) is p-superlinear at 0 and∞, and the superlinearity
is involved with the first eigenvalue of the p-Laplacian operator when ε = 0. Our result in the p-
Laplacian case improves previous ones in [3, 4, 8, 10, 12] (see Remark 1.1 below), while producing a
new existence criteria in the (p,q)-Laplacian case. We refer to [6, 7, 13] and the references therein for
related existence results to (1.1) in the superlinear/sublinear cases when ε = 0.
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Let λ1 be the principal eigenvalue of −(φ0(u′))′ on (0, 1) with Sturm-Liouville boundary condition
in (1.1), (see [2, 5]).

We consider the following hypotheses:
(A1) g : (0,∞)→ [0,∞) is continuous, non-increasing, and integrable near 0.
(A2) f : (0, 1) × [0,∞)→ R is a Carathéodory function, and there exists γ ∈ L1(0, 1) such that

inf
z∈(0,∞)

f (t, z)
zp−1 ≥ −γ(t),

for a.e. t ∈ (0, 1).
(A3) sup

z∈(0,c)
| f (t, z)| is integrable on (0, 1) for all c > 0.

(A4) There exists a number σ > 0 such that

f (t, z) ≤ λ1zp−1,

for z ∈ (0, σ] and a.e. t ∈ (0, 1), and in addition f (t, z) . λ1zp−1 on any subinterval of [0, σ] if ε = 0.
(A5) lim

z→∞

f (t,z)
zp−1 = ∞ if ε > 0, and lim

z→∞
inf f (t,z)

zp−1 > λ1 if ε = 0, where the limits are uniform for a.e.
t ∈ (0, 1).

Let p(t) = min(t, 1 − t). By a positive solution of (1.1), we mean a function u ∈ C1[0, 1] with
inf
(0,1)

u
p > 0 and satisfying (1.1).

Our main result is

Theorem 1.1. Let (A1)–(A5) hold. Then there exists a number λ0 > 0 such that (1.1) has a positive
solution for 0 ≤ λ < λ0.

Remark 1.1. (i) When ε = 0, the existence of a positive solution to (1.1) was established in [3, 4],
where g ≡ 0 with Sturm-Liouville condition in [3], and g(u) = u−δ, δ ∈ (0, 1) with Dirichlet boundary
condition in [4], under the assumption

lim sup
z→0+

f (t, z)
zp−1 < λ1 < lim inf

z→∞

f (t, z)
zp−1 .

The results in [3,4] provided extensions of the work in [8, 10,12]. Note that our condition (A4) allows
the case lim sup

z→0+

f (t,z)
zp−1 = λ1.

(ii) In the case bd = 0, the proof of Theorem 1.1 shows that when ε = 0, (A4) can be replaced by
the weaker condition f (t, z) ≤ λ1zp−1 and f (t, z) . λ1zp−1 on [0, σ] for a.e. t ∈ (0, 1).

Example 1.1. Let δ, ν ∈ (0, 1) with δ + ν < 1, and r > p − 1. By Theorem 1.1, the following problems
have a positive solution for λ ≥ 0 small:

(i) {
−(φε(u′))′ = − λ

uδ lnν(1+u) + λ1up−1 + ur − us, t ∈ (0, 1),
au(0) − bu′(0) = 0, cu(1) + du′(1) = 0,

where ε > 0 and r > s > p − 1. Indeed, here

f (t, z) = λ1zp−1 + zr − zs ≤ λ1zp−1 for z ≤ 1,
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i.e., (A4) holds. Since
z1−p f (t, z) = λ1 + zr−(p−1) − zs−(p−1) ≥ λ1 − 1

for z ∈ (0,∞), (A2) holds. Clearly (A1), (A3), and (A5) are satisfied.
(ii) {

−(φ0(u′))′ = − λ
uδ lnν(1+u) + λ1up−1e−uα + ur, t ∈ (0, 1),

au(0) − bu′(0) = 0, cu(1) + du′(1) = 0,
where α ∈ (0, r − p + 1). Note that (A4) with ε = 0 is equivalent to

λ1(1 − e−zα) ≥ zr−(p−1)

on [0, σ] and λ1(1 − e−zα) . zr−(p−1) on any subinterval of [0, σ] for some σ > 0. This is true since
lim
z→0+

1−e−zα

zr−p+1 = ∞. Clearly the remaining conditions are satisfied.

Note that lim sup
z→0+

f (t,z)
zp−1 = λ1 in both examples.

2. Preliminaries

Let 0 ≤ α < β ≤ 1. In what follows, γ ∈ L1(α, β) with γ ≥ 0 and we shall denote the norm in
Lq(α, β) and C1[α, β] by || · ||q and | · |1 respectively.

Lemma 2.1. Let u, v ∈ C1[α, β] satisfy{
−(φε(u′))′ + γ(t)φε(u) ≥ −(φε(v′))′ + γ(t)φε(v) a.e on (α, β),
au(α) − bu′(α) ≥ av(α) − bv′(α), cu(β) + du′(β) ≥ cv(β) + dv′(β).

(2.1)

Then u ≥ v on [α, β].

Proof. Suppose u(t0) < v(t0) for some t0 ∈ (α, β). Let I = (α0, β0) ⊂ (α, β) be the largest open interval
containing t0 such that u < v on I. Then u(α0) = v(α0) if α0 > α and u(β0) = v(β0) if β0 < β.Multiplying
the inequation in (2.1) by u − v and integrating on I gives∫

I
(φε(u′) − φε(v′))(u′ − v′) ≤ 0,

since γ ≥ 0 and −(φε(u′) − φε(v′)(u − v)|β0
α0 ≥ 0 in view of the boundary conditions at α, β. Since φε

is increasing, it follows that u′ = v′ on I and hence u = v + σ on I, where σ is a negative constant.
If α0 > α or β0 < β then σ = 0, a contradiction. On the other hand, if α0 = α and β0 = β then the
boundary conditions in (2.1) gives aσ, cσ ≥ 0 and thus a = c = 0, a contradiction and hence the result
follows. �

Lemma 2.2. Let k ∈ L1(α, β). Then the problem{
−(φε(z′))′ + γ(t)φε(z) = k(t) on (α, β),
az(α) − bz′(α) = 0, cz(β) + dz′(β) = 0

(2.2)

has a unique solution z ≡ Tεk ∈ C1[α, β] with

|z|1 ≤ Kφ−1
ε (||k||1), (2.3)

where the constant K is independent of k, α, β, z, ε. In addition, the map Tε : L1(α, β) → C[α, β] is
completely continuous.
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Proof. Suppose first that γ ≡ 0.
By integrating, we see that the solution of (2.2) is given by

z(t) = C1 −

∫ t

α

φ−1
ε

(
C +

∫ s

α

k
)

ds, (2.4)

where the constants C,C1 satisfy aC1 + bφ−1
ε (C) = 0,

c
(
C1 −

∫ β

α
φ−1
ε

(
C +

∫ s

α
k
)

ds
)
− dφ−1

ε

(
C +

∫ β

α
k
)

= 0.
(2.5)

Note that (2.5) has a unique solution (C,C1) since if a = 0 then C = 0 and

C1 =
d
c
φ−1
ε

(∫ β

α

k
)

+

∫ β

α

φ−1
ε

(∫ s

α

k
)

ds, (2.6)

while if a > 0 then C1 = −b
aφ
−1
ε (C), where C is the unique solution of

gε(C) ≡ bcφ−1
ε (C) + ac

∫ β

α

φ−1
ε

(
C +

∫ s

α

k
)

ds + adφ−1
ε

(
C +

∫ β

α

k
)

= 0. (2.7)

Indeed, gε(C) > 0 for C > ||k||1 and gε(C) < 0 for C < −||k||1. Thus (2.7) has a unique solution C with
|C| ≤ ||k||1 since gε is continuous and increasing.

Using the inequality (see Proposition A(ii) in Appendix)

φ−1
ε (mx) ≤ m

1
q−1φ−1

ε (x)

for m ≥ 1, x ≥ 0, and (2.4)–(2.6), we get

|z(t)| + |z′(t)| ≤ |C1| + 2φ−1
ε (2||k||1) ≤

(
c0 + 2

q
q−1

)
φ−1
ε (||k||1),

for all t ∈ [α, β], where c0 = (d/c + 1) if a = 0, c0 = b/a if a > 0, from which (2.3) follows.
Next, we consider the general case γ ∈ L1(α, β) with γ ≥ 0. In view of the above, there exist

z1, z2 ∈ C1[α, β] satisfying

−(φε(z′1))′ = −|k(t)| on (α, β), −(φε(z′2))′ = |k(t)| on (α, β),

with Sturm-Liouville boundary conditions.
By Lemma 2.1, z1 ≤ 0 ≤ z2 on (α, β), which implies

−(φε(z′1))′ + γ(t)φε(z1) ≤ −|k(t)| ≤ k(t) on (α, β)

and
−(φε(z′2))′ + γ(t)φε(z2) ≥ |k(t)| ≥ k(t) on (α, β),

i.e., (z1, z2) is a pair of sub- and supersolution of (2.2) with z1 ≤ z2 on (α, β). Thus (2.2) has a solution
z ∈ C1[α, β] with z1 ≤ z ≤ z2 on (α, β). The solution is unique due to Lemma 2.1.
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Since
−(φε(z′))′ = k(t) − γ(t)φε(z) on (α, β)

and ||z||∞ ≤ max(||z1||∞, ||z2||∞) ≤ Kφ−1
ε (||k||1) in view of (2.3) when γ = 0, it follows that

||k(t) − γ(t)φε(z)||1 ≤ ||k||1 + ||γ||1φε(K1φ
−1
ε (||k||1)) ≤ K2||k||1,

where K1 = max(K, 1) and K2 = 1 + K p−1
1 ||γ||1. Here we have used Proposition A(iii) in Appendix.

Consequently, it is

|z|1 ≤ Kφ−1
ε (K2||k||1) ≤ KK

1
q−1

2 φ−1
ε (||k||1),

where we have used Proposition A(ii) in Appendix. Thus (2.3) holds. Next, we verify that Tε is
continuous. Let (kn) ⊂ L1(α, β) and k ∈ L1(α, β) be such that ||kn − k||1 → 0. Let un = Tεkn and u = Tεk.

Multiplying the equation

−(φε(u′n) − φε(u′))′ + γ(t)(φε(un) − φε(u)) = kn − k on (α, β)

by un − u and integrating between α and β, we obtain

cn +

∫ β

α

(φε(u′n) − φε(u′))(u′n − u′) ≤ ||kn − k||1||un − u||∞, (2.8)

where cn = −(φε(u′n) − φε(u′)(un − u)|βα ≥ 0. By [11, Lemma 30],

(φε(x) − φε(y))(x − y) ≥ (|x|p−2x − |y|p−2y)(x − y) ≥ c0|x − y|max(p,2) (2.9)

for all x, y ∈ Rwith |x|+|y| ≤ 2M,where c0 > 0 is a constant depending only on p and M.Applying (2.9)
with x = u′n, y = u′ and note that |un|1 + |u|1 ≤ 2M, where M = K max

(
φ−1(||kn||1), φ−1(||k||1

)
), we obtain

from (2.8) that

cn + c0

∫ β

α

|u′n − u′|max(p,2) ≤ 2M||kn − k||1 → 0 as n→ ∞. (2.10)

If b = 0 then (un − u)(α) = 0 and the Mean Value Theorem implies that

|un(t) − u(t)| ≤

∣∣∣∣∣∣
∫ t

α

|u′n − u′|

∣∣∣∣∣∣ ≤
(∫ β

α

|u′n − u′|max(p,2)
) 1

max(p,2)

for t ∈ [α, β]. Hence ||un − u||∞ → 0 as n→ ∞ in view of (2.10).
If b > 0 then u′n(α) = a

bun(α), u′(α) = a
bu(α), and since (2.9) gives

bc0

a

(a
b

)max(p,2)
|un(α) − u(α)|max(p,2) ≤

(
φε

(a
b

un(α)
)
− φε

(a
b

u(α)
))

(un(α) − u(α)) ≤ cn,

it follows from the Mean Value Theorem and (2.10) that

||un − u||∞ ≤ |un(α) − u(α)| +
(∫ β

α

|u′n − u′|max(p,2)
) 1

max(p,2)

→ 0

as n → ∞. Hence Tε is continuous. Since (un) is bounded in C1[α, β], Tε is completely continuous,
which completes the proof. �
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Lemma 2.3. Let k ∈ L1(0, 1) with k ≥ 0, and u ∈ C1[0, 1] satisfy{
−(φε(u′))′ + γ(t)φε(u) ≥ −k(t) on (0, 1),
au(0) − bu′(0) ≥ 0, cu(1) + du′(1) ≥ 0.

Then there exist constants κ,C > 0 independent of u, k, ε such that if ||u||∞ ≥ Cφ−1
ε (||k||1) then

u(t) ≥ κ||u||∞p(t)

for t ∈ [0, 1].

Proof. Let v ∈ C1[0, 1] satisfy{
−((φε(v′))′ + γ(t)φε(v) = −k(t) on (0, 1),
av(0) − bv′(0) = 0, cv(1) + dv′(1) = 0.

By Lemma 2.2, |v|1 ≤ Kφ−1
ε (||k||1), where K is independent of k. By Lemma 2.1, u ≥ v

on [0, 1]. Suppose ||u||∞ > Kφ−1
ε (||k||1) , and ||u||∞ = |u(τ)| for some τ ∈ [0, 1]. Then u(τ) > 0 because if

u(τ) ≤ 0 then ||u||∞ = −u(τ) ≤ −v(τ) ≤ Kφ−1
ε (||k||1) , a contradiction. In what follows, we may increase

K without mentioning if needed.
Suppose first that τ ∈ (0, 1). Let z ∈ C1[0, τ] satisfying{

−(φε(z′))′ + γ(t)φε(z) = −k(t) on (0, τ),
az(0) − bz′(0) = 0, z(τ) = ||u||∞.

(2.11)

Note that z0 is a subsolution of (2.11) and z0 + ||u||∞ is a supersolution of (2.11), where z0 satisfies{
−(φε(z′0))′ + γ(t)φε(z0) = −k(t) on (0, τ),
az0(0) − bz′0(0) = 0, z0(τ) = 0,

from which the existence of z follows. By Lemma 2.1, u ≥ z ≥ v ≥ −Kφ−1
ε (||k||1) on [0, τ]. Define

z1(t) = z(t) + Kφ−1
ε (||k||1). Then z1 ≥ 0 on [0, 1] and

z′1(0) ≥ −K1φ
−1
ε (||k||1),

where K1 = K if b = 0 and K1 = K(1 + a/b) if b > 0. Indeed, if b = 0 then z(0) = v(0) = 0 and
so z′1(0) = z′(0) ≥ v′(0) ≥ −Kφ−1

ε (||k||1), while if b > 0 then z′1(0) = (a/b)z(0) ≥ −K(a/b)φ−1
ε (||k||1).

Since z ≤ z1 on (0, τ) and z′1(0) + K1φ
−1
ε (||k||1) ≥ 0, it follows upon integrating the equation

(φε(z′1))′ = γ(t)φε(z) + k(t) on (0, τ)

that

z1(t) = z1(0) +

∫ t

0
φ−1
ε

(
φε(z′1(0)) +

∫ s

0
(γ(ξ)φε(z) + k(ξ))dξ

)
ds

≤ z1(0) +

∫ t

0
φ−1
ε

(
φε(z′1(0) + K1φ

−1
ε (||k||1)) +

∫ s

0
(γ(ξ)φε(z1) + k(ξ))dξ

)
ds

≤ z1(0) +

∫ t

0
φ−1
ε

(
φε(z′1(0) + K1φ

−1
ε (||k||1)) +

∫ t

0
(γ(ξ)φε(z1) + k(ξ))dξ

)
ds

AIMS Mathematics Volume 8, Issue 11, 25740–25753.



25746

≤ z1(0) + φ−1
ε

(
φε(z′1(0) + K1φ

−1
ε (||k||1)) +

∫ t

0
(γ(ξ)φε(z1) + k(ξ))dξ

)
. (2.12)

Applying φε on both sides of (2.12) and using the inequality (see Proposition A(i) in Appendix)

φε(x + y) ≤ M(φε(x) + φε(y)) ∀x, y ≥ 0,

where M = 2max(p−2,0), we obtain

φε(z1(t)) ≤ M[φε(z1(0)) + φε(z′1(0) + K1φ
−1
ε (||k||1)) + ||k||1] + M

∫ t

0
γ(ξ)φε(z1)dξ.

By Gronwall’s inequality,

φε(z1(t)) ≤ M[φε(z1(0)) + φε(z′1(0) + K1φ
−1
ε (||k||1)) + ||k||1]eM||γ||1

for t ∈ [0, τ]. In particular when t = τ, we obtain

φε(z1(0)) + φε(z′1(0) + K1φ
−1
ε (||k||1)) + ||k||1 ≥ 2K2φε(||u||∞),

where K2 = (2M)−1e−M||γ||1 . Since φε(x) + φε(y) ≤ 2φε(x + y) for x, y ≥ 0, this implies

φε(z1(0) + z′1(0) + K1φ
−1
ε (||k||1)) ≥ K2φε(||u||∞) −

||k||1
2
≥ K3φε(||u||∞) ≥ φε (K4||u||∞) ,

where K3 = K2/2 < 1 and K4 = K
1

q−1

3 , provided that φε(||u||∞) ≥ ||k||1/K2 which is true if ||u||∞ ≥
(1/K2)

1
q−1φ−1

ε (||k||1). Consequently,

z1(0) + z′1(0) + K1φ
−1
ε (||k||1) ≥ K4||u||∞,

which implies
z(0) + z′(0) ≥ K4||u||∞ − (K + K1)φ−1

ε (||k||1) ≥ K5||u||∞, (2.13)

where K5 = K4/2, provided that ||u||∞ ≥
2(K+K1)

K4
φ−1(||k||1). Since

(φε(z′))′ = γ(t)φε(z) + k ≥ −γ(t)φε(Kφ−1
ε (||k||1)) ≥ −K

1
p−1 ||k||1γ(t) on (0, τ),

it follows that
φε(z′(t)) ≥ φε(z′(0)) − K

1
p−1 ||k||1||γ||1 (2.14)

for t ∈ [0, τ]. If b = 0 then z(0) = 0 and (2.13) becomes z′(0) ≥ K5||u||∞, from which (2.14) implies

φε(z′(t)) ≥ φε(K5||u||∞) − K
1

p−1 ||γ||1||k||1 ≥
φε(K5||u||∞)

2
≥ φε(K6||u||∞),

where K6 = 21−qK5, provided that φε(K5||u||∞) ≥ 2K
1

p−1 ||γ||1||k||1 which is true if ||u||∞ ≥

K−1
5

(
2K

1
p−1 ||γ||1

) 1
q−1
φ−1
ε (||k||1). Consequently,

z′(t) ≥ K6||u||∞ on (0, τ),
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which implies upon integrating that

u(t) ≥ z(t) ≥ K6||u||∞t for t ∈ [0, τ]. (2.15)

If b > 0 then z′(0) = (a/b)z(0) and (2.13) becomes

z(0) ≥
K5b

a + b
||u||∞. (2.16)

Since z′(0) ≥ 0, (2.14) gives

z′(t) ≥ −φ−1
ε

(
K

1
p−1 ||γ||1||k||1

)
≥ −K̃φ−1

ε (||k||1) on (0, τ),

where K̃ =
(
K

1
p−1 ||γ||1

) 1
q−1
. This, together with (2.16), implies

z(t) ≥ z(0) − K̃φ−1
ε (||k||1) ≥

K5b
a + b

||u||∞ − K̃φ−1
ε (||k||1).

Hence
u(t) ≥ z(t) ≥ K7||u||∞ for t ∈ [0, τ], (2.17)

where K7 =
K5b

2(a+b) , provided that ||u||∞ ≥
2K̃(a+b)

K5b φ−1
ε (||k||1).

Combining (2.15) and (2.17), we obtain

u(t) ≥ κ0||u||∞t, ∀t ∈ [0, τ], (2.18)

where κ0 = min(K6,K7).
Next, let w ∈ C1[τ, 1] be the solution of{

−(φε(w′))′ + γ(t)φε(w) = −k(t) on (τ, 1),
w(τ) = ||u||∞, cw(1) + dw′(1) = 0.

Then u ≥ w on [τ, 1], and using similar arguments as above, we obtain

u(t) ≥ κ1||u||∞(1 − t) ∀t ∈ [τ, 1], (2.19)

where κ1 > 0 is a constant independent of k, provided that ||u||∞ > Cφ−1
ε (||k||) for some large constant C

independent of u.
Combining (2.18) and (2.19), we see that Lemma 2.3 holds with κ = min(κ0, κ1). If τ = 0 then (2.19)

holds on [0, 1], and if τ = 1 then (2.17) holds on [0, 1], which completes the proof. �

3. Proof of the main result

Let E = C[0, 1] be with the usual sup-norm.

Proof of Theorem 1.1. Let C, κ be given by Lemma 2.3 and define σ0 = κσ, h(t) = g(σ0 p(t)). For
v ∈ E, g(max(v, σ0 p)) ∈ L1(0, 1) by (A1), and 0 ≤ f (t, |v|) + γ(t)φε(|v|) ∈ L1(0, 1) by (A2) and (A3).
Let λ ≥ 0 be small so that Cφ−1

ε (λ||h||1) < σ. Then the problem{
−(φε(u′))′ + γ(t)φε(u) = −λg(max(v, σ0 p)) + f (t, |v|) + γ(t)φε(|v|) on (0, 1),
au(0) − bu′(0) = 0, cu(1) + du′(1) = 0
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has a unique solution u = Aεv ∈ C1[0, 1] in view of Lemma 2.2. Since the operator S : E → L1(0, 1)
defined by (S v)(t) = −λg(max(v, σ0 p)) + f (t, |v|) + γ(t)|v|p−1 is continuous, it follows from Lemma 2.2
that Aε : E → E is completely continuous. We shall verify that
(i) u = θAεu, θ ∈ (0, 1] =⇒ ||u||∞ , σ.

Let u ∈ E satisfy u = θAεu for some θ ∈ (0, 1] with ||u||∞ = σ.

Suppose ε > 0. Then

−

(
φε

(
u′

θ

))′
+ γ(t)φε

(u
θ

)
= −λg(max(u, σ0 p(t))) + f (t, |u|) + γ(t)φε(|u|)

on (0, 1), which implies upon multiplying by θp−1 that

−(φεθp−q(u′))′ + γ(t)φεθp−q(u) = θp−1(−λg(max(u, σ0 p(t))) + f (t, |u|) + γ(t)φε(|u|))
≥ −λh(t) on (0, 1).

(3.1)

Since ||u||∞ > Cφ−1
ε (λ||h||1), Lemma 2.3 gives

u(t) ≥ κ||u||∞p(t) ≥ σ0 p(t) > 0

for t ∈ (0, 1) (recall that κσ = σ0). Hence it follows from (3.1) and (A4) that

− (φεθp−q(u′))′ = θp−1 f (t, u) − λθp−1g(u)) + θp−1γ(t)φε(u) − γ(t)φεθp−q(u)
=θp−1 f (t, u) − λθp−1g(u) + γ(t)(θp−1 − 1)up−1 + εγ(t)(θp−1 − θp−q)uq−1

≤θp−1 f (t, u) ≤ θp−1λ1up−1

(3.2)

on (0, 1). Multiplying (3.2) by u and integrating gives

−φεθp−q(u′(1))u(1) + φεθp−q(u′(0))u(0) +

∫ 1

0
φεθp−q(u′)u′ ≤ λ1

∫ 1

0
up.

Since au(0) − bu′(0) = 0 = cu(1) + du′(1) and ε > 0, this implies

− φ0(u′(1))u(1) + φ0(u′(0))u(0) +

∫ 1

0
|u′|p < λ1

∫ 1

0
up, (3.3)

Consequently,

λ1 >
−φ0(u′(1))u(1) + φ0(u′(0))u(0) +

∫ 1

0
|u′|p∫ 1

0
up

.

Since λ1 is characterized by the Raleigh formula

λ1 = inf
v∈V

−φ0(v′(1))v(1) + φ0(v′(0))v(0) +
∫ 1

0
|v′|p∫ 1

0
|v|p

, (3.4)

where V = {u ∈ C1[0, 1] : au(0)− bu′(0) = 0 = cu(1) + du′(1)}, we get a contradiction. Thus (i) holds.
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Next, suppose ε = 0. Then the < inequality in (3.3) is replaced by ≤ , which together with (3.4)
imply

λ1 =
−φ0(u′(1))u(1) + φ0(u′(0))u(0) +

∫ 1

0
|u′|p∫ 1

0
|u|p

,

i.e., u is an eigenfunction corresponding to λ1. Hence (3.2) gives

λ1up−1 ≤ θp−1 f (t, u) ≤ θp−1λ1up−1 ≤ λ1up−1 on (0, 1),

from which it follows that f (t, u) = λ1up−1 for a.e. t ∈ (0, 1). Since ||u||∞ = σ, we get a contradiction
with (A4) with ε = 0. If bd = 0, then u(0) = 0 or u(1) = 0, and since ||u||∞ = σ,we have u[0, 1] = [0, σ],
we get a contradiction if f (t, z) . λ1zp−1 on [0, σ] for a.e. t ∈ (0, 1). Thus (i) holds.

Next, we verify that
(ii) There exists a constant R > σ such that u = Aεu + ξ, ξ ≥ 0 =⇒ ||u||∞ , R.

Let u ∈ E satisfy u = Aεu + ξ for some ξ ≥ 0. Then u satisfies

− (φε(u′))′ + γ(t)φε(u − ξ) = −λg(max(u, σ0 p(t))) + f (t, |u|) + γ(t)φε(|u|) (3.5)

on (0, 1), which implies
− (φε(u′))′ + γ(t)φε(u) ≥ −λh(t) (3.6)

on (0, 1). Note that
au(0) − bu′(0) = aξ ≥ 0, cu(1) + du′(1) = cξ ≥ 0. (3.7)

Suppose ||u||∞ = R > σ. Then Lemma 2.3 gives

u(t) ≥ κ||u||∞p(t) ≥ κRp(t) ≥ σ0 p(t) (3.8)

for t ∈ (0, 1). Using (3.8) in (3.5), we get

− (φε(u′))′ ≥ −λg(u) + f (t, u) on (0, 1). (3.9)

Suppose ε > 0 and let M > 0. Since lim
z→∞

f (t,z)−λg(z)
φε(z) = ∞ by (A1) and (A5), there exists a positive

constant L such that
f (t, z) − λg(z) ≥ Mφε(z) (3.10)

for a.e. t ∈ (0, 1) and z > L. By (3.8),

u(t) ≥
κ

4
||u||∞ =

κR
4
> L for t ∈ [1/4, 3/4]

for R large, from which (3.9) and (3.10) imply

−(φε(u′))′ ≥ Mφε(u) ≥ Mφε

(
κ||u||∞

4

)
on [1/4, 3/4].

Since u(1/4) and u(3/4) are positive, the comparison principle gives u ≥ ũ on [1/4, 3/4], where ũ is
the solution of  −(φε(ũ′))′ = Mφε

(
κ||u||∞

4

)
on (1/4, 3/4),

ũ(1/4) = ũ(3/4) = 0.

AIMS Mathematics Volume 8, Issue 11, 25740–25753.



25750

Let ||ũ||∞ = ũ(τ) for some τ ∈ (1/4, 3/4). If τ ≤ 1/2 then we have

||u||∞ ≥ ũ(5/8)) =

∫ 3/4

5/8
φ−1
ε

(
Mφε

(
κ||u||∞

4

)
(s − τ)

)
ds ≥

1
8
φ−1
ε

(
M
8
φε

(
κ||u||∞

4

))
,

while if τ > 1/2,

||u||∞ ≥ ũ(3/8) =

∫ 3/8

1/4
φ−1
ε

(
Mφε

(
κ||u||∞

4

)
(τ − s)

)
ds ≥

1
8
φ−1
ε

(
M
8
φε

(
κ||u||∞

4

))
.

Hence using Proposition A(iii) we see that in either case,

φε(8||u||∞) ≥
M
8
φε

(
κ||u||∞

4

)
≥ φε

(M
8

) 1
p−1 κ||u||∞

4


i.e., ||u||∞ ≥

κ(M/8)
1

p−1 ||u||∞
32 , a contradiction if M is large enough, which proves (ii).

Suppose next that ε = 0. Since lim inf
z→∞

f (t,z)−λg(z)
zp−1 > λ1 uniformly for a.e. t ∈ (0, 1), there exist positive

constants L0, λ̃ with λ̃ > λ1 such that

f (t, z) − λg(z) ≥ λ̃zp−1 (3.11)

for a.e. t ∈ (0, 1) and all z ≥ L0. For δ1 ∈ (0, 1/2), let λ1,δ1 be the first eigenvalue of the problem{
−(φ0(v′))′ = λ1,δ1φ0(v) on (δ1, δ2),
av(δ1) − bv′(δ1) = 0, cv(δ2) + dv′(δ2) = 0,

(3.12)

where δ2 = 1 − δ1. By the continuity of the first eigenvalue with respect to the domain, λ1,δ1 → λ1 as
δ1 → 0. Hence there exits δ > 0 such that λ1,δ1 < λ̃ for δ1 ≤ δ.

Let δ1 = δ/2, δ2 = 1 − δ/2, and µ ∈ (λ1,δ1 , λ̃). By decreasing δ if necessary, we have from (3.7) that

aū(δ1) − bū′(δ1) ≥ 0 if a > 0, cū(δ2) + dū′(δ2) ≥ 0 if c > 0, (3.13)

where ū = u + 1. By (3.8),

u(t) ≥
κRδ

4
≥ L0 (3.14)

for t ∈ [δ/4, 1 − δ/4] for R large. It follows from (3.9), (3.11) and (3.14) that

− (φ0(u′))′ ≥ −λg(u) + f (t, u) ≥ λ̃up−1 on [δ/4, 1 − δ/4]. (3.15)

By (3.6) and (3.15),
− (φ0(u′))′ ≥ −λh(t) − γ(t)φ0(u) ≥ −γL(t), (3.16)

for a.e. t ∈ (0, 1), where γL(t) = λh(t) + γ(t)φ0(L) ≥ 0. We claim that the eigenvalue problem{
−(φ0(v′))′ = µφ0(v) on (δ1, δ2),
av(δ1) − bv′(δ1) = 0, cv(δ2) + dv′(δ2) = 0

(3.17)

has a positive solution, provided that R is large enough.
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Let ψ1 be the positive solution of (3.12) with ||ψ1||∞ = 1. Then clearly ψ1 is a subsolution of (3.17).
Since (3.14) implies

u
u + 1

≥
κRδ/4

1 + κRδ/4
on [δ/4, 1 − δ/4]

for R large and κRδ/4
1+κRδ/4 → 1 as R→ ∞ , it follows from (3.15) that

− (φ0(ū′))′ ≥ λ̃up−1 = λ̃ūp−1
( u
u + 1

)p−1
≥ µūp−1 on (δ1, δ2), (3.18)

for R large.

Case 1. a, c > 0. Then ū is a supersolution of (3.17) in view of (3.13) and (3.18).

Case 2. ac = 0. If a = 0 then (3.7) gives u′(0) = 0. Combining (3.14)–(3.16), we deduce that for R
large,

−φ0(u′(δ1)) = −

∫ δ1

0
(φ0(u′))′ ≥ −

∫ δ/4

0
γL + λ̃

∫ δ/2

δ/4
up−1 > 0

i.e., u′(δ1) < 0. Similarly if c = 0 then u′(1) = 0, and

φ0(u′(δ2)) = −

∫ 1

δ2

(φ0(u′))′ ≥ −
∫ 1

1−δ/4
γL + λ̃

∫ 1−δ/4

1−δ/2
up−1 > 0

i.e., u′(δ2) > 0. Since aū(δ1) − bū′(δ1) > 0 and cū(δ2) + dū′(δ2) > 0, it follows from (3.18) that ū is a
supersolution of (3.17).

Since ψ1 ≤ 1 ≤ ū on [δ1, δ2], the existence of a solution v to (3.17) with ψ1 ≤ v ≤ ū on
(δ1, δ2) follows, which is a contradiction. Thus (ii) holds. By Amann’s fixed point theorem [1,
Theorem 12.3] , Aε has a fixed point u ∈ E with ||u||∞ > σ. Using ξ = 0 in (ii) and (3.8), we obtain
u(t) ≥ σ0 p(t) for t ∈ [0, 1] i.e., g(max(u, σ0 p(t))) = g(u) and therefore u is a positive solution of (1.1),
which completes the proof. �
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Appendix A

We provide here some inequalities regarding the operator φε.

Proposition A.
(i) φε(x + y) ≤ M(φε(x) + φε(y)) for x, y ≥ 0, where M = 2max(p−2,0).

(ii) φ−1
ε (mx) ≤ m

1
q−1φ−1

ε (x) for m ≥ 1, x ≥ 0.
(iii) φε(cx) ≤ cp−1φε(x) for c ≥ 1, x ≥ 0.

Proof. (i) Let x, y ≥ 0. Since the function zr is convex on [0,∞) for r ≥ 1,( x + y
2

)r
≤

xr + yr

2

i.e.,
(x + y)r ≤ 2r−1(xr + yr).

On the other hand if 0 < r < 1, we have

(x + y)r ≤ xr + yr.
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Hence for r > 0,
(x + y)r ≤ 2max(r−1,0)(xr + yr),

which implies

φε(x + y) = (x + y)p−1 + ε(x + y)q−1

≤ 2max(p−2,0)(xp−1 + yp−1) + ε2max(q−2,0)(xq−1 + yq−1)
≤ 2max(p−2,0)(φε(x) + φε(y))

i.e., (i) holds.

(ii) Let z ≥ 0 and c ≥ 1. We claim that

φε(cz) ≥ cq−1φε(z). (A.1)

Indeed,
φε(cz) = cp−1zp−1 + εcq−1zq−1 ≥ cq−1φε(z)

i.e., (A.1) holds. Let m ≥ 1, x ≥ 0. Then by using (A.1) with c = m
1

q−1 and z = φ−1
ε (x), we obtain

φε
(
m

1
q−1φ−1

ε (x)
)
≥ mφε(φ−1

ε (x)) = mx

i.e., (ii) holds.
(iii) Let c ≥ 1 and x ≥ 0. Then

φε(cx) = cp−1xp−1 + εcq−1xq−1 ≤ cp−1(xp−1 + εxq−1)

i.e., (iii) holds. �
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