Extended suprametric spaces are defined, and the contraction principle is established using elementary properties of the greatest lower bound instead of the usual iteration procedure. Thereafter, some topological results and the Stone-type theorem are derived in terms of suprametric spaces. Also, we have shown that every suprametric space is metrizable. Further, we prove the existence of a solution of Ito-Doob type stochastic integral equations using our main fixed point theorem in extended suprametric spaces.
Citation: Sumati Kumari Panda, Ravi P Agarwal, Erdal Karapínar. Extended suprametric spaces and Stone-type theorem[J]. AIMS Mathematics, 2023, 8(10): 23183-23199. doi: 10.3934/math.20231179
Extended suprametric spaces are defined, and the contraction principle is established using elementary properties of the greatest lower bound instead of the usual iteration procedure. Thereafter, some topological results and the Stone-type theorem are derived in terms of suprametric spaces. Also, we have shown that every suprametric space is metrizable. Further, we prove the existence of a solution of Ito-Doob type stochastic integral equations using our main fixed point theorem in extended suprametric spaces.
[1] | I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37. |
[2] | N. Bourbaki, Topologie generale, Herman: Paris, France, 1974. |
[3] | S. Matthews, Partial metric spaces, Research Report 212, Dep. of Computer Science, University of Warwick, 1992. |
[4] | A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math.-Debrecen., 57 (2000), 31–37. |
[5] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Univ. Osstrav., 1 (1993), 5–11. |
[6] | T. Kamran, M. Samreen, Q. UL Ain, A generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019 |
[7] | S. K. Panda, T. Abdeljawad, C. Ravichandran, A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed point method, Chaos Soliton. Fract., 130 (2020), 109439. https://doi.org/10.1016/j.chaos.2019.109439 doi: 10.1016/j.chaos.2019.109439 |
[8] | A. Thabet, E. Karapınar, S. K. Panda, N. Mlaiki, Solutions of boundary value problems on extended-Branciari $b$-distance, J. Inequal. Appl., 1 (2020), 1–16. https://doi.org/10.1186/s13660-020-02373-1 doi: 10.1186/s13660-020-02373-1 |
[9] | K. P. R. Rao, P. R. Swamy, J. R. Prasad, A common fixed point theorem in complex valued b-metric spaces, Bull. Math. Stat. Res., 1 (2013). |
[10] | M. Berzig, First results in suprametric spaces with applications, Mediterr. J. Math., 19 (2022). https://doi.org/10.1007/s00009-022-02148-6 doi: 10.1007/s00009-022-02148-6 |
[11] | J. E. Joseph, M. H. Kwack, Alternative approaches to proofs of contraction mapping fixed point theorems, Missouri J. Math. Sci., 11 (1999), 167–175. |
[12] | M. Frechet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palerm., 22 (1906), 1–74. |
[13] | A. H. Stone, Paracompactness and product spaces, Bull. Am. Math. Soc., 54 (1948), 977–982. |
[14] | R. H. Bing, Metrization of topological spaces, Can. J. Math., 3 (1951). |
[15] | P. J. Collins, A. W. Roscoe, Criteria for metrisability, P. Am. Math. Soc., 90 (1984), 631–640. |
[16] | T. V. An, L. Q. Tuyen, N. V. Dung, Stone-type theorem on b-metric spaces and applications, Topol. Appl., 185 (2015), 50–64. |
[17] | N. V. Dung, The metrization of rectangular b-metric spaces, Topol. Appl., 261 (2019), 22–28. https://doi.org/10.1016/j.topol.2019.04.010 doi: 10.1016/j.topol.2019.04.010 |
[18] | P. S. Kumari, I. R. Sarma, J. M. Rao, Metrization theorem for a weaker class of uniformities, Afr. Mat., 27 (2016), 667–672. https://doi.org/10.1007/s13370-015-0369-9 doi: 10.1007/s13370-015-0369-9 |
[19] | R. Engelking, General topology, Sigma Series in Pure Mathematics, Berlin, Heldermann Verlag, 1988. |
[20] | C. Good, I. J. Tree, W. S. Watson, On Stone's theorem and the axiom of choice, Proc. Amer. Math. Soc., 128 (1998), 1211–1218. |
[21] | P. Howard, J. E. Rubin, Consequences of the axiom of choice, Mathematical Surveys and Monographs, Providence, Rhode Island, American Mathematical Society, 1998. |
[22] | P. T. Chris, W. J. Padgett, Stochastic integral equations in life sciences and engineering, Int. Stat. Rev., 41 (1973), 15–38. https://doi.org/10.2307/1402785 doi: 10.2307/1402785 |