Research article

Study on the oscillation of solution to second-order impulsive systems

  • Received: 02 September 2022 Revised: 29 December 2022 Accepted: 09 January 2023 Published: 13 July 2023
  • MSC : 34C10, 34C15, 34K11

  • In the present article, we set the if and only if conditions for the solutions of the class of neutral impulsive delay second-order differential equations. We consider two cases when it is non-increasing and non-decreasing for quotient of two positive odd integers. Our main tool is the Lebesgue's dominated convergence theorem. Examples illustrating the applicability of the results are also given, and state an open problem.

    Citation: Shyam Sundar Santra, Palash Mondal, Mohammad Esmael Samei, Hammad Alotaibi, Mohamed Altanji, Thongchai Botmart. Study on the oscillation of solution to second-order impulsive systems[J]. AIMS Mathematics, 2023, 8(9): 22237-22255. doi: 10.3934/math.20231134

    Related Papers:

  • In the present article, we set the if and only if conditions for the solutions of the class of neutral impulsive delay second-order differential equations. We consider two cases when it is non-increasing and non-decreasing for quotient of two positive odd integers. Our main tool is the Lebesgue's dominated convergence theorem. Examples illustrating the applicability of the results are also given, and state an open problem.



    加载中


    [1] T. Li, Y. V. Rogovchenko, On asymptotic behavior of solutions to higher-order sublinear Emden-Fowler delay differential equations, Appl. Math. Lett., 67 (2017), 53–59. http://doi.org/10.1016/j.aml.2016.11.007 doi: 10.1016/j.aml.2016.11.007
    [2] T. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differ. Integral Equ., 34 (2021), 315–336. http://doi.org/10.57262/die034-0506-315 doi: 10.57262/die034-0506-315
    [3] T. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 106293. https://doi.org/10.1016/j.aml.2020.106293 doi: 10.1016/j.aml.2020.106293
    [4] T. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 86. http://doi.org/10.1007/s00033-019-1130-2 doi: 10.1007/s00033-019-1130-2
    [5] J. Džurina, S. R. Grace, I. Jadlovská, T. Li, Oscillation criteria for second-order emden-fowler delay differential equations with a sublinear neutral term, Math. Nachr., 293 (2020), 910–922. http://doi.org/10.1002/mana.201800196 doi: 10.1002/mana.201800196
    [6] J. H. Shen, Z. C. Wang, Oscillation and asymptotic behaviour of solutions of delay differential equations with impulses, Ann. Differ. Equ., 10 (1994), 61–68.
    [7] J. R. Graef, J. H. Shen, I. P. Stavroulakis, Oscillation of impulsive neutral delay differential equations, J. Math. Anal. Appl., 268 (2002), 310–333. https://doi.org/10.1006/jmaa.2001.7836 doi: 10.1006/jmaa.2001.7836
    [8] J. H. Shen, J. Zou, Oscillation criteria for first order impulsive differential equations with positive and negative coefficients, J. Comput. Appl. Math., 217 (2008), 28–37. https://doi.org/10.1016/j.cam.2007.06.016 doi: 10.1016/j.cam.2007.06.016
    [9] B. Karpuz, O. Ocalan, Oscillation criteria for a class of first-order forced differential equations under impulse effects, Adv. Dyn. Syst. Appl., 7 (2012), 205–218.
    [10] A. K. Tripathy, S. S. Santra, Characterization of a class of second-order neutral impulsive systems via pulsatile constant, Differ. Equ. Appl., 9 (2017), 87–98. http://doi.org/10.7153/dea-09-07 doi: 10.7153/dea-09-07
    [11] A. K. Tripathy, S. S. Santra, Necessary and sufficient conditions for oscillation of a class of second order impulsive systems, Differ. Equ. Dyn. Syst., 30 (2022), 433–450. http://doi.org/10.1007/s12591-018-0425-7 doi: 10.1007/s12591-018-0425-7
    [12] S. S. Santra, Oscillation analysis for nonlinear neutral differential equations of second-order with several delays, Mathematics, 59 (2017), 111–123.
    [13] S. S. Santra, Oscillation analysis for nonlinear neutral differential equations of second-order with several delays and forcing term, Mathematics, 61 (2019), 63–78.
    [14] W. Li, J. Ji, L. Huang, Dynamics of a controlled discontinuous computer worm system, Proc. Amer. Math. Soc., 148 (2020), 4389–4403. http://doi.org/10.1090/proc/15095 doi: 10.1090/proc/15095
    [15] W. Li, J. Ji, L. Huang, Z. Guo, Global dynamics of a controlled discontinuous diffusive sir epidemic system, Appl. Math. Lett., 121 (2021), 107420. https://doi.org/10.1016/j.aml.2021.107420 doi: 10.1016/j.aml.2021.107420
    [16] A. K. Tripathy, S. S. Santra, Necessary and sufficient conditions for oscillations to a second-order neutral differential equations with impulses, Kragujev. J. Math., 47 (2023), 81–93.
    [17] A. K. Tripathy, S. S. Santra, On forced impulsive oscillatory nonlinear neutral systems of the second-order, J. Math. Sci., 258 (2021), 722–738. http://doi.org/10.1007/s10958-021-05576-z doi: 10.1007/s10958-021-05576-z
    [18] D. Bainov, V. Covachev, Impulsive differential equations with a small parameter, World Scientific Publishers, 1994. http://doi.org/10.1142/2058
    [19] D. D. Bainov, M. B. Dimitrova, A. B. Dishliev, Oscillation of the solutions of impulsive differential equations and inequalities with a retarded argument, Rocky Mountain J. Math., 28 (1998), 25–40. http://doi.org/10.1216/rmjm/1181071821 doi: 10.1216/rmjm/1181071821
    [20] M. P. Chen, J. S. Yu, J. H. Shen, The persistence of nonoscillatory solutions of delay differential equations under impulsive perturbations, Comput. Math. Appl., 27 (1994), 1–6. https://doi.org/10.1016/0898-1221(94)90061-2 doi: 10.1016/0898-1221(94)90061-2
    [21] P. Amiri, M. E. Samei, Existence of Urysohn and Atangana-Baleanu fractional integral inclusion systems solutions via common fixed point of multi-valued operators, Chaos Soliton. Fract., 165 (2022), 112822. http://doi.org/10.1016/j.chaos.2022.112822 doi: 10.1016/j.chaos.2022.112822
    [22] S. K. Mishra, M. E. Samei, S. K. Chakraborty, B. Ram, On $q$-variant of dai-yuan conjugate gradient algorithm for unconstrained optimization problems, Nonlinear Dyn., 104 (2021), 2471–2496. http://doi.org/10.1007/s11071-021-06378-3 doi: 10.1007/s11071-021-06378-3
    [23] R. P. Agarwal, C. Zhang, T. Li, Some remarks on oscillation of second order neutral differential equations, Appl. Math. Comput., 274 (2016), 178–181. https://doi.org/10.1016/j.amc.2015.10.089 doi: 10.1016/j.amc.2015.10.089
    [24] S. N. Hajiseyedazizi, M. E. Samei, J. Alzabut, Y. Chu, On multi-step methods for singular fractional $q$–integro-differential equations, Open Math., 19 (2021), 1378–1405. http://doi.org/10.1515/math-2021-0093 doi: 10.1515/math-2021-0093
    [25] B. Karpuz, S. S. Santra, Oscillation theorems for second-order nonlinear delay differential equations of neutral type, Hacet. J. Math. Stat., 48 (2019), 633–643. http://doi.org/10.15672/HJMS.2017.542 doi: 10.15672/HJMS.2017.542
    [26] T. Li, Y. V. Rogovchenko, Oscillation theorems for second-order nonlinear neutral delay differential equations, Abstr. Appl. Anal., 2014 (2014), 594190. http://doi.org/10.1155/2014/594190 doi: 10.1155/2014/594190
    [27] T. Li, Y. V. Rogovchenko, Oscillation of second-order neutral differential equations, Math. Nachr., 288 (2015), 1150–1162. https://doi.org/10.1002/mana.201300029 doi: 10.1002/mana.201300029
    [28] Q. Li, R. Wang, F. Chen, T. Li, Oscillation of second-order nonlinear delay differential equations with nonpositive neutral coefficients, Adv. Differ. Equ., 2015 (2015), 35. http://doi.org/10.1186/s13662-015-0377-y doi: 10.1186/s13662-015-0377-y
    [29] S. Pinelas, S. S. Santra, Necessary and sufficient condition for oscillation of nonlinear neutral first-order differential equations with several delays, J. Fixed Point Theory Appl., 20 (2018), 27. https://doi.org/10.1007/s11784-018-0506-9 doi: 10.1007/s11784-018-0506-9
    [30] S. S. Santra, Necessary and sufficient condition for oscillatory and asymptotic behaviour of second-order functional differential equations, Kragujev. J. Math., 44 (2020), 459–473.
    [31] A. K. Tripathy, B. Panda, A. K. Sethi, On oscillatory nonlinear second-order neutral delay differential equations, Differ. Equ. Appl., 8 (2016), 247–258. http://doi.org/10.7153/dea-08-12 doi: 10.7153/dea-08-12
    [32] R. Eswari, J. Alzabut, M. E. Samei, H. Zhou, On periodic solutions of a discrete nicholson's dual system with density-dependent mortality and harvesting terms, Adv. Differ. Equ., 2021 (2021), 360. http://doi.org/10.1186/s13662-021-03521-7 doi: 10.1186/s13662-021-03521-7
    [33] R. P. Agarwal, M. Bohner, T. Li, C. Zhang, Even-order half-linear advanced differential equations: improved criteria in oscillatory and asymptotic properties, Appl. Math. Comput., 266 (2015), 481–490. https://doi.org/10.1016/j.amc.2015.05.008 doi: 10.1016/j.amc.2015.05.008
    [34] S. S. Santra, Existence of positive solution and new oscillation criteria for nonlinear first-order neutral delay differential equations, Differ. Equ. Appl., 8 (2016), 33–51. http://doi.org/10.7153/dea-08-03 doi: 10.7153/dea-08-03
    [35] S. S. Santra, A. K. Tripathy, On oscillatory first order nonlinear neutral differential equations with nonlinear impulses, J. Appl. Math. Comput., 59 (2019), 257–270. http://doi.org/10.1007/s12190-018-1178-8 doi: 10.1007/s12190-018-1178-8
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1094) PDF downloads(72) Cited by(5)

Article outline

Figures and Tables

Figures(2)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog