Research article

On a class of one-dimensional superlinear semipositone (p, q)-Laplacian problem

Xiao Wang ${ }^{1}$ and D. D. Hai ${ }^{2, *}$
${ }^{1}$ Institute of Applied System Analysis Jiangsu University, Zhenjiang, Jiangsu 212013, China
${ }^{2}$ Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762
* Correspondence: Email: dang @ math.msstate.edu.

Abstract

We study the existence of positive solutions for a class of one-dimensional superlinear (p, q)-Laplacian with Sturm-Liouville boundary conditions. We allow the reaction term to be singular at 0 with infinite semipositone behavior. Our approach depends on Amann's fixed point theorem.

Keywords: (p,q)-Laplacian; superlinear; positive solutions
Mathematics Subject Classification: Primary 34B15; Secondary 34B18

1. Introduction

In this paper, we investigate positive solutions for the one-dimensional BVP

$$
\left\{\begin{array}{l}
-\left(\phi_{\varepsilon}\left(u^{\prime}\right)\right)^{\prime}=-\lambda g(u)+f(t, u), t \in(0,1), \tag{1.1}\\
a u(0)-b u^{\prime}(0)=0, c u(1)+d u^{\prime}(1)=0,
\end{array}\right.
$$

where $\varepsilon \geq 0, \phi_{\varepsilon}(s)=|s|^{p-2} s+\varepsilon|s|^{q-2} s, p>q>1, a, b, c, d$ are nonnegative constants with $a c+a d+$ $b c>0, f:(0,1) \times[0, \infty) \rightarrow \mathbb{R}, g:(0, \infty) \rightarrow[0, \infty)$, and λ is a nonnegative parameter.

For $\varepsilon=0,-\left(\phi_{\varepsilon}\left(u^{\prime}\right)\right)^{\prime}$ is the usual p-Laplacian while for $\varepsilon>0$, the operator is referred to as the (p, q)-Laplacian. We are focusing on the case when $f(\cdot, u)$ is p-superlinear, and g is allowed to exhibit semipositone structure i.e., $-g\left(0^{+}\right) \in[-\infty, 0)$. For a rich literature on semipositone problems and their applications, see [9]. Using Amann's Fixed Point Theorem, we shall establish here the existence of a positive solution to (1.1) for $\lambda \geq 0$ small when $f(\cdot, u)$ is p-superlinear at 0 and ∞, and the superlinearity is involved with the first eigenvalue of the p-Laplacian operator when $\varepsilon=0$. Our result in the p Laplacian case improves previous ones in $[3,4,8,10,12]$ (see Remark 1.1 below), while producing a new existence criteria in the (p,q)-Laplacian case. We refer to $[6,7,13]$ and the references therein for related existence results to (1.1) in the superlinear/sublinear cases when $\varepsilon=0$.

Let λ_{1} be the principal eigenvalue of $-\left(\phi_{0}\left(u^{\prime}\right)\right)^{\prime}$ on $(0,1)$ with Sturm-Liouville boundary condition in (1.1), (see [2,5]).

We consider the following hypotheses:
(A1) $g:(0, \infty) \rightarrow[0, \infty)$ is continuous, non-increasing, and integrable near 0 .
(A2) $f:(0,1) \times[0, \infty) \rightarrow \mathbb{R}$ is a Carathéodory function, and there exists $\gamma \in L^{1}(0,1)$ such that

$$
\inf _{z \in(0, \infty)} \frac{f(t, z)}{z^{p-1}} \geq-\gamma(t)
$$

for a.e. $t \in(0,1)$.
(A3) $\sup _{z \in(0, c)}|f(t, z)|$ is integrable on $(0,1)$ for all $c>0$.
(A4) There exists a number $\sigma>0$ such that

$$
f(t, z) \leq \lambda_{1} z^{p-1}
$$

for $z \in(0, \sigma]$ and a.e. $t \in(0,1)$, and in addition $f(t, z) \not \equiv \lambda_{1} z^{p-1}$ on any subinterval of $[0, \sigma]$ if $\varepsilon=0$.
(A5) $\lim _{z \rightarrow \infty} \frac{f(t, z)}{z^{p-1}}=\infty$ if $\varepsilon>0$, and $\lim _{z \rightarrow \infty} \inf \frac{f(t, z)}{z^{p-1}}>\lambda_{1}$ if $\varepsilon=0$, where the limits are uniform for a.e. $t \in(0,1)$.

Let $p(t)=\min (t, 1-t)$. By a positive solution of (1.1), we mean a function $u \in C^{1}[0,1]$ with $\inf _{(0,1)} \frac{u}{p}>0$ and satisfying (1.1).

Our main result is
Theorem 1.1. Let (A1)-(A5) hold. Then there exists a number $\lambda_{0}>0$ such that (1.1) has a positive solution for $0 \leq \lambda<\lambda_{0}$.

Remark 1.1. (i) When $\varepsilon=0$, the existence of a positive solution to (1.1) was established in [3, 4], where $g \equiv 0$ with Sturm-Liouville condition in [3], and $g(u)=u^{-\delta}, \delta \in(0,1)$ with Dirichlet boundary condition in [4], under the assumption

$$
\limsup _{z \rightarrow 0^{+}} \frac{f(t, z)}{z^{p-1}}<\lambda_{1}<\liminf _{z \rightarrow \infty} \frac{f(t, z)}{z^{p-1}}
$$

The results in [3, 4] provided extensions of the work in [8, 10, 12]. Note that our condition (A4) allows the case $\limsup _{z \rightarrow 0^{+}} \frac{f(t, z)}{z^{p-1}}=\lambda_{1}$.
(ii) In the case $b d=0$, the proof of Theorem 1.1 shows that when $\varepsilon=0,(A 4)$ can be replaced by the weaker condition $f(t, z) \leq \lambda_{1} z^{p-1}$ and $f(t, z) \not \equiv \lambda_{1} z^{p-1}$ on $[0, \sigma]$ for a.e. $t \in(0,1)$.

Example 1.1. Let $\delta, v \in(0,1)$ with $\delta+v<1$, and $r>p-1$. By Theorem 1.1, the following problems have a positive solution for $\lambda \geq 0$ small:
(i)

$$
\left\{\begin{array}{l}
-\left(\phi_{\varepsilon}\left(u^{\prime}\right)\right)^{\prime}=-\frac{\lambda}{u^{\delta} \ln ^{\prime}(1+u)}+\lambda_{1} u^{p-1}+u^{r}-u^{s}, t \in(0,1), \\
a u(0)-b u^{\prime}(0)=0, c u(1)+d u^{\prime}(1)=0,
\end{array}\right.
$$

where $\varepsilon>0$ and $r>s>p-1$. Indeed, here

$$
f(t, z)=\lambda_{1} z^{p-1}+z^{r}-z^{s} \leq \lambda_{1} z^{p-1} \text { for } z \leq 1,
$$

i.e., (A4) holds. Since

$$
z^{1-p} f(t, z)=\lambda_{1}+z^{r-(p-1)}-z^{s-(p-1)} \geq \lambda_{1}-1
$$

for $z \in(0, \infty)$, (A2) holds. Clearly (A1), (A3), and (A5) are satisfied.
(ii)

$$
\left\{\begin{array}{l}
-\left(\phi_{0}\left(u^{\prime}\right)\right)^{\prime}=-\frac{\lambda}{u^{\circ} \ln ^{\nu}(1+u)}+\lambda_{1} u^{p-1} e^{-u^{\alpha}}+u^{r}, t \in(0,1) \\
a u(0)-b u^{\prime}(0)=0, c u(1)+d u^{\prime}(1)=0
\end{array}\right.
$$

where $\alpha \in(0, r-p+1)$. Note that (A4) with $\varepsilon=0$ is equivalent to

$$
\lambda_{1}\left(1-e^{-z^{\alpha}}\right) \geq z^{r-(p-1)}
$$

on $[0, \sigma]$ and $\lambda_{1}\left(1-e^{-z^{\alpha}}\right) \not \equiv z^{r-(p-1)}$ on any subinterval of $[0, \sigma]$ for some $\sigma>0$. This is true since $\lim _{z \rightarrow 0^{+}} \frac{1-e^{-z^{\alpha}}}{z^{r-p+1}}=\infty$. Clearly the remaining conditions are satisfied.

Note that $\limsup _{z \rightarrow 0^{+}} \frac{f(t, z)}{z^{p-1}}=\lambda_{1}$ in both examples.

2. Preliminaries

Let $0 \leq \alpha<\beta \leq 1$. In what follows, $\gamma \in L^{1}(\alpha, \beta)$ with $\gamma \geq 0$ and we shall denote the norm in $L^{q}(\alpha, \beta)$ and $C^{1}[\alpha, \beta]$ by $\|\cdot\|_{q}$ and $|\cdot|_{1}$ respectively.
Lemma 2.1. Let $u, v \in C^{1}[\alpha, \beta]$ satisfy

$$
\left\{\begin{array}{l}
-\left(\phi_{\varepsilon}\left(u^{\prime}\right)\right)^{\prime}+\gamma(t) \phi_{\varepsilon}(u) \geq-\left(\phi_{\varepsilon}\left(v^{\prime}\right)\right)^{\prime}+\gamma(t) \phi_{\varepsilon}(v) \quad \text { a.e on }(\alpha, \beta), \tag{2.1}\\
a u(\alpha)-b u^{\prime}(\alpha) \geq a v(\alpha)-b v^{\prime}(\alpha), c u(\beta)+d u^{\prime}(\beta) \geq c v(\beta)+d v^{\prime}(\beta) .
\end{array}\right.
$$

Then $u \geq v$ on $[\alpha, \beta]$.
Proof. Suppose $u\left(t_{0}\right)<v\left(t_{0}\right)$ for some $t_{0} \in(\alpha, \beta)$. Let $I=\left(\alpha_{0}, \beta_{0}\right) \subset(\alpha, \beta)$ be the largest open interval containing t_{0} such that $u<v$ on I. Then $u\left(\alpha_{0}\right)=v\left(\alpha_{0}\right)$ if $\alpha_{0}>\alpha$ and $u\left(\beta_{0}\right)=v\left(\beta_{0}\right)$ if $\beta_{0}<\beta$. Multiplying the inequation in (2.1) by $u-v$ and integrating on I gives

$$
\int_{I}\left(\phi_{\varepsilon}\left(u^{\prime}\right)-\phi_{\varepsilon}\left(v^{\prime}\right)\right)\left(u^{\prime}-v^{\prime}\right) \leq 0
$$

since $\gamma \geq 0$ and $-\left(\phi_{\varepsilon}\left(u^{\prime}\right)-\left.\phi_{\varepsilon}\left(v^{\prime}\right)(u-v)\right|_{\alpha_{0}} ^{\beta_{0}} \geq 0 \quad\right.$ in view of the boundary conditions at α, β. Since ϕ_{ε} is increasing, it follows that $u^{\prime}=v^{\prime}$ on I and hence $u=v+\sigma$ on I, where σ is a negative constant. If $\alpha_{0}>\alpha$ or $\beta_{0}<\beta$ then $\sigma=0$, a contradiction. On the other hand, if $\alpha_{0}=\alpha$ and $\beta_{0}=\beta$ then the boundary conditions in (2.1) gives $a \sigma, c \sigma \geq 0$ and thus $a=c=0$, a contradiction and hence the result follows.

Lemma 2.2. Let $k \in L^{1}(\alpha, \beta)$. Then the problem

$$
\left\{\begin{array}{l}
-\left(\phi_{\varepsilon}\left(z^{\prime}\right)\right)^{\prime}+\gamma(t) \phi_{\varepsilon}(z)=k(t) \text { on }(\alpha, \beta), \tag{2.2}\\
a z(\alpha)-b z^{\prime}(\alpha)=0, c z(\beta)+d z^{\prime}(\beta)=0
\end{array}\right.
$$

has a unique solution $z \equiv T_{\varepsilon} k \in C^{1}[\alpha, \beta]$ with

$$
\begin{equation*}
|z|_{1} \leq K \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right), \tag{2.3}
\end{equation*}
$$

where the constant K is independent of $k, \alpha, \beta, z, \varepsilon$. In addition, the map $T_{\varepsilon}: L^{1}(\alpha, \beta) \rightarrow C[\alpha, \beta]$ is completely continuous.

Proof. Suppose first that $\gamma \equiv 0$.
By integrating, we see that the solution of (2.2) is given by

$$
\begin{equation*}
z(t)=C_{1}-\int_{\alpha}^{t} \phi_{\varepsilon}^{-1}\left(C+\int_{\alpha}^{s} k\right) d s \tag{2.4}
\end{equation*}
$$

where the constants C, C_{1} satisfy

$$
\left\{\begin{array}{l}
a C_{1}+b \phi_{\varepsilon}^{-1}(C)=0 \tag{2.5}\\
c\left(C_{1}-\int_{\alpha}^{\beta} \phi_{\varepsilon}^{-1}\left(C+\int_{\alpha}^{s} k\right) d s\right)-d \phi_{\varepsilon}^{-1}\left(C+\int_{\alpha}^{\beta} k\right)=0
\end{array}\right.
$$

Note that (2.5) has a unique solution (C, C_{1}) since if $a=0$ then $C=0$ and

$$
\begin{equation*}
C_{1}=\frac{d}{c} \phi_{\varepsilon}^{-1}\left(\int_{\alpha}^{\beta} k\right)+\int_{\alpha}^{\beta} \phi_{\varepsilon}^{-1}\left(\int_{\alpha}^{s} k\right) d s \tag{2.6}
\end{equation*}
$$

while if $a>0$ then $C_{1}=-\frac{b}{a} \phi_{\varepsilon}^{-1}(C)$, where C is the unique solution of

$$
\begin{equation*}
g_{\varepsilon}(C) \equiv b c \phi_{\varepsilon}^{-1}(C)+a c \int_{\alpha}^{\beta} \phi_{\varepsilon}^{-1}\left(C+\int_{\alpha}^{s} k\right) d s+a d \phi_{\varepsilon}^{-1}\left(C+\int_{\alpha}^{\beta} k\right)=0 \tag{2.7}
\end{equation*}
$$

Indeed, $g_{\varepsilon}(C)>0$ for $C>\|k\|_{1}$ and $g_{\varepsilon}(C)<0$ for $C<-\|k\|_{1}$. Thus (2.7) has a unique solution C with $|C| \leq\|k\|_{1}$ since g_{ε} is continuous and increasing.

Using the inequality (see Proposition A(ii) in Appendix)

$$
\phi_{\varepsilon}^{-1}(m x) \leq m^{\frac{1}{4-1}} \phi_{\varepsilon}^{-1}(x)
$$

for $m \geq 1, x \geq 0$, and (2.4)-(2.6), we get

$$
|z(t)|+\left|z^{\prime}(t)\right| \leq\left|C_{1}\right|+2 \phi_{\varepsilon}^{-1}\left(2\|k\|_{1}\right) \leq\left(c_{0}+2^{\frac{q}{q-1}}\right) \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right),
$$

for all $t \in[\alpha, \beta]$, where $c_{0}=(d / c+1)$ if $a=0, c_{0}=b / a$ if $a>0$, from which (2.3) follows.
Next, we consider the general case $\gamma \in L^{1}(\alpha, \beta)$ with $\gamma \geq 0$. In view of the above, there exist $z_{1}, z_{2} \in C^{1}[\alpha, \beta]$ satisfying

$$
-\left(\phi_{\varepsilon}\left(z_{1}^{\prime}\right)\right)^{\prime}=-|k(t)| \text { on }(\alpha, \beta), \quad-\left(\phi_{\varepsilon}\left(z_{2}^{\prime}\right)\right)^{\prime}=|k(t)| \text { on }(\alpha, \beta),
$$

with Sturm-Liouville boundary conditions.
By Lemma 2.1, $z_{1} \leq 0 \leq z_{2}$ on (α, β), which implies

$$
-\left(\phi_{\varepsilon}\left(z_{1}^{\prime}\right)\right)^{\prime}+\gamma(t) \phi_{\varepsilon}\left(z_{1}\right) \leq-|k(t)| \leq k(t) \text { on }(\alpha, \beta)
$$

and

$$
-\left(\phi_{\varepsilon}\left(z_{2}^{\prime}\right)\right)^{\prime}+\gamma(t) \phi_{\varepsilon}\left(z_{2}\right) \geq|k(t)| \geq k(t) \text { on }(\alpha, \beta)
$$

i.e., $\left(z_{1}, z_{2}\right)$ is a pair of sub- and supersolution of (2.2) with $z_{1} \leq z_{2}$ on (α, β). Thus (2.2) has a solution $z \in C^{1}[\alpha, \beta]$ with $z_{1} \leq z \leq z_{2}$ on (α, β). The solution is unique due to Lemma 2.1.

Since

$$
-\left(\phi_{\varepsilon}\left(z^{\prime}\right)\right)^{\prime}=k(t)-\gamma(t) \phi_{\varepsilon}(z) \text { on }(\alpha, \beta)
$$

and $\|z\|_{\infty} \leq \max \left(\left\|z_{1}\right\|_{\infty},\left\|z_{2}\right\|_{\infty}\right) \leq K \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)$ in view of (2.3) when $\gamma=0$, it follows that

$$
\left\|k(t)-\gamma(t) \phi_{\varepsilon}(z)\right\|_{1} \leq\|k\|_{1}+\|\gamma\|_{1} \phi_{\varepsilon}\left(K_{1} \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)\right) \leq K_{2}\|k\|_{1}
$$

where $K_{1}=\max (K, 1)$ and $K_{2}=1+K_{1}^{p-1}\|\gamma\|_{1}$. Here we have used Proposition A(iii) in Appendix. Consequently, it is

$$
|z|_{1} \leq K \phi_{\varepsilon}^{-1}\left(K_{2}\|k\|_{1}\right) \leq K K_{2}^{\frac{1}{q-1}} \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)
$$

where we have used Proposition A(ii) in Appendix. Thus (2.3) holds. Next, we verify that T_{ε} is continuous. Let $\left(k_{n}\right) \subset L^{1}(\alpha, \beta)$ and $k \in L^{1}(\alpha, \beta)$ be such that $\left\|k_{n}-k\right\|_{1} \rightarrow 0$. Let $u_{n}=T_{\varepsilon} k_{n}$ and $u=T_{\varepsilon} k$.

Multiplying the equation

$$
-\left(\phi_{\varepsilon}\left(u_{n}^{\prime}\right)-\phi_{\varepsilon}\left(u^{\prime}\right)\right)^{\prime}+\gamma(t)\left(\phi_{\varepsilon}\left(u_{n}\right)-\phi_{\varepsilon}(u)\right)=k_{n}-k \text { on }(\alpha, \beta)
$$

by $u_{n}-u$ and integrating between α and β, we obtain

$$
\begin{equation*}
c_{n}+\int_{\alpha}^{\beta}\left(\phi_{\varepsilon}\left(u_{n}^{\prime}\right)-\phi_{\varepsilon}\left(u^{\prime}\right)\right)\left(u_{n}^{\prime}-u^{\prime}\right) \leq\left\|k_{n}-k\right\|_{1}\left\|u_{n}-u\right\|_{\infty} \tag{2.8}
\end{equation*}
$$

where $c_{n}=-\left(\phi_{\varepsilon}\left(u_{n}^{\prime}\right)-\phi_{\varepsilon}\left(u^{\prime}\right)\left(u_{n}-u\right)_{\alpha}^{\beta} \geq 0\right.$. By [11, Lemma 30],

$$
\begin{equation*}
\left(\phi_{\varepsilon}(x)-\phi_{\varepsilon}(y)\right)(x-y) \geq\left(|x|^{p-2} x-|y|^{p-2} y\right)(x-y) \geq c_{0}|x-y|^{\max (p, 2)} \tag{2.9}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$ with $|x|+|y| \leq 2 M$, where $c_{0}>0$ is a constant depending only on p and M. Applying (2.9) with $x=u_{n}^{\prime}, y=u^{\prime}$ and note that $\left|u_{n}\right|_{1}+|u|_{1} \leq 2 M$, where $M=K \max \left(\phi^{-1}\left(\left\|k_{n}\right\|_{1}\right), \phi^{-1}\left(\|k\|_{1}\right)\right)$, we obtain from (2.8) that

$$
\begin{equation*}
c_{n}+c_{0} \int_{\alpha}^{\beta}\left|u_{n}^{\prime}-u^{\prime}\right|^{\max (p, 2)} \leq 2 M\left\|k_{n}-k\right\|_{1} \rightarrow 0 \text { as } n \rightarrow \infty . \tag{2.10}
\end{equation*}
$$

If $b=0$ then $\left(u_{n}-u\right)(\alpha)=0$ and the Mean Value Theorem implies that

$$
\left|u_{n}(t)-u(t)\right| \leq\left|\int_{\alpha}^{t}\right| u_{n}^{\prime}-u^{\prime}| | \leq\left(\int_{\alpha}^{\beta}\left|u_{n}^{\prime}-u^{\prime}\right|^{\max (p, 2)}\right)^{\frac{1}{\max (p, 2)}}
$$

for $t \in[\alpha, \beta]$. Hence $\left\|u_{n}-u\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$ in view of (2.10).
If $b>0$ then $u_{n}^{\prime}(\alpha)=\frac{a}{b} u_{n}(\alpha), u^{\prime}(\alpha)=\frac{a}{b} u(\alpha)$, and since (2.9) gives

$$
\frac{b c_{0}}{a}\left(\frac{a}{b}\right)^{\max (p, 2)}\left|u_{n}(\alpha)-u(\alpha)\right|^{\max (p, 2)} \leq\left(\phi_{\varepsilon}\left(\frac{a}{b} u_{n}(\alpha)\right)-\phi_{\varepsilon}\left(\frac{a}{b} u(\alpha)\right)\right)\left(u_{n}(\alpha)-u(\alpha)\right) \leq c_{n},
$$

it follows from the Mean Value Theorem and (2.10) that

$$
\left\|u_{n}-u\right\|_{\infty} \leq\left|u_{n}(\alpha)-u(\alpha)\right|+\left(\int_{\alpha}^{\beta}\left|u_{n}^{\prime}-u^{\prime}\right|^{\max (p, 2)}\right)^{\frac{1}{\max (p, 2)}} \rightarrow 0
$$

as $n \rightarrow \infty$. Hence T_{ε} is continuous. Since $\left(u_{n}\right)$ is bounded in $C^{1}[\alpha, \beta], T_{\varepsilon}$ is completely continuous, which completes the proof.

Lemma 2.3. Let $k \in L^{1}(0,1)$ with $k \geq 0$, and $u \in C^{1}[0,1]$ satisfy

$$
\left\{\begin{array}{c}
-\left(\phi_{\varepsilon}\left(u^{\prime}\right)\right)^{\prime}+\gamma(t) \phi_{\varepsilon}(u) \geq-k(t) \text { on }(0,1), \\
a u(0)-b u^{\prime}(0) \geq 0, c u(1)+d u^{\prime}(1) \geq 0 .
\end{array}\right.
$$

Then there exist constants $\kappa, C>0$ independent of u, k, ε such that if $\|u\|_{\infty} \geq C \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)$ then

$$
u(t) \geq \kappa\|u\|_{\infty} p(t)
$$

for $t \in[0,1]$.
Proof. Let $v \in C^{1}[0,1]$ satisfy

$$
\left\{\begin{array}{c}
-\left(\left(\phi_{\varepsilon}\left(v^{\prime}\right)\right)^{\prime}+\gamma(t) \phi_{\varepsilon}(v)=-k(t) \text { on }(0,1),\right. \\
a v(0)-b v^{\prime}(0)=0, c v(1)+d v^{\prime}(1)=0 .
\end{array}\right.
$$

By Lemma 2.2, $|v|_{1} \leq K \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)$, where K is independent of k. By Lemma $2.1, u \geq v$ on $[0,1]$. Suppose $\|u\|_{\infty}>K \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)$, and $\|u\|_{\infty}=|u(\tau)|$ for some $\tau \in[0,1]$. Then $u(\tau)>0$ because if $u(\tau) \leq 0$ then $\|u\|_{\infty}=-u(\tau) \leq-v(\tau) \leq K \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)$, a contradiction. In what follows, we may increase K without mentioning if needed.

Suppose first that $\tau \in(0,1)$. Let $z \in C^{1}[0, \tau]$ satisfying

$$
\left\{\begin{array}{l}
-\left(\phi_{\varepsilon}\left(z^{\prime}\right)\right)^{\prime}+\gamma(t) \phi_{\varepsilon}(z)=-k(t) \text { on }(0, \tau), \tag{2.11}\\
a z(0)-b z^{\prime}(0)=0, \quad z(\tau)=\|u\|_{\infty}
\end{array}\right.
$$

Note that z_{0} is a subsolution of (2.11) and $z_{0}+\|u\|_{\infty}$ is a supersolution of (2.11), where z_{0} satisfies

$$
\left\{\begin{array}{l}
-\left(\phi_{\varepsilon}\left(z_{0}^{\prime}\right)\right)^{\prime}+\gamma(t) \phi_{\varepsilon}\left(z_{0}\right)=-k(t) \text { on }(0, \tau) \\
a z_{0}(0)-b z_{0}^{\prime}(0)=0, z_{0}(\tau)=0
\end{array}\right.
$$

from which the existence of z follows. By Lemma 2.1, $u \geq z \geq v \geq-K \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)$ on [0, $\left.\tau\right]$. Define $z_{1}(t)=z(t)+K \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)$. Then $z_{1} \geq 0$ on $[0,1]$ and

$$
z_{1}^{\prime}(0) \geq-K_{1} \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right),
$$

where $K_{1}=K$ if $b=0$ and $K_{1}=K(1+a / b)$ if $b>0$. Indeed, if $b=0$ then $z(0)=v(0)=0$ and so $z_{1}^{\prime}(0)=z^{\prime}(0) \geq v^{\prime}(0) \geq-K \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)$, while if $b>0$ then $z_{1}^{\prime}(0)=(a / b) z(0) \geq-K(a / b) \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)$.

Since $z \leq z_{1}$ on $(0, \tau)$ and $z_{1}^{\prime}(0)+K_{1} \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right) \geq 0$, it follows upon integrating the equation

$$
\left(\phi_{\varepsilon}\left(z_{1}^{\prime}\right)\right)^{\prime}=\gamma(t) \phi_{\varepsilon}(z)+k(t) \text { on }(0, \tau)
$$

that

$$
\begin{gathered}
z_{1}(t)=z_{1}(0)+\int_{0}^{t} \phi_{\varepsilon}^{-1}\left(\phi_{\varepsilon}\left(z_{1}^{\prime}(0)\right)+\int_{0}^{s}\left(\gamma(\xi) \phi_{\varepsilon}(z)+k(\xi)\right) d \xi\right) d s \\
\leq z_{1}(0)+\int_{0}^{t} \phi_{\varepsilon}^{-1}\left(\phi_{\varepsilon}\left(z_{1}^{\prime}(0)+K_{1} \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)\right)+\int_{0}^{s}\left(\gamma(\xi) \phi_{\varepsilon}\left(z_{1}\right)+k(\xi)\right) d \xi\right) d s \\
\leq z_{1}(0)+\int_{0}^{t} \phi_{\varepsilon}^{-1}\left(\phi_{\varepsilon}\left(z_{1}^{\prime}(0)+K_{1} \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)\right)+\int_{0}^{t}\left(\gamma(\xi) \phi_{\varepsilon}\left(z_{1}\right)+k(\xi)\right) d \xi\right) d s
\end{gathered}
$$

$$
\begin{equation*}
\leq z_{1}(0)+\phi_{\varepsilon}^{-1}\left(\phi_{\varepsilon}\left(z_{1}^{\prime}(0)+K_{1} \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)\right)+\int_{0}^{t}\left(\gamma(\xi) \phi_{\varepsilon}\left(z_{1}\right)+k(\xi)\right) d \xi\right) . \tag{2.12}
\end{equation*}
$$

Applying ϕ_{ε} on both sides of (2.12) and using the inequality (see Proposition A(i) in Appendix)

$$
\phi_{\varepsilon}(x+y) \leq M\left(\phi_{\varepsilon}(x)+\phi_{\varepsilon}(y)\right) \quad \forall x, y \geq 0,
$$

where $M=2^{\max (p-2,0)}$, we obtain

$$
\phi_{\varepsilon}\left(z_{1}(t)\right) \leq M\left[\phi_{\varepsilon}\left(z_{1}(0)\right)+\phi_{\varepsilon}\left(z_{1}^{\prime}(0)+K_{1} \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)\right)+\|k\|_{1}\right]+M \int_{0}^{t} \gamma(\xi) \phi_{\varepsilon}\left(z_{1}\right) d \xi
$$

By Gronwall's inequality,

$$
\phi_{\varepsilon}\left(z_{1}(t)\right) \leq M\left[\phi_{\varepsilon}\left(z_{1}(0)\right)+\phi_{\varepsilon}\left(z_{1}^{\prime}(0)+K_{1} \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)\right)+\|k\|_{1}\right] e^{M\|\gamma\|_{1}}
$$

for $t \in[0, \tau]$. In particular when $t=\tau$, we obtain

$$
\phi_{\varepsilon}\left(z_{1}(0)\right)+\phi_{\varepsilon}\left(z_{1}^{\prime}(0)+K_{1} \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)\right)+\|k\|_{1} \geq 2 K_{2} \phi_{\varepsilon}\left(\|u\|_{\infty}\right),
$$

where $K_{2}=(2 M)^{-1} e^{-M \| y \mid 1}$. Since $\phi_{\varepsilon}(x)+\phi_{\varepsilon}(y) \leq 2 \phi_{\varepsilon}(x+y)$ for $x, y \geq 0$, this implies

$$
\phi_{\varepsilon}\left(z_{1}(0)+z_{1}^{\prime}(0)+K_{1} \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)\right) \geq K_{2} \phi_{\varepsilon}\left(\|u\|_{\infty}\right)-\frac{\|k\|_{1}}{2} \geq K_{3} \phi_{\varepsilon}\left(\|u\|_{\infty}\right) \geq \phi_{\varepsilon}\left(K_{4}\|u\|_{\infty}\right),
$$

where $K_{3}=K_{2} / 2<1$ and $K_{4}=K_{3}^{\frac{1}{q-1}}$, provided that $\phi_{\varepsilon}\left(\|u\|_{\infty}\right) \geq\|k\|_{1} / K_{2}$ which is true if $\|u\|_{\infty} \geq$ $\left(1 / K_{2}\right)^{\frac{1}{q-1}} \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)$. Consequently,

$$
z_{1}(0)+z_{1}^{\prime}(0)+K_{1} \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right) \geq K_{4}\|u\|_{\infty},
$$

which implies

$$
\begin{equation*}
z(0)+z^{\prime}(0) \geq K_{4}\|u\|_{\infty}-\left(K+K_{1}\right) \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right) \geq K_{5}\|u\|_{\infty} \tag{2.13}
\end{equation*}
$$

where $K_{5}=K_{4} / 2$, provided that $\|u\|_{\infty} \geq \frac{2\left(K+K_{1}\right)}{K_{4}} \phi^{-1}\left(\|k\|_{1}\right)$. Since

$$
\left(\phi_{\varepsilon}\left(z^{\prime}\right)\right)^{\prime}=\gamma(t) \phi_{\varepsilon}(z)+k \geq-\gamma(t) \phi_{\varepsilon}\left(K \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)\right) \geq-K^{\frac{1}{p-1}}\|k\|_{1} \gamma(t) \text { on }(0, \tau),
$$

it follows that

$$
\begin{equation*}
\phi_{\varepsilon}\left(z^{\prime}(t)\right) \geq \phi_{\varepsilon}\left(z^{\prime}(0)\right)-K^{\frac{1}{p-1}}\|k\|_{1}\|\gamma\|_{1} \tag{2.14}
\end{equation*}
$$

for $t \in[0, \tau]$. If $b=0$ then $z(0)=0$ and (2.13) becomes $z^{\prime}(0) \geq K_{5}\|u\|_{\infty}$, from which (2.14) implies

$$
\phi_{\varepsilon}\left(z^{\prime}(t)\right) \geq \phi_{\varepsilon}\left(K_{5}\|u\|_{\infty}\right)-K^{\frac{1}{p-1}}\|\gamma\|_{1}\|k\|_{1} \geq \frac{\phi_{\varepsilon}\left(K_{5}\|u\|_{\infty}\right)}{2} \geq \phi_{\varepsilon}\left(K_{6}\|u\|_{\infty}\right)
$$

where $K_{6}=2^{1-q} K_{5}$, provided that $\phi_{\varepsilon}\left(K_{5}\|u\|_{\infty}\right) \geq 2 K^{\frac{1}{p-1}}\|\gamma\|_{1}\|k\|_{1}$ which is true if $\|u\|_{\infty} \geq$ $K_{5}^{-1}\left(2 K^{\frac{1}{p-1}}\|\gamma\|_{1}\right)^{\frac{1}{q-1}} \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)$. Consequently,

$$
z^{\prime}(t) \geq K_{6}\|u\|_{\infty} \text { on }(0, \tau)
$$

which implies upon integrating that

$$
\begin{equation*}
u(t) \geq z(t) \geq K_{6}\|u\|_{\infty} t \text { for } t \in[0, \tau] . \tag{2.15}
\end{equation*}
$$

If $b>0$ then $z^{\prime}(0)=(a / b) z(0)$ and (2.13) becomes

$$
\begin{equation*}
z(0) \geq \frac{K_{5} b}{a+b}\|u\|_{\infty} . \tag{2.16}
\end{equation*}
$$

Since $z^{\prime}(0) \geq 0$, (2.14) gives

$$
z^{\prime}(t) \geq-\phi_{\varepsilon}^{-1}\left(K^{\frac{1}{p-1}}\|\gamma\|_{1}\|k\|_{1}\right) \geq-\tilde{K} \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right) \text { on }(0, \tau)
$$

where $\tilde{K}=\left(K^{\frac{1}{p-1}}\|\gamma\|_{1}\right)^{\frac{1}{q-1}}$. This, together with (2.16), implies

$$
z(t) \geq z(0)-\tilde{K} \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right) \geq \frac{K_{5} b}{a+b}\|u\|_{\infty}-\tilde{K} \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)
$$

Hence

$$
\begin{equation*}
u(t) \geq z(t) \geq K_{7}\|u\|_{\infty} \text { for } t \in[0, \tau] \tag{2.17}
\end{equation*}
$$

where $K_{7}=\frac{K_{5} b}{2(a+b)}$, provided that $\|u\|_{\infty} \geq \frac{2 \tilde{K}(a+b)}{K_{5} b} \phi_{\varepsilon}^{-1}\left(\|k\|_{1}\right)$.
Combining (2.15) and (2.17), we obtain

$$
\begin{equation*}
u(t) \geq \kappa_{0}\|u\|_{\infty} t, \quad \forall t \in[0, \tau] \tag{2.18}
\end{equation*}
$$

where $\kappa_{0}=\min \left(K_{6}, K_{7}\right)$.
Next, let $w \in C^{1}[\tau, 1]$ be the solution of

$$
\left\{\begin{array}{l}
-\left(\phi_{\varepsilon}\left(w^{\prime}\right)\right)^{\prime}+\gamma(t) \phi_{\varepsilon}(w)=-k(t) \text { on }(\tau, 1), \\
w(\tau)=\|u\|_{\infty}, \quad c w(1)+d w^{\prime}(1)=0 .
\end{array}\right.
$$

Then $u \geq w$ on $[\tau, 1]$, and using similar arguments as above, we obtain

$$
\begin{equation*}
u(t) \geq \kappa_{1}\|u\|_{\infty}(1-t) \quad \forall t \in[\tau, 1], \tag{2.19}
\end{equation*}
$$

where $\kappa_{1}>0$ is a constant independent of k, provided that $\|u\|_{\infty}>C \phi_{\varepsilon}^{-1}(\|k\|)$ for some large constant C independent of u.

Combining (2.18) and (2.19), we see that Lemma 2.3 holds with $\kappa=\min \left(\kappa_{0}, \kappa_{1}\right)$. If $\tau=0$ then (2.19) holds on $[0,1]$, and if $\tau=1$ then (2.17) holds on [0, 1], which completes the proof.

3. Proof of the main result

Let $E=C[0,1]$ be with the usual sup-norm.
Proof of Theorem 1.1. Let C, κ be given by Lemma 2.3 and define $\sigma_{0}=\kappa \sigma, h(t)=g\left(\sigma_{0} p(t)\right)$. For $v \in E, g\left(\max \left(v, \sigma_{0} p\right)\right) \in L^{1}(0,1)$ by (A1), and $0 \leq f(t,|v|)+\gamma(t) \phi_{\varepsilon}(|v|) \in L^{1}(0,1)$ by (A2) and (A3). Let $\lambda \geq 0$ be small so that $C \phi_{\varepsilon}^{-1}\left(\lambda\|h\|_{1}\right)<\sigma$. Then the problem

$$
\left\{\begin{array}{l}
-\left(\phi_{\varepsilon}\left(u^{\prime}\right)\right)^{\prime}+\gamma(t) \phi_{\varepsilon}(u)=-\lambda g\left(\max \left(v, \sigma_{0} p\right)\right)+f(t,|v|)+\gamma(t) \phi_{\varepsilon}(|v|) \text { on }(0,1) \\
a u(0)-b u^{\prime}(0)=0, c u(1)+d u^{\prime}(1)=0
\end{array}\right.
$$

has a unique solution $u=A_{\varepsilon} v \in C^{1}[0,1]$ in view of Lemma 2.2. Since the operator $S: E \rightarrow L^{1}(0,1)$ defined by $(S v)(t)=-\lambda g\left(\max \left(v, \sigma_{0} p\right)\right)+f(t,|v|)+\gamma(t)|v|^{p-1}$ is continuous, it follows from Lemma 2.2 that $A_{\varepsilon}: E \rightarrow E$ is completely continuous. We shall verify that
(i) $u=\theta A_{\varepsilon} u, \theta \in(0,1] \Longrightarrow\|u\|_{\infty} \neq \sigma$.

Let $u \in E$ satisfy $u=\theta A_{\varepsilon} u$ for some $\theta \in(0,1]$ with $\|u\|_{\infty}=\sigma$.
Suppose $\varepsilon>0$. Then

$$
-\left(\phi_{\varepsilon}\left(\frac{u^{\prime}}{\theta}\right)\right)^{\prime}+\gamma(t) \phi_{\varepsilon}\left(\frac{u}{\theta}\right)=-\lambda g\left(\max \left(u, \sigma_{0} p(t)\right)\right)+f(t,|u|)+\gamma(t) \phi_{\varepsilon}(|u|)
$$

on $(0,1)$, which implies upon multiplying by θ^{p-1} that

$$
\begin{align*}
-\left(\phi_{\varepsilon \theta^{p-q}}\left(u^{\prime}\right)\right)^{\prime}+\gamma(t) \phi_{\varepsilon \theta^{p-q}}(u) & =\theta^{p-1}\left(-\lambda g\left(\max \left(u, \sigma_{0} p(t)\right)\right)+f(t,|u|)+\gamma(t) \phi_{\varepsilon}(|u|)\right) \tag{3.1}\\
& \geq-\lambda h(t) \quad \text { on }(0,1) .
\end{align*}
$$

Since $\|u\|_{\infty}>C \phi_{\varepsilon}^{-1}\left(\lambda\|h\|_{1}\right)$, Lemma 2.3 gives

$$
u(t) \geq \kappa\|u\|_{\infty} p(t) \geq \sigma_{0} p(t)>0
$$

for $t \in(0,1)$ (recall that $\kappa \sigma=\sigma_{0}$). Hence it follows from (3.1) and (A4) that

$$
\begin{align*}
& \left.-\left(\phi_{\varepsilon \theta \theta^{p-q}}\left(u^{\prime}\right)\right)^{\prime}=\theta^{p-1} f(t, u)-\lambda \theta^{p-1} g(u)\right)+\theta^{p-1} \gamma(t) \phi_{\varepsilon}(u)-\gamma(t) \phi_{\varepsilon \theta^{p-q}}(u) \\
= & \theta^{p-1} f(t, u)-\lambda \theta^{p-1} g(u)+\gamma(t)\left(\theta^{p-1}-1\right) u^{p-1}+\varepsilon \gamma(t)\left(\theta^{p-1}-\theta^{p-q}\right) u^{q-1} \tag{3.2}\\
\leq & \theta^{p-1} f(t, u) \leq \theta^{p-1} \lambda_{1} u^{p-1}
\end{align*}
$$

on (0,1). Multiplying (3.2) by u and integrating gives

$$
-\phi_{\varepsilon \theta \theta^{p-q}}\left(u^{\prime}(1)\right) u(1)+\phi_{\varepsilon \theta^{p-q}}\left(u^{\prime}(0)\right) u(0)+\int_{0}^{1} \phi_{\varepsilon \theta^{p-q}}\left(u^{\prime}\right) u^{\prime} \leq \lambda_{1} \int_{0}^{1} u^{p}
$$

Since $a u(0)-b u^{\prime}(0)=0=c u(1)+d u^{\prime}(1)$ and $\varepsilon>0$, this implies

$$
\begin{equation*}
-\phi_{0}\left(u^{\prime}(1)\right) u(1)+\phi_{0}\left(u^{\prime}(0)\right) u(0)+\int_{0}^{1}\left|u^{\prime}\right|^{p}<\lambda_{1} \int_{0}^{1} u^{p}, \tag{3.3}
\end{equation*}
$$

Consequently,

$$
\lambda_{1}>\frac{-\phi_{0}\left(u^{\prime}(1)\right) u(1)+\phi_{0}\left(u^{\prime}(0)\right) u(0)+\int_{0}^{1}\left|u^{\prime}\right|^{p}}{\int_{0}^{1} u^{p}}
$$

Since λ_{1} is characterized by the Raleigh formula

$$
\begin{equation*}
\lambda_{1}=\inf _{v \in V} \frac{-\phi_{0}\left(v^{\prime}(1)\right) v(1)+\phi_{0}\left(v^{\prime}(0)\right) v(0)+\int_{0}^{1}\left|v^{\prime}\right|^{p}}{\int_{0}^{1}|v|^{p}} \tag{3.4}
\end{equation*}
$$

where $V=\left\{u \in C^{1}[0,1]: a u(0)-b u^{\prime}(0)=0=c u(1)+d u^{\prime}(1)\right\}$, we get a contradiction. Thus (i) holds.

Next, suppose $\varepsilon=0$. Then the < inequality in (3.3) is replaced by \leq, which together with (3.4) imply

$$
\lambda_{1}=\frac{-\phi_{0}\left(u^{\prime}(1)\right) u(1)+\phi_{0}\left(u^{\prime}(0)\right) u(0)+\int_{0}^{1}\left|u^{\prime}\right|^{p}}{\int_{0}^{1}|u|^{p}}
$$

i.e., u is an eigenfunction corresponding to λ_{1}. Hence (3.2) gives

$$
\lambda_{1} u^{p-1} \leq \theta^{p-1} f(t, u) \leq \theta^{p-1} \lambda_{1} u^{p-1} \leq \lambda_{1} u^{p-1} \text { on }(0,1),
$$

from which it follows that $f(t, u)=\lambda_{1} u^{p-1}$ for a.e. $t \in(0,1)$. Since $\|u\|_{\infty}=\sigma$, we get a contradiction with (A4) with $\varepsilon=0$. If $b d=0$, then $u(0)=0$ or $u(1)=0$, and since $\|u\|_{\infty}=\sigma$, we have $u[0,1]=[0, \sigma]$, we get a contradiction if $f(t, z) \not \equiv \lambda_{1} z^{p-1}$ on $[0, \sigma]$ for a.e. $t \in(0,1)$. Thus (i) holds.

Next, we verify that
(ii) There exists a constant $R>\sigma$ such that $u=A_{\varepsilon} u+\xi, \xi \geq 0 \Longrightarrow\|u\|_{\infty} \neq R$.

Let $u \in E$ satisfy $u=A_{\varepsilon} u+\xi$ for some $\xi \geq 0$. Then u satisfies

$$
\begin{equation*}
-\left(\phi_{\varepsilon}\left(u^{\prime}\right)\right)^{\prime}+\gamma(t) \phi_{\varepsilon}(u-\xi)=-\lambda g\left(\max \left(u, \sigma_{0} p(t)\right)\right)+f(t,|u|)+\gamma(t) \phi_{\varepsilon}(|u|) \tag{3.5}
\end{equation*}
$$

on $(0,1)$, which implies

$$
\begin{equation*}
-\left(\phi_{\varepsilon}\left(u^{\prime}\right)\right)^{\prime}+\gamma(t) \phi_{\varepsilon}(u) \geq-\lambda h(t) \tag{3.6}
\end{equation*}
$$

on $(0,1)$. Note that

$$
\begin{equation*}
a u(0)-b u^{\prime}(0)=a \xi \geq 0, c u(1)+d u^{\prime}(1)=c \xi \geq 0 . \tag{3.7}
\end{equation*}
$$

Suppose $\|u\|_{\infty}=R>\sigma$. Then Lemma 2.3 gives

$$
\begin{equation*}
u(t) \geq \kappa\|u\|_{\infty} p(t) \geq \kappa R p(t) \geq \sigma_{0} p(t) \tag{3.8}
\end{equation*}
$$

for $t \in(0,1)$. Using (3.8) in (3.5), we get

$$
\begin{equation*}
-\left(\phi_{\varepsilon}\left(u^{\prime}\right)\right)^{\prime} \geq-\lambda g(u)+f(t, u) \text { on }(0,1) \tag{3.9}
\end{equation*}
$$

Suppose $\varepsilon>0$ and let $M>0$. Since $\lim _{z \rightarrow \infty} \frac{f(t, z)-\lambda g(z)}{\phi_{\varepsilon}(z)}=\infty$ by (A1) and (A5), there exists a positive constant L such that

$$
\begin{equation*}
f(t, z)-\lambda g(z) \geq M \phi_{\varepsilon}(z) \tag{3.10}
\end{equation*}
$$

for a.e. $t \in(0,1)$ and $z>L$. By (3.8),

$$
u(t) \geq \frac{\kappa}{4}\|u\|_{\infty}=\frac{\kappa R}{4}>L \text { for } t \in[1 / 4,3 / 4]
$$

for R large, from which (3.9) and (3.10) imply

$$
-\left(\phi_{\varepsilon}\left(u^{\prime}\right)\right)^{\prime} \geq M \phi_{\varepsilon}(u) \geq M \phi_{\varepsilon}\left(\frac{\kappa\|u\|_{\infty}}{4}\right) \quad \text { on }[1 / 4,3 / 4] .
$$

Since $u(1 / 4)$ and $u(3 / 4)$ are positive, the comparison principle gives $u \geq \tilde{u}$ on $[1 / 4,3 / 4]$, where \tilde{u} is the solution of

$$
\left\{\begin{array}{l}
-\left(\phi_{\varepsilon}\left(\tilde{u}^{\prime}\right)\right)^{\prime}=M \phi_{\varepsilon}\left(\frac{\kappa\|u\|_{\infty}}{4}\right) \text { on }(1 / 4,3 / 4), \\
\tilde{u}(1 / 4)=\tilde{u}(3 / 4)=0
\end{array}\right.
$$

Let $\|\tilde{u}\|_{\infty}=\tilde{u}(\tau)$ for some $\tau \in(1 / 4,3 / 4)$. If $\tau \leq 1 / 2$ then we have

$$
\left.\|u\|_{\infty} \geq \tilde{u}(5 / 8)\right)=\int_{5 / 8}^{3 / 4} \phi_{\varepsilon}^{-1}\left(M \phi_{\varepsilon}\left(\frac{\kappa\|u\|_{\infty}}{4}\right)(s-\tau)\right) d s \geq \frac{1}{8} \phi_{\varepsilon}^{-1}\left(\frac{M}{8} \phi_{\varepsilon}\left(\frac{\kappa\|u\|_{\infty}}{4}\right)\right),
$$

while if $\tau>1 / 2$,

$$
\|u\|_{\infty} \geq \tilde{u}(3 / 8)=\int_{1 / 4}^{3 / 8} \phi_{\varepsilon}^{-1}\left(M \phi_{\varepsilon}\left(\frac{\kappa\|u\|_{\infty}}{4}\right)(\tau-s)\right) d s \geq \frac{1}{8} \phi_{\varepsilon}^{-1}\left(\frac{M}{8} \phi_{\varepsilon}\left(\frac{\kappa\|u\|_{\infty}}{4}\right)\right) .
$$

Hence using Proposition A(iii) we see that in either case,

$$
\phi_{\varepsilon}\left(8\|u\|_{\infty}\right) \geq \frac{M}{8} \phi_{\varepsilon}\left(\frac{\kappa\|u\|_{\infty}}{4}\right) \geq \phi_{\varepsilon}\left(\left(\frac{M}{8}\right)^{\frac{1}{p-1}} \frac{\kappa\|u\|_{\infty}}{4}\right)
$$

i.e., $\|u\|_{\infty} \geq \frac{\kappa(M / 8)^{\frac{1}{p-1}}\|u\|_{\infty}}{32}$, a contradiction if M is large enough, which proves (ii).

Suppose next that $\varepsilon=0$. Since $\liminf _{z \rightarrow \infty} \frac{f(t, z)-\lambda g(z)}{z^{p-1}}>\lambda_{1}$ uniformly for a.e. $t \in(0,1)$, there exist positive constants $L_{0}, \tilde{\lambda}$ with $\tilde{\lambda}>\lambda_{1}$ such that

$$
\begin{equation*}
f(t, z)-\lambda g(z) \geq \tilde{\lambda} z^{p-1} \tag{3.11}
\end{equation*}
$$

for a.e. $t \in(0,1)$ and all $z \geq L_{0}$. For $\delta_{1} \in(0,1 / 2)$, let $\lambda_{1, \delta_{1}}$ be the first eigenvalue of the problem

$$
\left\{\begin{array}{l}
-\left(\phi_{0}\left(v^{\prime}\right)\right)^{\prime}=\lambda_{1, \delta_{1}} \phi_{0}(v) \text { on }\left(\delta_{1}, \delta_{2}\right), \tag{3.12}\\
a v\left(\delta_{1}\right)-b v^{\prime}\left(\delta_{1}\right)=0, c v\left(\delta_{2}\right)+d v^{\prime}\left(\delta_{2}\right)=0,
\end{array}\right.
$$

where $\delta_{2}=1-\delta_{1}$. By the continuity of the first eigenvalue with respect to the domain, $\lambda_{1, \delta_{1}} \rightarrow \lambda_{1}$ as $\delta_{1} \rightarrow 0$. Hence there exits $\delta>0$ such that $\lambda_{1, \delta_{1}}<\tilde{\lambda}$ for $\delta_{1} \leq \delta$.

Let $\delta_{1}=\delta / 2, \delta_{2}=1-\delta / 2$, and $\mu \in\left(\lambda_{1, \delta_{1}}, \tilde{\lambda}\right)$. By decreasing δ if necessary, we have from (3.7) that

$$
\begin{equation*}
a \bar{u}\left(\delta_{1}\right)-b \bar{u}^{\prime}\left(\delta_{1}\right) \geq 0 \text { if } a>0, \quad c \bar{u}\left(\delta_{2}\right)+d \bar{u}^{\prime}\left(\delta_{2}\right) \geq 0 \text { if } c>0, \tag{3.13}
\end{equation*}
$$

where $\bar{u}=u+1$. By (3.8),

$$
\begin{equation*}
u(t) \geq \frac{\kappa R \delta}{4} \geq L_{0} \tag{3.14}
\end{equation*}
$$

for $t \in[\delta / 4,1-\delta / 4]$ for R large. It follows from (3.9), (3.11) and (3.14) that

$$
\begin{equation*}
-\left(\phi_{0}\left(u^{\prime}\right)\right)^{\prime} \geq-\lambda g(u)+f(t, u) \geq \tilde{\lambda} u^{p-1} \text { on }[\delta / 4,1-\delta / 4] . \tag{3.15}
\end{equation*}
$$

By (3.6) and (3.15),

$$
\begin{equation*}
-\left(\phi_{0}\left(u^{\prime}\right)\right)^{\prime} \geq-\lambda h(t)-\gamma(t) \phi_{0}(u) \geq-\gamma_{L}(t) \tag{3.16}
\end{equation*}
$$

for a.e. $t \in(0,1)$, where $\gamma_{L}(t)=\lambda h(t)+\gamma(t) \phi_{0}(L) \geq 0$. We claim that the eigenvalue problem

$$
\left\{\begin{array}{l}
-\left(\phi_{0}\left(v^{\prime}\right)\right)^{\prime}=\mu \phi_{0}(v) \text { on }\left(\delta_{1}, \delta_{2}\right), \tag{3.17}\\
a v\left(\delta_{1}\right)-b v^{\prime}\left(\delta_{1}\right)=0, \operatorname{cv}\left(\delta_{2}\right)+d v^{\prime}\left(\delta_{2}\right)=0
\end{array}\right.
$$

has a positive solution, provided that R is large enough.

Let ψ_{1} be the positive solution of (3.12) with $\left\|\psi_{1}\right\|_{\infty}=1$. Then clearly ψ_{1} is a subsolution of (3.17). Since (3.14) implies

$$
\frac{u}{u+1} \geq \frac{\kappa R \delta / 4}{1+\kappa R \delta / 4} \text { on }[\delta / 4,1-\delta / 4]
$$

for R large and $\frac{\kappa R \delta / 4}{1+\kappa R \delta / 4} \rightarrow 1$ as $R \rightarrow \infty$, it follows from (3.15) that

$$
\begin{equation*}
-\left(\phi_{0}\left(\bar{u}^{\prime}\right)\right)^{\prime} \geq \tilde{\lambda} u^{p-1}=\tilde{\lambda} \bar{u}^{p-1}\left(\frac{u}{u+1}\right)^{p-1} \geq \mu \bar{u}^{p-1} \text { on }\left(\delta_{1}, \delta_{2}\right) \tag{3.18}
\end{equation*}
$$

for R large.
Case 1. $a, c>0$. Then \bar{u} is a supersolution of (3.17) in view of (3.13) and (3.18).
Case 2. $a c=0$. If $a=0$ then (3.7) gives $u^{\prime}(0)=0$. Combining (3.14)-(3.16), we deduce that for R large,

$$
-\phi_{0}\left(u^{\prime}\left(\delta_{1}\right)\right)=-\int_{0}^{\delta_{1}}\left(\phi_{0}\left(u^{\prime}\right)\right)^{\prime} \geq-\int_{0}^{\delta / 4} \gamma_{L}+\tilde{\lambda} \int_{\delta / 4}^{\delta / 2} u^{p-1}>0
$$

i.e., $u^{\prime}\left(\delta_{1}\right)<0$. Similarly if $c=0$ then $u^{\prime}(1)=0$, and

$$
\phi_{0}\left(u^{\prime}\left(\delta_{2}\right)\right)=-\int_{\delta_{2}}^{1}\left(\phi_{0}\left(u^{\prime}\right)\right)^{\prime} \geq-\int_{1-\delta / 4}^{1} \gamma_{L}+\tilde{\lambda} \int_{1-\delta / 2}^{1-\delta / 4} u^{p-1}>0
$$

i.e., $u^{\prime}\left(\delta_{2}\right)>0$. Since $a \bar{u}\left(\delta_{1}\right)-b \bar{u}^{\prime}\left(\delta_{1}\right)>0$ and $c \bar{u}\left(\delta_{2}\right)+d \bar{u}^{\prime}\left(\delta_{2}\right)>0$, it follows from (3.18) that \bar{u} is a supersolution of (3.17).

Since $\psi_{1} \leq 1 \leq \bar{u}$ on $\left[\delta_{1}, \delta_{2}\right]$, the existence of a solution v to (3.17) with $\psi_{1} \leq v \leq \bar{u}$ on $\left(\delta_{1}, \delta_{2}\right)$ follows, which is a contradiction. Thus (ii) holds. By Amann's fixed point theorem [1, Theorem 12.3], A_{ε} has a fixed point $u \in E$ with $\|u\|_{\infty}>\sigma$. Using $\xi=0$ in (ii) and (3.8), we obtain $u(t) \geq \sigma_{0} p(t)$ for $t \in[0,1]$ i.e., $g\left(\max \left(u, \sigma_{0} p(t)\right)\right)=g(u)$ and therefore u is a positive solution of (1.1), which completes the proof.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Conflict of interest

The authors declare no conflict of interest.

References

1. H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709. http://dx.doi.org/10.1137/1018114
2. P. Binding, P. Drabek, Sturm-Liouville theory for the p-Laplacian, Stud. Sci. Math. Hung., 40 (2003), 375-396. http://dx.doi.org/10.1556/sscmath.40.2003.4.1
3. K. Chu, D. Hai, Positive solutions for the one-dimensional Sturm-Liouville superlinear p-Laplacian problem, Electron. J. Differ. Eq., 2018 (2018), 1-14.
4. K. Chu, D. Hai, Positive solutions for the one-dimensional singular superlinear p-Laplacian, Commun. Pur. Appl. Anal., 19 (2020), 241-252. http://dx.doi.org/10.3934/cpaa. 2020013
5. P. Drabek, Ranges of a-homogeneous operators and their perturbations, Časopis Pro Pěstování Matematiky, 105 (1980), 167-183. http://dx.doi.org/10.21136/CPM.1980.118058
6. L. Erbe, H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., 120 (1994), 743-748. http://dx.doi.org/10.2307/2160465
7. D. Hai, On singular Sturm-Liouville boundary-value problems, Proc. Roy. Soc. Edinb. A, 140 (2010), 49-63. http://dx.doi.org/10.1017/S0308210508000358
8. H. Kaper, M. Knaap, M. Kwong, Existence theorems for second order boundary value problems, Differ. Integral Equ., 4 (1991), 543-554.
9. E. Lee, R. Shivaji, J. Ye, Subsolutions: a journey from positone to infinite semipositone problems, Electron. J. Differ. Eq., 17 (2009), 123-131.
10. R. Manásevich, F. Njoku, F. Zanolin, Positive solutions for the one-dimensional p-Laplacian, Differ. Integral Equ., 8 (1995), 213-222.
11. J. Tinsley Oden, Qualitative methods in nonlinear mechanics, Englewood: Prentice-Hall, 1986.
12. J. Webb, K. Lan, Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary vale problems of local and nonlocal types, Topol. Method. Nonl. Anal., 27 (2006), 91115.
13. J. Wang, The existence of positive solutions for the one-dimensional p-Laplacian, Proc. Amer. Math. Soc., 125 (1997), 2275-2283.

Appendix A

We provide here some inequalities regarding the operator ϕ_{ε}.

Proposition A.

(i) $\phi_{\varepsilon}(x+y) \leq M\left(\phi_{\varepsilon}(x)+\phi_{\varepsilon}(y)\right)$ for $x, y \geq 0$, where $M=2^{\max (p-2,0)}$.
(ii) $\phi_{\varepsilon}^{-1}(m x) \leq m^{\frac{1}{q-1}} \phi_{\varepsilon}^{-1}(x)$ for $m \geq 1, x \geq 0$.
(iii) $\phi_{\varepsilon}(c x) \leq c^{p-1} \phi_{\varepsilon}(x)$ for $c \geq 1, x \geq 0$.

Proof. (i) Let $x, y \geq 0$. Since the function z^{r} is convex on $[0, \infty)$ for $r \geq 1$,

$$
\left(\frac{x+y}{2}\right)^{r} \leq \frac{x^{r}+y^{r}}{2}
$$

i.e.,

$$
(x+y)^{r} \leq 2^{r-1}\left(x^{r}+y^{r}\right)
$$

On the other hand if $0<r<1$, we have

$$
(x+y)^{r} \leq x^{r}+y^{r} .
$$

Hence for $r>0$,

$$
(x+y)^{r} \leq 2^{\max (r-1,0)}\left(x^{r}+y^{r}\right),
$$

which implies

$$
\begin{aligned}
\phi_{\varepsilon}(x+y) & =(x+y)^{p-1}+\varepsilon(x+y)^{q-1} \\
& \leq 2^{\max (p-2,0}\left(x^{p-1}+y^{p-1}\right)+\varepsilon 2^{\max (q-2,0)}\left(x^{q-1}+y^{q-1}\right) \\
& \leq 2^{\max (p-2,0)}\left(\phi_{\varepsilon}(x)+\phi_{\varepsilon}(y)\right)
\end{aligned}
$$

i.e., (i) holds.
(ii) Let $z \geq 0$ and $c \geq 1$. We claim that

$$
\begin{equation*}
\phi_{\varepsilon}(c z) \geq c^{q-1} \phi_{\varepsilon}(z) . \tag{A.1}
\end{equation*}
$$

Indeed,

$$
\phi_{\varepsilon}(c z)=c^{p-1} z^{p-1}+\varepsilon c^{q-1} z^{q-1} \geq c^{q-1} \phi_{\varepsilon}(z)
$$

i.e., (A.1) holds. Let $m \geq 1, x \geq 0$. Then by using (A.1) with $c=m^{\frac{1}{q-1}}$ and $z=\phi_{\varepsilon}^{-1}(x)$, we obtain

$$
\phi_{\varepsilon}\left(m^{\frac{1}{q-1}} \phi_{\varepsilon}^{-1}(x)\right) \geq m \phi_{\varepsilon}\left(\phi_{\varepsilon}^{-1}(x)\right)=m x
$$

i.e., (ii) holds.
(iii) Let $c \geq 1$ and $x \geq 0$. Then

$$
\phi_{\varepsilon}(c x)=c^{p-1} x^{p-1}+\varepsilon c^{q-1} x^{q-1} \leq c^{p-1}\left(x^{p-1}+\varepsilon x^{q-1}\right)
$$

i.e., (iii) holds.
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

